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Abstract—For industrial applications, the ceramics composites are machined in large scale using end 
milling. Due the abrasive reinforcement particle, the failure in tool life and surface quality are possible. 
This research work focuses on developing the mathematical models of cutting force (FR), Metal Removal 
Rate (MRR) and surface roughness (Ra) and to optimize it. The Response Surface Methodology (RSM) 
with L31 empirical model was used for conducting the basic trails on Al/SiC composites of various 
compositions. The XRD, EDS, Optical microscopic images of Al/SiC composites were analysed and the 
SEM morphology of the machined samples were studied. The models developed for predicting responses 
were tested by analysis of variance (ANOVA) to evaluate its adequacy. The optimal machining 
configuration was identified which yields 0.5%, 14% and 4% of MRR, Ra and FR respectively compared 
with experimental results. 
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I. INTRODUCTION 

Generally, the ceramic composites are Aluminium Metal Matrix Composites (AMMC) which are reinforced 
with different kinds of ceramic particles like Si3N4, A12O3, B4C, TiC and the most commonly used particle is 
SiC [1-6]. The Al/SiC composites with low density and high strength are mostly preferable for the industrial 
applications [7]. However, it could be very difficult to machine ceramic composites, because of their non-
homogeneous, anisotropic and reinforced by very abrasive materials. So, the machined composite may 
experience a significant damage and high wear rate of cutting tools. After all, the machining of composite 
materials is depending on several conditions like material properties, relative content of the reinforcement and 
the response to the machining process [8, 9]. 

Fei et al. [10] studied compound machining of engineering materials to increase the efficiency of the 
machining method. In which, it was concluded that based on the output parameter the machine can be suggested 
but optimizing all the output in a single machine mode was tedious. 

End milling is a vital and common machining process because of its flexibility and capability to produce 
various profiles even with curved surfaces. It has the ability to remove material faster with a good surface 
quality and milled surfaces are largely used to mate the aerospace, automobile, biomedical products, as well as 
in manufacturing industries applications [11]. End mill has found wide use in aerospace, automobile, mold and 
general machinery industries because of its good performance in processing difficult-to-machine materials [12]. 
The aims are to improve the surface roughness quality and maximize the material removal rate (MRR) with 
optimal cutting force. Traditionally, trial-and-error and heuristic approaches are employed to obtain the optimal 
machining parameters. It is well recognized that these methods are time consuming and lead to long machining 
periods with large machining cost [13]. 

Design of Experiments (DOE) is a powerful analysis tool for modelling and analysing the influence of control 
factors on output performance. The traditional experimental design is difficult to be used especially when 
dealing with large number of experiments and when the number of machining parameter is increasing [14]. The 
most important stage in the design of experiment lies in the selection of the control factors [15]. 

Oktem et al. [16] had focused on the development of an effective methodology to determine the optimum 
cutting conditions leading to minimum surface roughness (Ra) in milling by coupling Response Surface 
Methodology (RSM) with a developed genetic algorithm (GA). The micro milling condition which influence 
cutting force was studied to optimize the process stability [17]. Later, Emel et al. [18] had done a work to 
optimize cutting fluids and cutting parameters in end milling process using DOE. As a result, a new machining 
method with minimal machining cost without environmental impacts was developed. 
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The optimization of all the output parameters of end milling process was a tedious. This research work 
focuses on developing the mathematical models of cutting force (FR), Metal Removal Rate (MRR) and surface 
roughness (Ra) and to optimize it. And also the adequacies in predicting the responses by the developed models 
are evaluated along with experimental deviation of the optimal configuration. 

II. MATERIALS AND METHODS 

A. Materials 
The end milling tests were conducted with BATIBOI-NOMO universal milling machine (Fig. 1 (a)). In the 

milling experiments, Al 6061/SiC composite material were used as the work piece with varying reinforcement 
wt. % of 5, 10 and 15, which had a dimension of 100*100*10mm3. Using the stir casting method, the Al/SiC 
composites were manufactured with SiC particle size of 37μm. For machining these composites for good 
machinability, the Poly Crystalline Diamond (PCD) tools were suggested [19].The Poly Crstalline Diamond 
(PCD) coated tool (Fig. 1 (b)) of thickness 0.6mm and 12mm in dia is used. 

