
Partitioned Convolution Analysis for stereo
inputs based three channel Optimal Source

Distribution on Heterogeneous Parallel
Computing Platforms using OpenCL
SreenivasaRao Chunduri #1, VenkataRao Dhulipalla *2, Lakshminarayana Somayajula #3

ECE Department, KL University, Green Fields, Vaddeswaram, Guntur - 522502, India
1 chsrinivas19800305@rediffmail.com

3 drslakshminarayana @gmail.com
* ECE Department, NIT, Narsaraopet, Guntur – 522601, India

2 dvenky221101 @rediffmail.com

Abstract—Partitioned convolutions are the best methods to address the system performance related
issues in 3D virtualization techniques both in terms of latency and computational complexity. General
DSP processor architectures are not suitable to implement very long filters due to increase in
computational complexity and required on-chip memory. In this paper, an efficient method called Mixed
Non-uniform partitioned convolution is explained to overcome computational problems for implementing
three channel OSD (Optimal Source Distribution) with stereo inputs on heterogeneous parallel computing
platforms. With the massive parallel computing architecture, the partitioning scheme used for this
method prove that it is possible to implement OSD system containing 6 filters, each filter has a filter
length of 65536 (32-bit floating point) on these platforms. The proposed algorithms were implemented on
AMD based Bonaire GPU using task parallelism. The advantage of proposed method is that it provides
zero output latency, which is desired in real-time applications. The computational performance and the
system cost of proposed method was compared with existing approaches. The performance comparison
clearly provides information that the proposed approach is suitable for implementation of OSD system at
very long filter lengths with reasonable system cost in terms of compute units.

Keyword- Optimal Sound Distribution, Partitioned Convolution, Mixed filtering, OpenCL, data and task
parallelism

I. INTRODUCTION

3D audio virtual techniques are most popular and have several applications in home theatre entertainment,
gaming, teleconference and remote control. The aim of these techniques is to reproduce the spatial audio pattern
at the ears of the listener so that one would feel that he actually resided in the real audio environment. Initially,
Head Related Transfer Function (HRTF) technique was introduced in 1983, in which, the listener wears the
headphones to enjoy the audio and the incoming signal will be processed using the HRTF filters, whose impulse
responses were measured based on the environment. Though this technique has excellent channel separation,
they are inconvenient to wear, particularly, when more number of users are enjoying the audio. Later,
conventional loudspeaker system was developed. The main disadvantage of this technique is system inversion to
cancel out the unintended sounds between loudspeakers and the ears of the listener [1]-[4].

Takashi in his research found that the condition number of the inverse acoustic matrix is of type ill
conditioned. This means a small variation of the listener’s head causes wrong impression in identifying the
direction of the sound. More importantly, it causes the listener to treat the sound is coming from far though it is
actually originating from near and vice versa. Takashi has come up with smart solution to overcome this
problem by forming a relationship between operating frequency and the position of the loudspeaker. He divided
the audio bandwidth into three regions, namely low, mid and high pass regions so that in each region the
condition number should be unity. He called this technique as Optimum Source Distribution (OSD) [5]-[10]

For perfect crosstalk cancellation, advantage of a simple phase change is enhanced by introducing one more
loudspeaker between binaural loudspeakers. This is referred to as three channel OSD system. Here the word
“three channel” means that each input source is processed by three crosstalk cancellation filters. Fig.1 shows
three channel OSD system in which each channel is processed by three individual Crosstalk cancellation (CTC)
filters and the output of CTC block is fed to frequency divider network [5]-[10]

To reproduce the spatial reverberation characteristics at the desired locations, it is necessary to use long filters
in CTC section. This requires more computational power for implementation of these filters on general purpose
DSP processors. This paper mainly concentrates on describing the computational complexity issues when

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2092

implementing very long filters in audio CTC and provides a feasible solution called mixed non-uniform
partitioned convolution to implement CTC section on heterogeneous parallel computing platforms.

Fig. 1. Three channel OSD system with stereo source

This paper is organized as follows. Section 2 provides existing implementations and section 3 gives the
objectives of current work. Section 4 gives the mathematical analysis of proposed method to implement audio
CTC section in three channel OSD system. Section 5 provides the parallel computing architecture details,
partitioning scheme adapted in proposed method and will explain about experimental results. Section 6 provides
conclusion and future scope of the work.

II. EXISTING IMPLEMENTATIONS

The original and basic method to proceed is time domain convolution. It is suitable for very shorter lengths in
order of 1024 and is not preferred for long filters due to more power consumption. Recently, the DSP processor
manufacturers are come up with FIR accelerators to save computational power. These accelerators can run in
parallel with core process to reduce the complexity. The ADI SHARC 214xx series processors are best example
for this. But restriction on accelerator filter lengths makes them not suitable for long filters [11]-[12], [27].

