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Abstract— Recent advancements in the field of cognitive radio technology have paved way for 
cognitive radio-based wireless sensor networks. This has been tipped to be the next generation sensor. 
Spectrum sensing and energy efficient channel access are two important operations in this network. In 
this paper, we propose the use of machine learning and decision making capability of reinforcement 
learning to address the problem of energy efficiency associated with channel access in cognitive radio 
aided sensor networks. A simple learning algorithm was developed to improve network parameters such 
as secondary user throughput, channel availability in relation to the sensing time. Comparing the results 
obtained from simulations with other channel access without intelligent learning such as random channel 
assignment and dynamic channel assignment, the learning algorithm produced better performance in 
terms of throughput, energy efficiency and other quality of service requirement of the network 
application. 

Keyword- Channel, Decision, Energy, Reinforcement, Learning 
I. INTRODUCTION 

In recent time, the demand for radio spectrum has been on the increase due to continued evolution of different 
wireless applications. The existing wireless networks are characterized by the static spectrum allocation, in 
which the wireless spectrum is assigned to a licensed user on a long-term basis. Whereas, some of the licensed 
spectra remained spatial-time idle under the present static spectrum policy. This leads to underutilization of 
large portion of the wireless communication spectrum. 

Cognitive radio (CR) has emerged as a key enabling technology for dynamic spectrum access (DSA). It 
provides the capability to share the wireless spectrum with licensed users in order to improve spectrum 
efficiency and network performance by adaptively organizing channel access by different users according to the 
radio environment. 

In CR, the fundamental requirement is to avoid interference to the signal of the licensed user, otherwise called 
the primary user (PU) by the other user trying to access the channel opportunistically. This other user is 
otherwise known as secondary user (SU). It then becomes imperative for the SU to detect the presence or 
absence of the PU signal through channel sensing. The right of the PU to the channel must be protected by the 
SU. In order to preserve the exclusive right of the PU, the SU is faced with the challenges of when to sense a 
channel, how long should the sensing operation take, when to switch from the channel and when to transmit 
using a given available channel. 

In order to address these questions posed to the SU CR aided sensor network, we propose reinforcement 
learning (RL) channel access approach. In this RL channel decision and access protocol, each CR aided sensor 
node learn and adaptively decide when to sense, handoff or transmit data within a channel. For the purpose of 
learning and decision accuracy within the network, cooperation among inter-cluster CR enabled nodes are 
proposed. The problem is to learn a way of controlling the system so as to maximize the total reward. The 
learning problems differ in the details of how the data is collected and how performance is measured. 

Few works abound in literature that proposed different channel access schemes other than RL in CR aided 
sensor networks. Their approach is either multi-radio or multi-channel based. Example of such is the 
configurable medium access control protocol. In [1], the authors presented recent developments and open 
research challenges in spectrum management based on CR networks. While the authors focus on the 
development of CR networks, the work did not address any specific solution to the issues raised. 
Reinforcement-learning-based double auction (RL-DA) algorithm for dynamic spectrum access in cognitive 
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radio networks was proposed by the authors in [2]. In the proposed RL-DA algorithm, both SUs and PUs are 
allowed simultaneously and independently to make bid decisions on resource considering their current states, 
experienced environment and estimated future reward in the auction market. However, with this approach, the 
PU does not have exclusive right to the channel as is expected of a typical cognitive radio network. In order to 
maintain channel's exclusive right of the PU, authors in [3] proposed distributed framework for testing and 
developing MAC protocols for cognitive radio sensor networks. The framework is based on distributed 
algorithms and simulates nodes equipped with multi-channel radios. Even though the framework increases the 
delivery rate compared with conventional WSNs, it also introduces an increase in latency and energy 
consumption, which is unsatisfactory to CR-aided sensor network. 

Selection of appropriate channel for the SU in accordance with the application quality of service requirements 
and spectrum quality is the main focus of the work in [4]. The authors proposed automatic distributed spectrum 
decision (ADSD) using PU arrival probability to decide the quality of the available channel. In their work, [5] 
proposed a pricing-based collision-resistant dynamic spectrum allocation to optimize overall spectrum 
efficiency. This approach was developed to combat collision between PU and SU networks. As a multi-stage 
dynamic game approach, the problem of energy efficiency was not considered as the approach only focused on 
spectrum utilization. 