 
Fig. 1. (a) Universal milling machine (b) PCD coated tool 

B. Measurements 
The MRR is calculated using the equation (1) and the cutting forces is measured using the 3-axis milling tool 

dynamometer- Kistler 9257B (Fig. 2 (a)). The force data was acquired via a DAQ card and an amplifier, and it 
was processed with Dynoware software. Using this force setup, three force components (Fx, Fy and Fz) can be 
measured simultaneously and its resultant (FR) is calculated using equation (2). The Surface roughness (Ra) of 
the machined surface is measured using ROGOSOFT 90G Profilometer (Fig. 2 (b)) with the accuracy of 
0.001μm. ܴܴܯ = ݈ ∗ ܾ ∗ ܥܱܦ ܶ݅݉݁⁄ ோܨ (1)          = ඥܨ௫ଶ + ௬ଶܨ +  ௭ଶ          (2)ܨ

Where, l  = length of the plate 
 b  = breath of the plate 
 DOC  = depth of cut 
 FR = Resultant cutting force 

 Fx, Fy and Fz = Cutting force along x, y and z-axis respectively. 

 
Fig. 2. (a) 3-axis dynamometer - Kistler 9257B (b) Profilometer - ROGOSOFT 90G 
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III. CHARACTERIZATION 

A.  X-ray Diffraction Analysis 
The X-ray diffraction (XRD) (Model: X’per PRO) pattern of the Al/SiC composite is shown in Fig. 3 and it 

matches with the JCPDS file #04-0787 [20]. It exhibits strong (111) orientation at 38.33° and weak (311) peak 
at 77.91°. An osbornite phase was identified; and as a result of (111) to (220) peak intensity ratios, it can be 
understood as almost similar to the preferred orientation of Al [21]. It can be seen that the higher full width half 
maximum (FWHM) appeared along the (200) plane at 44.56°, resulting in the calculated crystalline size of 
about 44.9 nm. The unit cell of Al/SiC exhibits a hexagonal structure with a = b = 4.063460 Å and c = 
4.068095Å of lattice.  

 
Fig. 3.  XRD pattern of Al/SiC composite 

B. Energy Dispersive Spectrum Analysis 
The Energy Dispersive Spectrum (EDS) analysis of Al/SiC composite is shown in Fig. 4 which reveals the 

presence of Al, Si and C elements in it. 

 
Fig. 4. EDS image of Al/SiC composite 
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C. Structural Analysis 

 
Fig. 5. Microstructure images of Al/SiC composite (a) 5 wt. % (b) 10 wt. % (c) 15 wt. % 

The optical microscopic images of Al/SiC composites with varying reinforcement wt. % of 5, 10 and 15 are 
shown in Fig. 5 (a-c). The arrangement of SiC particles are clear and uniform on the Al matrix was evidenced 
from optical microscopic images. The presence of SiC increases homogenously with increase in SiC wt. % 
which was confirmed through the black spot on the matrix. 

IV. EXPERIMENTAL ANALYSIS 

A. Effect of Machining Parameters on MRR 

 
Fig. 6. Contour plots for MRR 

The contour plots were developed to study the interaction effect of controlling parameters on MRR was 
shown in Fig. 6. The maximum MRR (Dark Green) is identified at high depth of cut and feed rate. The material 
and cutting speed factors doesn’t influence much compared to others in MRR. This result agrees with the results 
of Yongho and Frank [22]. The SEM morphology of the maximum and minimum MRR obtained machined 
surface in Fig. 7. The minimum MRR (Dark Blue) is identified at low depth of cut and feed rate with 15 wt. % 
of SiC reinforcement. 
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Fig. 7. SEM images of (a) minimum and (b) maximum MRR 

B. Effect of Machining Parameters on Ra 
The interaction effect of controlling parameters on Ra (Fig. 8) exposes that the minimum Ra (Dark Blue) is 

identified well with the maximum cutting speed. Even though other parameters influence the Ra but the 
significant observation was found with the influence of cutting speed. The maximum Ra (Dark Green) is noticed 
at high feed rate and SEM morphology is shown in Fig. 9 (b) and it confirms the increase in Ra compared to Fig. 
9 (a) experimentally. 