On the other hand, frequency domain techniques provide better computational complexity. The techniques
like overlap save and overlap add methods are examples. The drawback of these methods is output latency. Due
to appending of zeroes to the original impulse response to match the FFT lengths, latency is introduced at the
output. The latency depends on the number of zeroes appended and typically equal to the length of impulse
response. For example, if the system is operating at 44.1kHz and impulse response length is 8192, the output
latency is 185.7msec approximately, which is undesired in real-time applications. Also FFT requires twice the
impulse response length as its size. Due to this, the computational power increases drastically [11]-[12].

To overcome the latency problems, partitioned filter approach was developed. The idea behind this approach
is to partition the impulse response uniformly and apply overlap save method for each partition. The number of
partitions become M/L assuming that M and L are lengths of impulse response and processing frame
respectively. Usually M>>L. The length of each partition becomes L so that when overlap save method is
applied for each partition, it is enough to append L zeroes to each partition. Hence the latency in this case is
equal to L/Fs where Fs is sampling frequency. For example, latency becomes 5.8msec for L = 256 and
Fs=44.1Khz, which is drastic improvement compared to overlap save method. To optimize the computational
complexity, the structure of this method can be adjusted in such a way that only single FFT and IFFT would be
needed and all the frequency domain contents are delayed for process of further partitions instead of time
domain delayed contents. In this way, this method is referred to as uniform partitioned convolution as partitions
are uniform and also called single frequency delay line filter (SFDL) as FFT contents of the input frames are
delayed and used in processing of further partitions [13]-[16].

SFDL approach solves major problems of latency and computational complexity upto certain extent. But
when filter length is very long, the complex frequency multiplication blocks will increase and this results into
more computational complexity. To avoid these problems, Gardener and Garcia suggested non-uniform
partitioning approach. In this method, impulse response is partitioned non-uniformly starting with shorter
partition length and gradually increase the partition length. The initial partition length is preferred short to obtain
less latency. Even if time domain convolution method is followed for this partition, zero latency would be
obtained. The gradual increase in partitions are preferred to obtain low computational complexity. To achieve

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2093

optimum computational complexity, massive parallel architectures are required so that each non-uniform
partition can be executed in parallel. Fig.2 shows the partitioning schemes for uniform and non-uniform cases
[13]-[16].

Fig. 2. [Top] Uniform partitioning of impulse response. Each partition length is L so that total partitions become m =M/L. [Bottom] Non-

uniform partitioning scheme. The total partitions are based on partitioning scheme followed. The values m and k are decided based on
impulse response length and partitioning scheme

References [17]-[21] provide an efficient mechanism on how to optimize the implementation of audio CTC
filters for various multi-channel inputs. An optimum method called Mixed Uniform partitioned convolution was
explained to utilize algorithmic as well as processor level optimization efficiently on DSP processors. When
CTC filter lengths are very long i.e. in the order of 32768, DSP processors are inefficient to handle
computational complexity and latency issues as these architectures don’t have massive parallelism compute
units. Lot of memory is required when processing the signal in frequency domain and to store various FFT
coefficients and intermediate buffers. DSP processors may not support required on-chip memory. There is a
possibility to store the coefficients in external memory and copy these into on-chip using DMA but this takes
more cycles. Hence a suitable architecture called heterogeneous parallel computing platform is required to
perform parallel operations. This architecture is explained in section 5.

The audio CTC section in Fig.1 contains 6 such long filters and if these are implemented separately using
non-uniform partitioned convolution on parallel platforms, it is very difficult to handle FFT buffers and
partitioned coefficients related to each partition as well as for each filter. In this paper, an efficient method
called Mixed Non-uniform partitioned convolution is explained to achieve best optimization in processing of
signal with very long filters. This approach initially relies on simplifying overall CTC structure in frequency
domain based on method called mixed filtering and applying non-uniform partitioned convolution to simplified
result.

III. OBJECTIVES OF CURRENT WORK

In this paper, mixed filtering is explained to simplify the 3channel audio CTC section. This is combined with
non-uniform partitioned convolution to obtain optimum computational complexity. The mathematical model of
each method is explained in detail. The maximum filter length of 65536 for each filter is experimented using the
proposed approach. This method was implemented on AMD Radeon HD 7900 series GPUs. The partitioning
scheme followed was explained. Various tests were conducted to support the proposed method such as latency,
computational complexity tests using measured impulse responses. The results of the proposed method are
compared with those of existing techniques.