Authors in [6] proposed a novel biologically inspired consensus-based cooperative spectrum sensing scheme 
for cognitive radio mobile ad hoc networks (CR-MANETs). Decision making in this scheme is without the use 
of common receiver for data aggregation. This is only applicable to distributed network. Centralized cluster-
based CR-aided sensor network cannot adapt this scheme. Bothered by interference problem, [7] proposed a 
systematic framework to produce conflict graphs based on physical interference characteristics. This framework 
optimizes conflict graph in order to produce spectrum allocations that match those derived from physical 
interference model. In [8] the authors considered CR system with one SU accessing multiple channels using 
periodic sensing and channel switching. Optimal spectrum sensing and access mechanism was proposed with 
focus on energy minimization in the presence of multi-constraints-sensing reliability, throughput and delay in 
the SU transmission. To minimize interference to PU and to maximize channel utilization [9] proposed a 
framework of constrained Markov decision processed, and optimal access policy based on linear program. 
Similar to previous work in [6], authors in [10] considered decentralized spectrum access using the theory of 
multivariate global game. Channel access is based on Bayesian estimate of the intention of the other SUs and 
based on expected throughput of the SU under consideration. Authors in [11] applied reinforcement learning to 
develop a new routing algorithm based on continuous link model. In the work, the idea of Q-learning was 
transferred into link-value. From the results obtained, it was shown that the reinforcement learning based 
algorithm gave improved performance in terms of link table and packet delivery ratio in ad hoc networks 
compared to AODV and DSR.  

However, in this paper we have proposed the use of machine learning and decision making capability of 
reinforcement learning to address some of the problems associated with channel access in cognitive radio-aided 
sensor networks. This approach consists of intelligent learning algorithm developed to improve network 
parameters such as throughput in relation to the sensing time and interference within the network. The 
intelligence part of this approach ensures that the CR agent can learn from its previous experience and decide on 
an action that results in long-term expected reward within the radio environment. 

The rest of this paper is organized as follows; section II describes the system model and operation. Section III 
explains the fundamentals of RL and describes the proposed RL approach. Section IV discusses simulations and 
result analysis. Finally, we conclude with section V. 

II. SYSTEM MODEL AND OPERATION 

Cognitive radio aided sensor networks are sensor networks that employ radio cognition to adaptively and 
dynamically use the available communication channel. In this section, we consider a cluster sensor network with 
star network topology. 
A. Cognitive Radio Enabled Sensor Network Topology 

In each cluster, there is one cluster head (CH) communicating with several other surrounding cluster 
members (MN) which are assumed non-mobile. This is illustrated in Figure 1. The CH carries with it the 
cognitive radio capabilities within its cluster. The CH acts as the central controller for the MN within a cluster. 
The CH coordinates communication activities within a particular cluster, and aggregates data transmitted from 
MN to the sink node. 
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Fig. 1.  Cluster Network Topology [12] 

B. Primary User Channel Activity and Channel Opportunity 

The PU channel behaviour and channel availability is modelled after continuous-time, stochastic process of 
channel utilization using two-state Markov decision process. This is shown in Figure 2. PU activity in any given 
channel is not time-slotted because PU is the proprietary licensed user. PU switches between ON and OFF 
states, which corresponds to channel busy or available states. This behaviour represents the birth-death 
continuous time Markov chain (CTMC). We assume that, for each channel, the channel utilization by the PU is 
independent, identically distributed (i.i.d.) random variables exponentially distributed with constant ON and 
OFF mean time. Let ߙ and ߚ be the channel transition probabilities of moving from ON to OFF and OFF to ON 
respectively by the PU. The ߙ and the ߚ represents the birth and death rates respectively. 