 
Fig. 8. Contour plots for Ra 

 
Fig. 9. SEM images of (a) minimum and (b) maximum Ra 
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C. Effect of Machining Parameters on FR 
The minimum FR (Light Green) was noticed with less feed rate, reinforcement at high cutting speed as shown 

in Fig. 10. The increase in FR will leads to decrease in tool life but with minimum FR configuration, the MRR is 
less. Therefore, it is essential to final an optimal configuration with minimal FR with produce maximum MRR. 
The maximum FR (Dark Green) was observed with high feed rate and its effect on machined surface was shown 
in Fig. 11 (b). The low FR also affects the machining quality; it was evidenced by SEM shown in Fig. 11 (a). 

 
Fig. 10. Contour plots for FR 

 
Fig. 11. SEM images of (a) minimum and (b) maximum FR 

V. RESPONSE SURFACE METHODOLOGY 

TABLE I.  Parameters and Levels in End Milling 

S.No Variable Parameter Units levels 

Low High 

1. A Material (Wt. %) 5 15 
2. B Depth of Cut (mm) 0.3 0.6 
3. C Feed (mm/min) 30 90 
4. D Cutting 

Speed 
(rpm) 100 1000 
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TABLE II.  Analytical Table of Responses for the Independent Variables 

S. 
No. 

Material 
(wt. %) 

Depth 
of Cut 
(mm) 

Feed 
(mm/min) 

Cutting 
Speed 
(rpm) 

MRR 
(mm3/s) 

Ra 
(µm) 

FR (N) 

1 15 0.3 30 1000 4.5 0.5 36.68 
2 10 0.6 60 550 12.44 2.41 264.8 
3 10 0.6 60 550 12.44 2.41 264.8 
4 10 0.6 60 550 12.44 2.41 264.8 
5 15 0.3 90 100 24.28 4.92 314.03 
6 10 0.6 30 550 7.2 0.52 94.96 
7 10 0.6 60 550 12.44 2.41 264.8 
8 10 0.6 90 550 20.57 2.32 25.82 
9 5 0.3 90 1000 10.29 0.69 49.33 
10 15 0.9 90 1000 36 0.95 88.91 
11 15 0.9 90 100 30.86 6.15 501.65 
12 5 0.9 90 100 27 9.06 752.12 
13 5 0.9 90 1000 31.76 1.24 43.21 
14 10 0.6 60 550 12.44 2.41 264.8 
15 10 0.9 60 550 11.37 1.13 122.16 
16 10 0.6 60 100 12.13 3.51 365.64 
17 10 0.6 60 1000 13.12 0.01 44.86 
18 10 0.6 60 550 12.44 2.41 264.8 
19 15 0.6 60 550 8 1.25 111.07 
20 10 0.6 60 550 12.44 2.41 264.8 
21 15 0.3 90 1000 8 1.25 111.07 
22 10 0.3 60 550 3.6 0.62 88.91 
23 15 0.3 30 100 3.6 2.76 35.62 
24 5 0.6 60 550 8.37 0.78 51.01 
25 5 0.9 30 1000 10.8 2.25 57.81 
26 15 0.9 30 100 4.77 4.82 278.14 
27 15 0.9 30 1000 4.25 0.78 7.28 
28 5 0.3 90 100 1.87 7.57 501.65 
29 5 0.3 30 100 2.4 1.84 373.07 
30 5 0.3 30 1000 4 0.35 4.87 
31 5 0.9 30 100 10.8 2.01 178.72 

The RSM involves the studying the response based on the combinations, estimating the coefficients, fitting 
the experimental data, predicting the response and checking the adequacy of the fitted model [23]. Here, the 
responses are MRR, Ra and FR for the independent variables (input parameters) are reinforcement %, Depth of 
Cut, and Feed rate, Cutting Speed (Table I). For this DOE, the three levels RSM design with L31 array was 
done using MINITAB 16. The results of the output parameters after machining process were consolidated for 
the mathematically modelling the input parameters in Table II. The regression equations were formed for the 
individual responses based on the controlling parameters. From this mathematical model, the predicted models 
are estimated and the models are validated through ANOVA [24]. 