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2094

IV. PROPOSED SOLUTION - MIXED NON-UNIFORM PARTITIONED CONVOLUTION

This section describes the mathematical model of proposed algorithm. Initially mixed filtering concept was
explained and later partitioned convolution was applied to the results obtained in mixed filtering. To proceed
with, the outputs of audio CTC section (shown in Fig. 1) can be represented in both time and transform domains
respectively, as

() () () () ()
() () () () ()
() () () () ())3(**

)2(**
)1(**

→+=
→+=
→+=

nhnxnhnxny
nhnxnhnxny
nhnxnhnxny

RCRLCLC

RRRLRLR

RLRLLLL

And

() () () () ()
() () () () ()
() () () () ())6(

)5(
)4(

→+=
→+=
→+=

zHzXzHzXzY
zHzXzHzXzY
zHzXzHzXzY

RCRLCLC

RRRLRLR

RLRLLLL

By forming complex signal with first two outputs, one can obtain

() () () () ()() () () ()())7(** →+++=+ njhnhnxnjhnhnxnyjny RRRLRLRLLLRL

In frequency domain, it is represented as

() () () () () ())8(→+=+ zHzXzHzXzYjzY RRLLRL

where

() () ()
() () ())10(

)9(
→+=
→+=

zHjzHzH
zHjzHzH

RRRLR

LRLLL

Equation (8) gives the frequency contents of yL(n) and yR(n). In other words, real and imaginary parts of IFFT
applied to equation (8) yield both time domain outputs respectively. While calculating the FFTs of inputs xL(n)
and xR(n), a single FFT with decomposition can be used to get better optimization instead of using two
individual FFTs [11]-[12]. Also equation (6) provides the frequency domain representation of yC(n). All the
components in this equation are real and hence its FFT is symmetric with respect to real axis. Equations (6) and
(8) are collectively referred to as mixed filtering approach because there is no need to perform filtering
operations for each filter separately. Two equations will do the job of 6 filters.

This approach is better suitable for implementation of filters in the order of 1024 to 2048 using overlap save
method because it is easy to manage the required memory and implementation complexity on general purpose
DSP processors. But when the filter lengths are in the order of 16384, it is very difficult to handle computational
complexity. As mentioned in section 2, References [17]-[21] explained the mixed uniform partitioned
convolution on how to manage implementation complexity using external memory and DMA on SHARC DSP
processors. The aim of this paper is to support more filter lengths than 16384 and to derive better algorithm to
achieve this. To address this, the impulse responses in equations (3) and (7) are partitioned non-uniformly. The
impulse responses hL(n), hR(n), hLC(n) and hRC(n) are partitioned as

() () () () (){ }
() () () () () (){ }nhjnhnhjnhnhjnh

nhnhnhnhnh

lLRlLLLRLLLRLL

lLLLLL

1,1,1,1,0,0,

1,2,1,0,

....,,,
,....,,,

−−

−

+++=
=

() () () () (){ }
() () () () () (){ }nhjnhnhjnhnhjnh

nhnhnhnhnh

lRRmRLRRRLRRRL

lRRRRR

1,1,1,1,0,0,

1,2,1,0,

....,,,
,....,,,

−−

−

+++=
=

() () () () (){ }
() () () () (){ }nhnhnhnhnh

nhnhnhnhnh

lRCRCRCRCRC

lLCLCLCLCLC

1,2,1,0,

1,2,1,0,

,....,,,
,....,,,

−

−

=
=

where each impulse response has partition lengths in the order of l1, l2,...ll. Equation (8) can be written in terms
of partitions as

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2095

() () () () () ()[]
() () () ()[]

() () () () () ()
() () () () () ()

[] [] []
[] [] [])11(,,,...,,,,0,,

,,,...,,,,0,,
...

...

...

...