 
Fig. 2.  Two state Markov decision model of PU channel behaviour [12] 

Figure 3 shows the channel operation opportunity for the SU. This is time-slotted operation that depends on 
the activity of the non-timed slotted PU. Each frame is divided into two time slots viz; (1) sensing slot and (2) 
transmission slot. Sensing operation is carried out periodically for durationݐଵ. During the transmission slot, the 
CR transmit packet for durationݐଶ. The probability that a given channel ݏ ∈ is free ሺ ܥ ைܲிிሻ and the probability 
that the channel is occupied ሺ ைܲேሻ are determined as in (1) and (2) respectively; 
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Fig. 3.  Slot durations of SU channel usage [12] 

ைܲிி ൌ ఈఈାఉ           (1) 

ைܲே ൌ ఉఈାఉ           (2) 

Probability of channel idle and probability of channel busy are depicted by (1) and (2) respectively. For ܥ 
number of channels, the conditional probability that all the channels sensed busy by the SU in the next sensing 
slot given that they are currently busy is given as; ܲሺ1|ߚ െ ሻߙ ൌ ሾሺ1 െ  ሻሿ          (3)ߙ
The conditional probability that at least one of the channels will be in idle state for the SU to use provided they 
are all in busy state previously is given as; 1 െ ܲሺ1|ߚ െ ሻߙ ൌ 1 െ ሾሺ1 െ  ሻሿ         (4)ߙ
 We assume energy detection spectrum sensing. The probability of detection ௗܲ and probability of false 
alarm ܲ are given in (5) and (6) respectively. 

ௗܲሺݐଵሻ ൌ ቀ ఈఈାఉቁܳ ቌఒିଶ௧భ൫ఙೞమାఙమ൯ටସ௧భ൫ఙೞరାఙర൯ ቍ         (5) 

ܲሺݐଵሻ ൌ ቀ ఈఈାఉቁܳ ቌఒିଶ௧భఙమටସ௧భఙర ቍ         (6) 

λ is the decision threshold value. ߪଶ and ߪ௦ଶ are noise and PU signal variances, ܤ is the bandwidth, ݐଵ is the 
channel sensing time of the SU, ܳ is the ܳ െ  Accurate probability of detection and high spectrum .݊݅ݐܿ݊ݑ݂
sensing efficiency in terms of near zero misdetection probability are two important aims of spectrum sensing 
operation. 

III. REINFORCEMENT LEARNING AND MARKOV DECISION PROCESS 

Reinforcement learning (RL) refers to both a learning problem and a subfield of machine learning. It is an 
offshoot of dynamic programming (DP), and it is used to solve the Markov decision process (MDP) with having 
to construct the theoretical model. As a learning problem, it refers to learning to control a system so as to 
maximize some numerical value which represents a long-term objective. A typical scenario where reinforcement 
learning operates is shown in Figure 4. A controller receives the controlled system's state and a reward 
associated with the last state transition. It then calculates an action which is sent back to the system. In response, 
the system makes a transition to a new state and the cycle is repeated. It is an iterative process. 

An MDP is defined as 4-tuple ሺܵ, ,ܣ ܴ, ܲሻ where ሺܵሻ is the set of states, ሺܣሻ is the set of possible actions in a 
given state, ሺܴሻ is the reward function for taken an action in a given state, and ሺܲሻ is the transition probability 
function. ߨ: ܵ → ܵ is the decision policy that maps the state set to the action set. For a finite state set of ܣ ൌݏଵ, ,ଶݏ . . . . ݏ … . . ܣ a corresponding action set ܥ ൌ ܽଵ, ܽଶ, . . . . ܽ … . .  At a given decision instant ݇, the RL .ܣ
agent takes an action ܽ from the set ܣ while in a corresponding state ݏ from the set ܵ which leads to a new 
state ݏାଵ. The transition probability ܲ→ାଵ provides a feedback reward function ݎሺݏ, ܽሻ for the RL agent. As 
mentioned earlier, this is an iterative process that intends to maximize the discounted reward or state value given 
as; 
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Fig. 4.  Reinforcement Learning Scenario 

ܸሺߨሻ ൌ maxఢሺሻ ቂݎሺ݇, ܽሻ  ∑ߣ ܲሺ݇, ܽ, ݇  1ሻ ܸାଵ|ௌ|ାଵ ቃ      (7) 