 

 

e-ISSN : 0975-4024 Vamsi Krishna M et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2280



A. Mathematical Models for the Responses 
Based on the uncoded data from the given input trails, the mathematical models for the responses are 

estimated. The MRR in form of regression equation is stated in equation (3), which states that the factor B 
influences more compared to other factors. In equation (4) and (5) are the regression equations of Ra and FR 
respectively, which also declare that the factors B (depth of cut) influences highly in all configuration results. ܴܴܯ	 = 	1.25478	 + 	1.75719 ∗ 	ܣ + 	33.8615 ∗ 	ܤ − 	0.688283 ∗ 	ܥ − 	0.0103421 ∗ 	ܦ − 	0.0749221 ∗ ∗ܣ 	ܣ − 28.5895 ∗ ܤ ∗ 	ܤ + 	0.00425216 ∗ ܥ ∗ 	ܥ + ܧ1.27	 − 05 ∗ ܦ ∗ 	ܦ − 	1.09583 ∗ ܣ ∗ +	ܤ 	0.0162917 ∗ ܣ ∗ ܥ − ܧ7.09	 − 04 ∗ ܣ ∗ 	ܦ + 	0.451806 ∗ ܤ ∗ 	ܥ + 	0.00682407 ∗ ܤ ∗ +	ܦ ܧ2.78	 − 07 ∗ ܥ ∗  	ܦ

(3) ܴܽ	 = 	−1.26391	 + 	0.138958 ∗ 	ܣ + 	4.77893 ∗ 	ܤ + 	0.0573958 ∗ 	ܥ − 	0.00338567 ∗ 	ܦ + 	0.000519467∗ ܣ ∗ ܣ − 	1.41126 ∗ ܤ ∗ 	ܤ + 	0.00046443 ∗ ܥ ∗ 	ܥ + 	0.00000374314 ∗ ܦ ∗ −	ܦ 	0.0154167 ∗ ܣ ∗ 	ܤ − 	0.0030125 ∗ ܣ ∗ 	ܥ + 	0.0000347222 ∗ ܣ ∗ 	ܦ − 	0.0132639 ∗ ∗ܤ 	ܥ − 	0.00138426 ∗ ܤ ∗ 	ܦ − 	0.0000763426 ∗ ܥ ∗  ܦ
	ܴܨ (4) = 			45.5807	 + 	2.53377 ∗ 	ܣ + 	50.2841 ∗ 	ܤ + 	10.8129 ∗ 	ܥ − 	0.653551 ∗ 	ܦ − 	1.23815 ∗ ܣ ∗ −	ܣ 71.7649 ∗ ܤ ∗ 	ܤ − 	0.0573376 ∗ ܥ ∗ 	ܥ + 	0.000460524 ∗ ܦ ∗ 	ܦ + 	11.2092 ∗ ܣ ∗ −	ܤ 	0.03355 ∗ ܣ ∗ 	ܥ + 0.0210617 ∗ ܣ ∗ 	ܦ + 	2.39389 ∗ ܤ ∗ 	ܥ − 	0.22425 ∗ ܤ ∗ −	ܦ 	0.00468241 ∗ ܥ ∗  ܦ

B. Checking of Data and Adequacy of Model 
The normality of the data was assessed by means of the normal probability plot. The normal probability plot 

of the residuals for the MRR, Ra and FR are shown in Figure 12-14. The normal probability plot for the 
responses reveals that the residuals fall in a straight line. This means the errors are distributed normally. The 
Independence of the data was tested, by plotting a graph between the residuals, and the run order for the 
responses confirms that there was no predictable pattern observed, because all the run residues lay on or 
between the levels. 

From Table III, the predicted points are within 95% of confidence limit and it nearly equal with the predicted 
limit plots. The adequacy of the responses are tabulated in Table 6 with R2 and R2(adj) values. These indicate 
that the model fits the data well and R2 is in agreement with R2(adj) which supports prediction power of the 
model. In all the models, both the values are good and above 80% which makes a fitness in predicted solutions. 
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(a)  Normal Probability Plot of the Residuals (b)   Residuals Versus the Fitted Values

(c)  Histogram of the Residuals (d)  Residuals Versus the Order of the Data

 
Fig. 12. Input data analysis of plot for MRR (a) normal probability plot of the residuals, (b) residuals versus the fitted values, (c) histogram 

of the residuals and (d) residuals versus the order of the data 
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Fig. 13. Input data analysis of plot for Ra (a) normal probability plot of the residuals, (b) residuals versus the fitted values, (c) histogram of 

the residuals and (d) residuals versus the order of the data 
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Fig. 14. Input data analysis of plot for FR (a) normal probability plot of the residuals, (b) residuals versus the fitted values, (c) histogram of 

the residuals and (d) residuals versus the order of the data 

TABLE III.  Adequacy of the Models 

S. No. Response Std. Deviation R2 R2(adj) 

1. MRR 3.308 92.7% 86.4% 

2. Ra 1.069 86.6% 84.9% 

3. FR 108.9 89.4% 81.4% 

C. ANOVA 
The ANOVA for MRR, Ra and FR are tabulated in Table IV-VI respectively. In all forms of regression, the P 

values of the responses are less than the F value and also it was less than 0.05 i.e. significant for 95% confidence 
limit. It confirms that the developed models are adequate, and the predicted values are in good agreement with 
the measured data. 
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TABLE IV.  ANOVA for MRR 