11,211,10,

11,211,10,

1,1,0,

1,1,0,

1,1,0,

1,1,0,

11

11

11

11

→+++

++++=
+++

++++=

+++

++++=+

−−

−−

−
−−

−
−−

−
−−

−
−−

−

−

−

−

UPClllRRUPCRRUPCRR

UPClllLLUPCLLUPCLL

lRR
L

RR
L

RR

lLL
L

LR
L

LL

lR
L

R
L

RR

lL
L

L
L

LLRL

lLHXlLHXlHX

lLHXlLHXlHX
zHzXzzHzXzzHzX

zHzXzzHzXzzHzX

zHzzHzzHzX

zHzzHzzHzXzjYzY

l

l

l

l

Similarly, equation (6) can be expanded as

() [] [] []
[] [] [])12(,,,...,,,,0,,

,,,...,,,,0,,

11,211,10,

11,211,10,

→+++

++++=

−−

−−

UPClllRCRUPCRCRUPCRCR

UPClllLCLUPCLCLUPCLCLC

lLHXlLHXlHX

lLHXlLHXlHXzY

Here the term [A,B,C,D]UPC means that C samples delayed input frame A is processed by the partitioned filter
B of length L1. The suffix UPC is attached to each term because each partition is implemented using uniform
partitioned convolution. Finally the time-domain outputs of CTC section are given by taking inverse z-transform
for equations (11) and (12). Even though the impulse response is partitioned non-uniformly, each non uniform
partition, in turn, implemented using uniform partitioned convolution in order keep the output latency low. For
example, assume impulse response of length 8192 is partitioned into 4 non-uniform partitions, each of length
1024 and 2 non-uniform partitions, each of length 2048 (8192 = 4x1024 + 2x2048). The first partition of length
1024 still requires appending of 1024 zeroes to the partitioned length in order to use overlap save method that
results latency problem. To overcome this, it is better to use uniform partitioned convolution for implementing
each non-uniform partition. If frame length is 128, obviously each non-uniform partition yields output latency of
2.9msec (128/44.1 kHz). But we discussed that parallel computing platforms are suitable for implementing these
algorithms, the output latency is not sum of all latencies. So 2.9msec is the output latency of overall CTC
section. Still there is possibility to obtain zero latency with this approach. As all partitions are executed in
parallel, it is better if first partition is implemented using time domain convolution because time domain yields
zero latency. But the computational complexity of first partition should not exceed that of any other partitions.
This is guaranteed because the partitioning scheme makes sure that gradual increase in partition lengths from
lower partition to possible higher partitions.

Fig.3 shows the block diagram of proposed algorithm. When first frame of L input samples arrive, they are
processed by the 1st non-uniform partition in time domain. For frames more than L1/L, the previous frames are
stored in delay buffer for the 2nd non-uniform partitioned filter to process these. The 2nd non-uniform partitioned
filter will be implemented using uniform partitioned convolution. This process will be repeated for each
partition. The delay buffers will be needed to store input frames for each partition based on the partition length.
These buffers are common for calculating yL(n)+jyR(n) and yC(n) as input channels are common for both. The
uniform partitioned convolution contains single FFT, single IFFT and complex frequency multiplication blocks.
The number of these blocks are derived based on partition length and frame lengths. As all UPC blocks are
executed in parallel, the computational complexity of overall system becomes maximum of computations
needed for each UPC block. Obviously the implementation complexity of this approach is high. Also more
memory is required to store long filter coefficients, their FFTs and to store input frames in delayed buffers. This
can be managed with GPUs as the memory in the order of GigaBytes is available in these platforms.

V. EXPERIMENTAL RESULTS

This section explains the architecture of heterogeneous parallel computing platforms, partitioning scheme
used in implementing proposed algorithm and results achieved on AMD based GPUs
A. Parallel Computing Architecture

Heterogeneous computing involves the use of various computational units, usually a general purpose
processing unit such as CPU or GPU or DSP processors. To obtain optimal performance, suitable hardware is
required to schedule various tasks based on the developer’s choice. OpenCL (Open Computing Language) is an
open and royalty free parallel computing API used to implement kernel programs on GPUs and these programs
can be enabled by Host software running on CPU. As shown in Fig.4, the OpenCL Device consists of one or
more compute units. Each compute unit in turn contains many processing elements, usually called SIMD units.
These SIMD units are responsible for processing of data provided by Host [22]-[26].

In general, OpernCL execution model contains two components i.e. Host and kernel. Host creates the kernel
context and based on this this context, it creates the required program objects, command queues and memory
objects. It sets the kernel argument list and prepares the command queue either in in order or out of order based

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2096

on kernel execution. If command queue is on out of order, then synchronization is required while calling the
kernels. After this, Host calls the kernels NDRangeKernel or EnqueueTask based on requirement of data
parallelism or task parallelism. The other component Kernel contains the actual openCL programs which are
optimized using the global work group size [22]-[26].

yL(n)+jyR(n)

Time domain convolution
of length l1

xL(n)

s
u
m

Z -L1

Z -Ll-1

Uniform partitioned convolution
of length l2

Uniform partitioned convolution
of length ll

hL,0(n) hR,0(n)

hL,1(n) hR,1(n)

xR(n)

hL,l-1(n) hR,l-1(n)

Z -L1

Z -Ll-1

Time domain convolution
of length l1

s
u
m

Uniform partitioned convolution
of length l2

Uniform partitioned convolution
of length

ll

hLC,0(n) hRC,0(n)

hLC,1(n) hRC,1(n)

hLC,l-1(n) hRC,l-1(n)

yC(n)