The expected immediate reward earned in state ݇ when action ܽ is selected is given as; ݎሺ݇, ܽሻ ൌ ∑ ܲ൫݇, ܽ, ሺ݇  1ሻ൯ݎ൫݇, ܽ, ሺ݇  1ሻ൯|௦|ሺାଵሻୀଵ 	       (8) 

In many practical situations, the transition probability ܲ and the reward function ܴሺݏ, ,ሻݏሺߨ ܽሻ are not known, 
which makes it difficult to evaluate the policy ߨ. Q-learning variant of RL is one of the most effective and 
popular algorithms for learning from delayed reinforcement to determine an optimal policy in the absence the 
transition probability and reward function. In Q-learning, policies and the value function are represented by a 
two-dimensional lookup table of state-action pair. Formally, for each state ݏ and action ܽ, we define the Q value 
under policy ߨ as; ܳሺ݇, ܽሻ ൌ ∑ ܲ൫݇, ܽ, ሺ݇  1ሻ൯ൣݎ൫݇, ܽ, ሺ݇  1ሻ൯  ௗሺ7ሻ൧|௦|ሺାଵሻୀଵߣ  ௗ is the discounting factor. The iterative process of Q learning approximates the Q value function to optimalߣ (9)     
value. Hence, the updating rule for Q value is given as; ܳሺܽ, ሻݏ ൌ ൜ܳሺܽ, ሻݏ  ,ሺܽܳߜߪ ሻݏ 		௦ೖୀ௦,ೖୀ௧௪௦  .are learning rate and temporal difference respectively ߜ and ߪ (10)        
 The goal of the RL approach is to determine the optimal state-action pair (policy-ߨ) which maximizes 
the long-term anticipated reward. In this sense, throughput and energy efficiency maximizations are two 
important goals of our RL approach as applied to the CR aided sensor networks. It is undesirable to minimize 
energy consumption at the expense of unacceptable throughput. Mapping the general idea of state-action pair to 
CR aided sensor network, we formulate the learning approach as; 

i. Set of state ܵ represents the set of communication channels ሾܵ ൌ ,ଵݏ ,ଶݏ … ݏ  ሿܥ…
ii. Set of actions ܣ represents the three possible actions, sensing ሺܽ௦ሻ, transmit (ܽ௧ሻ and channel 

handoff ሺܽሻ ሾܣ ൌ ܽ௦, ܽ௧, ܽሿ. 
The reward function ܴ is the transmission capability of the SU in each channel. 

C. State-Action Selection Plan 

We used softmax action selection strategy to determine the decision and access strategy to use. In this 
learning policy, the probability of selecting an action ܽ in state ݏ is given by; ܲሺݏ, ܽሻ ൌ ,ݏሺߨ ܽሻ ൌ ௫ೂሺೞ,ೌሻ ഓ⁄∑ ௫ೂሺೞ,ೌሻ ഓ⁄ೌభ         (11) 

Where ܳሺݏ, ܽሻ is the state-action value function, ݊is the number of possible actions. In our case, ݊ ൌ 3, these 
are, ܽ௦, ܽ௧, ܽ. ߬ is the temperature parameter which controls the expected reward for the probability of a given 
action taken. When the value of ߬ is high, all the 3 actions are equally probable. On the other hand, for small ߬, 
the action with maximum ܳሺݏ, ܽሻ is selected. Hence, the state-action policy ߨሺݏ, ܽሻ can be rewritten as; ߨሺݏ, ܽሻ ൌ ௫ೂሺೞ,ೌሻ ഓ⁄௫ೂሺೞ,ೌೞሻା௫ೂሺೞ,ೌሻା௫ೂሺೞ,ೌሻ        (12) 
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D. Reinforcement Learning Algorithm 

In our learning algorithm, at the end of each slot, the RL agent calculates the temporal difference, updates the 
Q-value and selects the next action in a predictive manner according to the learning policy ߨሺݏ, ܽሻ. The RL 
agent decides which action to take at any decision time step with priority given to the action that yields the 
highest Q value. This is a form of greedy decision method in which the CR agent chooses an action randomly. 
This is done to maintain balance between exploitation of presumed optimal state-action pair and exploration of a 
new policy modification. 