Source DF Seq SS Adj SS Adj MS F P 

Regression 14 2234.93 2234.93 159.638 14.59 0 

Linear 4 1693.47 1693.47 423.367 38.68 0 

Square 4 83.78 83.78 20.944 1.91 0.157 

Interaction 6 457.68 457.68 76.28 6.97 0.001 

Residual Error 16 175.11 175.11 10.944   

Lack-of-Fit 10 175.11 175.11 17.511   

Pure Error 6 0 0 0   

Total 30 2410.03     

TABLE V.  ANOVA for Ra 

Source DF Seq SS Adj SS Adj MS F P 

Regression 14 118.318 118.3183 8.4513 7.39 0 

Linear 4 89.375 89.375 22.3438 19.54 0 

Square 4 7.788 7.7882 1.9471 1.7 0.198 

Interaction 6 21.155 21.155 3.5258 3.08 0.033 

Residual Error 16 18.293 18.2934 1.1433 

Lack-of-Fit 10 18.293 18.2934 1.8293 

Pure Error 6 0 0 0 

Total 30 136.612 

TABLE VI.  ANOVA for FR 

Source DF Seq SS Adj SS Adj MS F P 

Regression 14 731762 731762 52269 4.41 0.003 

Linear 4 580060 580060 145015 12.23 0 

Square 4 24819 24819 6205 0.52 0.22 

Interaction 6 126884 126884 21147 1.78 0.166 

Residual Error 16 189652 189652 11853 

Lack-of-Fit 10 189652 189652 18965 

Pure Error 6 0 0 0 

Total 30 921414 

D. Combined Effect of the Controlling Factors 
The combined effect of the controlling parameters of responses MRR, Ra and FR is shown in Fig. 15. The 

increase in cutting speed with increasing reinforcement, depth of cut and feed rate, the optimal configuration are 
noticeable. The increase in material will increases the FR which leads severe damage in tool, the surface 
roughness increase with decrease in cutting speed and the MRR increases with increasing depth of cut and feed 
rate. The feasible zone (white) is identified with high depth of cut, feed rate, cutting speed and low 
reinforcement. 
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Fig. 15. Overlay plots of responses 

E. Optimization 

 
Fig. 16. Optimal configurations for optimal response 

The optimal configuration of input parameters and its responses are identified from the Fig. 16. The optimal 
configuration was 5wt. % reinforced material with machining parameter of high depth of cut 0.9mm, feed rate 
of 90mm/min and cutting speed 1000rpm which provides the global optimal solution of 31.9326mm3/s 
MRR, .4443μm surface roughness and 41.4364N of resultant cutting force. The desirability of the MRR, Ra and 
FR are 98.6%, 99.1% and 94.5% respectively. For the same optimal condition, the experimental result was 
31.76mm3/s MRR, 1.24μm Ra and 43.2N FR which was 0.5%, 14% and 4% deviation from the predicted results. 

VI. CONCLUSION 

The Al/SiC composite with varying reinforcement composition was done to study the machining nature of it 
was successful. The Al/SiC composite was characterized using XRD, EDS and optical microscopic images 
which inferred the structural changes in orientation and surface due reinforcement particle. The influence of 
machining parameters on the responses was discussed and the effects were evidenced through SEM images. 
Using RSM, the optimal configuration of machining parameter which provides optimal response was identified. 
The optimal configuration was 5wt. % reinforced material with machining parameter of high depth of cut 
0.9mm, feed rate of 90mm/min and cutting speed 1000rpm which provides the global optimal solution of 
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31.9326mm3/s MRR, 1.4443μm surface roughness and 41.4364N of resultant cutting force which was 0.5%, 14% 
and 4% deviation from the experimental results. 
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