Fig. 1. Block diagram of proposed algorithm – Mixed Non-uniform partitioned convolution

OpenCL memory is divided into 4 regions (shown in Fig 4). Global memory is accessible to both host and
OpenCL device. All host allocated memory objects resided in global memory. A part of global memory is
dedicated for constants and kernel has only read access for it but host has read and write access because host
allocates these objects. Local memory is a region of memory used for data sharing across work items in work
group. Private memory is a region that is accessible to only one work item. Generally, data must be explicitly
move from host to global to local and back. Host will wait until the kernel executes entire program to read the

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2097

output memory objects in data parallelism. But in case of task parallelism, these can be used as non-blocked if
required based on the order and synchronization of tasks [22]-[26].

Fig.4. [Left] OpenCL device model and [Right] memory model

B. Partitioning scheme
To reduce the computational complexity and to keep output latency low, the partitioning scheme should

follow some systematic way from lower partition length to possible higher partition length. Gardener and Garcia
have proposed

128*2, 256*2,512*2,1024*2,2048*2,4096*2,
and

 128*14, 1024*14
for filter length of 16128 respectively [15]-[16]. As initial partition length is 128, this ensures that latency is low.
But there is difference in system cost. The solution of Gardener needs 12 CUs (compute units) whereas Garcia’s
method needs 28 CUs. As against this, Garcia’s solution consumes less power as maximum partition length is
1024 but Gardener solution needs 4096 length. So there is always tradeoff between system cost and
computational power.

Table 1 gives partitioning scheme followed to implement proposed method for filter lengths from 4096 to
65536 with step size of 4096. For example, filter length of 16384 requires 4 UPCs of 512 each, 6 UPCs of 1024
length each and 4 UPCs of 2048 each (16384 = 4*512 + 6*1024 + 4*2048). This design was done to make sure
that each non-uniform partition is still partitioned into uniform partition with filter length of L = 128 during
implementation. This ensures that the latency of the system is obtained as 128/44.1 = 2.9msec at sampling
frequency of 44.1kHz. Also with this approach, the cost of the system is low as required CUs are low.
C. Design of Proposed approach

Fig. 5 shows the flow diagram of high level design of the proposed approach. In this, Host basically
initializes all the kernels, required OpenCL kernel I/O buffers, the OpenCL context and the builds the kernel
source code. Then it sets all the required kernel argument list. After this, it writes the input frame contents into
kernel Input buffers and calls the clEnqueueTask function. Upon calling this function, the OpenCL Kernel runs
on GPU. On GPU, the kernel function is implemented basically to perform FFT of input audio frame, complex
frequency multiplication and IFFT. These blocks are part of uniform partitioned convolution. The initial
partitioned filter is implemented using time domain convolution.

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2098

TABLE I. Partitioning of impulse response length in mixed non-uniform partitioned convolution

Filter
Length,

M

Partitions
x512

Partitions
x1024

Partitions
x2048

Partitions
x4096

Total Partitions

4096 4 2 0 0 6
8192 4 6 0 0 10

12288 4 6 2 0 12
16384 4 6 4 0 14
20480 4 6 6 0 16
24576 4 6 8 0 18
28672 4 6 8 1 19
32768 4 6 8 2 20
36864 4 6 8 3 21
40960 4 6 8 4 22
45056 4 6 8 5 23
49152 4 6 8 6 24
53248 4 6 8 7 25
57344 4 6 8 8 26
61440 4 6 8 9 27
65536 4 6 8 10 28

The count of non-uniform partitions are based on length of impulse response and the partitioning scheme
followed as per Table 1. So all non-uniform partitions are executed on different CUs in parallel within GPU.
The execution time of kernel function running on each CU depends on the partition length. Host waits using
clFinish function till execution of all kernels are completed. The clEnqueueTask basically performs the task
parallelism operation and after completion of this, it is required to add all outputs of kernel functions i.e. all
UPC outputs. To do this, Host writes all UPC outputs in one dedicated kernel buffer and calls
clNDRangeKernel, basically meant for data parallelism operation. This kernel function does the summing of all
UPC outputs and time domain output to produce the final outputs, yL(n)+jyR(n) and yC(n). In this case, Host does
not need to wait for Kernel completion because data parallel kernel returns after completion of kernel execution
only. Then Host transmits the CTC outputs for rendering. Once all the audio frames are processed successfully,
Host releases all the kernels, allocated kernel I/O buffers and various contexts.
D. Discussion of Results