The learning algorithm is described below. The CR agent chooses one of the three actions possible based on 
the current value of ߨሺݏ, ܽሻ. For ܽ௦ it updates the channel availability. For ܽ௧ it updates the long term reward for 
accessing a channel at a given time. The algorithm shows how the learning scheme dynamically adjusts the 
actual policy in (12). When the PU activity is absent in a given channel, the CR agent stop sensing action, and 
access the channel to begin transmission within the transmission slot. As soon as the PU activities resume in the 
channel, the CR agent handoff the channel and begin sensing for another available channel. The delay due to 
sensing decreases the state-value of a channel, thus increases the probability to choose a different channel. The 
choice of another channel is dependent on which available channel has the least access delay and higher energy 
efficiency based on accumulated experience during past operations. 

 
Fig. 5.  Flow diagram of the Algorithm 

IV. SIMULATION AND PERFORMANCE EVALUATION 

In our attempt to evaluate the performance of the proposed algorithm, simulations were carried out using CR 
integrated MATLAB platform. The CR aided sensor network scenario considered is made up of clustered star 
topology, single hop communication network consisting of one cluster head and several member nodes in each 
cluster. We simulate the cognitive radio environment using 2 PUs and 3 clusters of SU network. There are 3 
CHs and 9 MN to form a SU network composed of a total of 12 sensor nodes. We assume binary orthogonal 
frequency shift keying (FSK) modulation on a frequency non-selective Rayleigh fading channel. Based on the 
standard Friis transmission formula, the output power for SU and PU is are held at -20dB and -39dB 
respectively and the path-loss factor is 0.125. Average distance between two SU nodes, and between SU node 
and PU, respectively is fixed at 8m and 120m. Other simulation parameters determined by numerical analysis 
are summarized in table I. Parameter values are set depending on the specific application and vary according to 
the operations pattern of PU on different spectrum bands. In addition, features of CR and attributes of traditional 
WSN were considered in making assumptions to realize a reliable CR aided sensor network. 
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We compare the performance of the proposed scheme with the non-RL schemes such as, random channel 
assignment (RCA) scheme, and the dynamic channel assignment (DCA) scheme. In RCA, each cognitive radio 
CH chooses randomly the next action, that is, transmit, sense or handoff, at the end of each transmission slot. In 
RCA, no learning is involved. In the case of DCA, each CH of the CR network performs channel sensing during 
the sensing slot. When a PU is detected, the CH switches its cluster member nodes to the available channel in its 
neighbourhood. The DCA scheme constitutes a classical approach for spectrum management over cognitive 
radio sensor network. 

TABLE I.  SIMULATION PARAMETERS 

Parameters Description Value 

W Channel Sampling frequency 1MHz 
T Slot duration 2.75s ߣௗ Discounting factor 0.5 
Λ Detection threshold 3 ߙ Channel ON duration 0.08 ߚ Channel OFF duration 0.16 ைܲே Probability of busy channel 0.3 ைܲிி Probability of free channel 0.7 ߪ Learning rate 0.6 ߪଶ Noise variance 1 ߪ௦ଶ PU signal variance 1 
R Data transmission rate 200Kbps 

Figures 6, 7, 8, 9, 10 and 11 shows the performance comparison of the three schemes using different 
performance metrics. Figure 6. shows the throughput and transmission duration of the SU network. When a 
channel is available for packet transmission, the longer the transmission time, the higher the throughput. The 
random approach suffers higher packet loss due to interference resulting from random handoff action. In the 
case of DCA approach, effect of PU interference is less, but experiences less optimal spectrum selection because 
it does not take into cognizance the quality of the channel unlike in the case where channel selection is based on 
learning. Figure 7. shows the average channel availability effect on the energy efficiency of transmission by the 
CR sensor network. As the channel availability increases, there is a corresponding growth in the energy 
efficiency in RCA, DCA and RL. 