To proceed with performance tests, impulse responses from various source locations to receiver positions are
needed. An audio room of size 5 x 4 x 3.5 m3 was used in this experiment. A dummy head of width 30 cm was
used to record impulse response. Three receiver positions fixed to receive sounds.
Receiver locations (Dummy Head)
 Left ear position : 2.35 x 2 x 1
 Center position : 2.5 x 2 x 1
 Right ear position : 2.65 x 2 x 1

Source locations
 Source 1 : 4 x 3.5 x 1

Source 2 : 1 x 3.5 x 1
The audio room was fully covered with absorption material. The measurements were done at 44.1kHz

sampling frequency. The impulse response from source 1 to left ear is corresponding to hLL(n) and response
from source 1 to center position is corresponding to hLC(n) and so on. The responses were measured for all filter
lengths ranging from 4096 to 65536. The inverse of these responses were calculated using frequency domain
method and were used in experiments.

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2099

The details of hardware used in experiments are given below.
Processor : AMD FX-4100 Quad-core processor, 3.6GHz
GPU : Bonaire (AMD Radeon Graphics Processor- R7 2000 series)
Approximate memory : 3GB.
Active CUs : 12
Debugging tools : Microsoft Visual C++ and CodeXL

(i) Creation of context, command queue and
Kernel I/O buffers.

(ii)Creation of program with OpenCL Kernel
source code and build process

(iii)Creation of Kernels and setting of the
argument list

HOST

KERNELFill Kernel buffers and history buffers with
input & delayed audio frames

Call EnqueueTask

Call clFinish() for Completion of all events

Read all UPC outputs & Write them into
dedicated kernel buffers for summing them

Call NDRangeKernel

Read kernel output and transmit

Perform FFT, Complex frequency
Multiplication and IFFT. This task is

parallel and same process run on different
CUs with different partition lengths. Host
should wait till all partitions are executed.
Equations (11) and (12) are performed
here. The 1st partition is performed in

time domain convolution.

All UPC time domain outputs are
added in this kernel function.

Initialization/Release
Process

This task happens for
each audio frame

Kernel Tasks

Release all contexts, kernels, I/O Buffers

Fig.5. Flow diagram for the design of proposed approach

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2100

AMD Radeon 7900 series based BONAIRE GPU is used to develop proposed algorithm. This GPU has 12
active CUs. Win 10 operating system was used for experiments. Microsoft Visual C++ and CodeXL were used
for Host and Kernel developments respectively.

1) Latency tests: One of the main advantages of using proposed method is zero output latency. Always the
original method i.e. time domain convolution provides zero delay and this is reference approach. To measure
this latency, a multi-channel sweep signal of 44.1kHz was provided as input to implemented CTC system shown
in Fig.1. The 1st CTC output yL(n) was implemented using time domain convolution and proposed method. The
outputs of both methods were recorded and compared as shown in Fig 6. The filters used in this experiment are
of length 4096. Here the 1st partition was implemented using uniform partitioned convolution with frame size of
128 samples.

As shown in Fig 6 (a), the proposed method provides a latency of 2.9 msec approximately when compared to
original method i.e. time domain convolution. This is due to appending of 128 zeroes to the 1st non-uniform
partitioned impulse response. This results 128/44.1kHz = 2.9msec.

In another experiment, 1st non-uniform partition was implemented using time domain convolution for 1st CTC
output yL(n) and outputs were recorded. The comparison was shown in Fig. 6 (b). The output latency is zero,
which is actually desired result. This won’t result additional increase in computational complexity because all
partitions are executed in parallel and the computational complexity of higher partition is more compared to that
of initial partition.

2) Performance tests: The proposed algorithm was implemented as described in sub-section Design of
Proposed approach. Host fills the kernel buffers and FFT delayed frames for each frame and initiates the kernel
call using clEnqueueTask and clNDRangeKernel. The kernel functions were implemented in optimum way
using vector based OpenCL approach. The execution time in msec was measured at various filter lengths using
proposed algorithm. The same measurements were done for reference methods and the comparison was shown
in Fig.7 (left hand side). The partitioning scheme mentioned in Table.1 was followed for implementation of
proposed algorithm and the partitioning of reference methods is based on approaches provided in references
[15]-[16]. The computational cost for each method in terms of computations units is also compared in Fig.7
(right hand side).

The 1st method is uniform partitioned convolution. In this, the parallel implementation of all complex
frequency multiplication blocks are is not done due to uniform partitioned approach. Additional complexity
comes into picture to add all complex multiplications outputs, which is serial anyhow. Due to these
dependencies, the computational complexity of this approach is high. So it is suitable at medium filter lengths
but it is not preferable to use at very long filter lengths. On the other hand, single CU is sufficient to implement
this method. Hence this method is most suitable to implement on general DSP processors itself

The 2nd method is Gardener’s approach. In this method, the partitioning was done like for every two
partitions, the partition size becomes doubled, starting from lower partition length of 128 coefficients. Due to
this, at very long filter lengths, the higher partition size becomes increase so that the execution time will get
increase at these lengths. But the number of CUs are quite low due to higher size in partitions. The 3rd method is
based on Garcia’s approach. Garcia proposed partitioning scheme in which each impulse response is weighted
sum of 128 and 1024 lengths. Due to this, execution time is less but the required number of Compute units are
more to support very long filter lengths.

The proposed partitioning scheme contains an increase in partition lengths as well as increase in number of
such partitions. The benefit of this approach is less execution time will be obtained and at the same time, there is
scope to get less number of compute units. Clearly, the maximum partition length in proposed approach is 4096
and 28 CUs are needed for 65536 filter length in worst case.

The results are clearly resembling that the proposed method is best suitable for implementing audio CTC
section at very long filter lengths, both in terms of execution time and number of compute units.

VI. CONCLUSION AND SCOPE OF FUTURE WORK

To address computational complexity and latency issues of very long filters in OSD audio CTC section, an
efficient algorithm called Mixed non-uniform partitioned convolution was proposed in this paper. The ability of
this approach is to provide zero output latency for long filters. The approach was implemented on AMD based
Bonaire GPU platform. The performance was measured for various filter lengths from 4096 to 65536. The
design and the way of implementation was described in detail on how to utilize the openCL platforms to bring
down the computations. The computational performance comparison with existing methods clearly indicate that
the proposed method is very good for long filters in audio CTC section

This work could be extended to multi-channel based audio CTC systems. In this, it is interesting to see the
variation of computational power as the channel count increases.

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2101

Fig.6. Latency tests for (a) [Top] Time domain vs mixed non-uniform partitioned convolution with 1st partition being implemented using

time domain (b) [Bottom] Time domain vs mixed non-uniform partitioned convolution with 1st partition being implemented using uniform
partitioned convolution. The CTC output, yL(n) was shown in the comparison

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2102

Fig.7. [Above] Comparison of GPU Execution Time in msec. [Below] Comparison of CUs Method -1: Uniform Partitioned Convolution,
Method -2: Gardener approach Method -3: Garcia approach, Method -4: Mixed Non-uniform partitioned convolution (Proposed approach)

REFERENCES
[1] M. Otani and S. Ise, “Fast calculation system specialized for head-related transfer function based on boundary element method”,

Journal of Acoustical Society of America, Vol. 119, 2006, No. 5, pp 2589-2598
[2] Kirkeby ole, Rubak Per, Nelson Philip A. and Farina Angelo, “Design of Crosstalk cancellation Networks by using Fast

deconvolution”, Audio Engineering Society, 15 May 1999, pp 9900-9905.
[3] Lentz Tobias and Scmitz Oliver, “Adaptive Cross-talk cancellation system for a moving listener”, Audio Engineering Society, 21st

International Conference Proc., June 2002, Paper No. 00134, http://www.aes.org/e-lib/browse.cfm?elib=11175
[4] Linwang, Fuliang Yin and zhe Chen, “A Stereo Crosstalk cancellation system based on common- acoustical pole/zero model”, Eurasip

Journal on Advances in Signal Processing – Special issue on digital audio effect, 2010,
http://www.asp.eurasipjournals.com/content/pdf/1687-6180-2010-719197.pdf

[5] Website link: Virtual Acoustics and Audio Engineering, University of Southamption, Institute of Sound Vibration Research,
http://resource.isvr.soton.ac.uk/FDAG/VAP/html/osd.html

[6] Website ppt link - resource.isvr.soton.ac.uk/FDAG/VAP/html/OPSODIS.pps

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2103

[7] Website link: Virtual Acoustics and Audio Engineering, University of Southamption, Institute of Sound Vibration Research,
http://resource.isvr.soton.ac.uk/FDAG/VAP/html/vasi.htm

[8] Philip A. Nelson et al, “The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback
acoustics”, Journal of Acoustical Society of America, February 1, 2013.

[9] Edgar Y. Choueiri, “Optimal Crosstalk cancellation for binaural audio with two loudspeakers”,
https://www.princeton.edu/3D3A/Publications/BACCHPaperV4d.pdf

[10] Jun Yang et. al., “Development of Virtual Sound Imaging System using Triple Elevated Speakers”, IEEE Transactions on Consumer
Electronics, Vol No. 50, No. 3, August 2004.