 
Fig. 6.  Effect of Transmission time on throughput 
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Fig. 7.  Channel availability effect on energy efficiency 

However, at a certain peak in the case of RCA, the energy efficiency experiences a downward trend. This 
downward trend is due to energy consumption as a result of continuous channel handoff and channel sensing. 
Energy efficiency in the case of RL approach faired higher than in DCA approach. This is due to the impact of 
the learning experience of the SU on the channel quality and status. 

To further investigate the performance gains, Figure 8. shows the channel availability as a function of the 
sensing time. Figure 8 analyse the impact of sensing time on the possibility of a particular channel availability. 
With increase in sensing time of the SU for a given channel, this increase the chance of PU network activity 
within the channel. PU activity is not time-slotted, hence the shorter the sensing time, the higher the channel 
availability. RL approach performs better than the other DCA and RCA  in that order because under RL 
approach, the SU decides which action to take in a given channel based on the state value and accumulated 
reward of received by the RL agent. 

 
Fig. 8  Sensing time variation with channel availability 

In Figure 9, we show the probability of channel handoff as a function of the sensing time. Both the RCA, 
DCA and the RL approach performs sense actions irrespective of the PU activity in the channel. In the DCA 
scheme, each CR cluster head alternate between sense and transmit action. In the proposed RL approach, each 
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cluster head adjusts the sensing frequency based on the amount of PU activity detected on the current channel. 
Channel access decision is based on the reward function in (8) and the ܳ value in (9) and (10). For the three 
approaches, the average interference decreases with the reduced PU activity. Intuitively, the random approach 
incurs the highest probability to channel handoff due to PU activities, while DCA and RL approach provides the 
highest PU protection because each CR cluster head immediately handoff to a new channel each time a PU is 
detected in the current channel. In the RL-based approach, the sensing frequency is dynamically adjusted based 
on the amount of PU activity through the action selection function in (12). The difference with the DCA 
approach can be said to be due the fact that in our RL approach, each cluster head use a probabilistic policy ߨሺݏ, ܽሻ over the set of actions. Though randomization allows choosing suboptimal actions, Figure 9 shows that 
the impact is quite limited. Thus, our RL-based approach provides a similar impact on PU receivers than the 
DCA approach, but with a consistent performance gains for CR users. 

 
Fig. 9  Probability of handoff versus sensing duration 

In case of rate of free channel access variation with energy efficiency, it can be seen from Figure 10 that as 
the rate of channel access increase, the energy efficiency increases accordingly. However, this performance 
metric as shown in Figure 10 reiterates that the RL learning approach performs better that DCA and RCA. 

 
Fig. 10  Channel Free Access Rate effect on Energy Efficiency 

PU activity is a major factor that determines how the CR user accesses a given channel. CR users operating in 
the underlay mode must vacate the channel as soon as the PU is detected. However, the PU usage is not time 
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slotted. For the SU CR network to access the channel in energy efficient way, the rate of channel usage by the 
PU must be less or reduced in a given channel. To this end, Figure 11 shows that the lesser the rate of channel 
usage by the PU, the higher the energy efficiency of the channel access by the SU CR sensor network. At near 0 
channel usage rate, the energy efficiency of channel access by the SU is about 1. This means, the efficiency is 
near 100%. Amazingly, this is the same for RCA, DCA and RL approach. However, with increase in rate of 
channel usage by PU, the energy efficiency of channel access drops accordingly. While the drop in the case of 
random approach is significantly noticeable, it is less noticeable in the DCA and the decline is least noticeable in 
our RL approach. 

 
Fig. 11.  Primary User Channel Usage effect on Energy Efficiency 

V. CONCLUSION 

In this paper, we proposed a channel access model based on reinforcement learning to optimize channel 
utilization experience of the secondary user cognitive radio enabled sensor network. With several learning 
methods available, RL-based channel access demonstrates the best performance in terms of energy efficiency, 
throughput, and channel availability in relation to sensing and transmission duration. We equally show that the 
proposed RL-based approach is capable of converging to the optimal solution and adapting to the change in 
radio environment better than DCA and RCA. Due to its learning capability, this work is extended to consider 
the activities of SU sensor network but not at the expense of PU model. Simulation results reveal significant 
energy efficiency and throughput performance improvement compared to non-learning channel access 
approaches. 
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