[11] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, 3rd Edition, Prentice
Hall Publications Inc., USA, Page No. 430 to 476

[12] Richard G Lyons, Understanding Digital Signal Processing, 3rd Edition, Prentice Hall Publications Inc., New Jersey, November 11,
2010.

[13] Eric Battenbaerg and Rimas Avizienis, “Implementing Real-time Partitioned Convolution Algorithms on Conventional Operating
Systems”, Proc. of 14th Int. Conference on Digital Audio Effects, Paris, France, Sept 19-23, 2001.

[14] Anders Torger and Angelo Farina, “Real-time Partitioned Convolution for Ambiophonic Surround Sound”, IEEE Workshop on
applications of Digital Signal Processing to Audio and Acoustics 2001, New Paltz, New York, W2001-4.

[15] Garcia Guillermo, “Optimal Filter Partition for efficient Convolution with short input/output delay”, Audio Engineering Society 113th
International Conference Proc., October 2002, pp. 2660.

[16] WG Gardener, “Efficient Convolution without input-output delay”, Journal of Audio Engineering Society, Vol. 43, No. 3, 1995, pp.
127-136.

[17] Ch. SreenivasaRao et al, “Real-time implementation of audio crosstalk cancellation using mixed uniform partitioned convolution”,
SPIJ, Vol. 6 Issue No. 4, October 2012

[18] Chunduri SreenivasaRao, Dr.D.VenkataRao and Dr.S.Lakshminarayana, “Design and Implementation Analysis of OSD based audio
Crosstalk Cancellation with Multi-channel Inputs on DSP processors”, Indian Journal of Science and Technology, Vol. 8, Issue 5,
March 2015, pp. 419-431.

[19] Chunduri SreenivasaRao, Dr.D.VenkataRao and Dr.S.Lakshminarayana, “An Efficient Implementing Solution for Three Channel OSD
based Audio Crosstalk Cancellation with Stereo Inputs”, International Journal of Applied Engineering Research, Vol. 10, Issue 1,
2015, pp. 1995-2011.

[20] Chunduri SreenivasaRao, Dr.D.VenkataRao, “Real-Time Implementation of Multi-Channel Audio Crosstalk Cancellation Using
Mixed Single Frequency Delay Line Filtering Algorithm”, International Journal of Modern Engineering Research, Vol. 3, Issue 2,
March 2013, pp. 1088-1096.

[21] SreenivasaRao. Ch, R. Udayalakshmi and Jeyasingh P., “Fast implementation of audio crosstalk cancellation of audio crosstalk
cancellation on DSP processors”, Audio Engineering Society 45 Conference Proc., March 1-4, 2012, Paper No. 2-2, pp. 56 – 63.

[22] Benedict R. Gaster, Lee Howes, David Kaeli, Perhaad Mistry, Dana Schaa, Heterogeneous Computing with OpenCL, Advanced Micro
Devices Inc, USA, Elsevier Publications, 2012.

[23] Kim D, Lee J, Lee J, “Scheduling in Heterogeneous Computing Environments for Proximity Queries”, IEEE Transactions on
Visualization and Computer Graphics, 2013, Vol. 19, No.9, pp. 1513-25

[24] Lee C, Ro W W, Gaudiot J L, “Cooperative Heterogeneous Computing for parallel processing on CPU/GPU hybrids”, Proceedings of
2012, 16th Workshop on Interaction between compilers and computer architectures, Interact, New Orleans, LA, 2012, pp. 33-40

[25] Advanced Micro Devices Inc, Introduction to OpenCL Programming, Rev. A, Publication #137-41768-10, Sunnyvale & California,
issue Date:May, 2010

[26] Takashi Nakamura, Takua Izuka, Akiro Asahara, The OpenCL Programming Book Revised for OpenCL 1.2, Fixstars Publishers,
Sunnyvale & California, 2012.

[27] Analog Devices Inc., ADSP-214xx SHARC Processor Hardware Reference Manual, Rev 0.3, Part Number 82-000469-01, July 27,
2010

e-ISSN : 0975-4024 SreenivasaRao Chunduri et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 7 No 6 Dec 2015-Jan 2016 2104

	Partitioned Convolution Analysis for stereoinputs based three channel Optimal SourceDistribution on Heterogeneous ParallelComputing Platforms using OpenCL
	Abstract
	Keyword
	I. INTRODUCTION
	II. EXISTING IMPLEMENTATIONS
	III. OBJECTIVES OF CURRENTWORK
	IV. PROPOSED SOLUTION - MIXED NON-UNIFORM PARTITIONED CONVOLUTION
	V. EXPERIMENTAL RESULTS
	VI. CONCLUSION AND SCOPE OF FUTUREWORK
	REFERENCES

