
An Optimised Distributed Arithmetic
Architecture for 8×8 DTT

Ranjan K. Senapati #1, P.M.K. Prasad*2, S. Shabnam#3, Ch. Jagadeesh #4, K. Srinath#5

Dept of Electronics and Communication Engg. K L University
Green Fields, Vaddeswaram, Guntur Dist, AP

*Dept. of ECE, GMR Institute of Technology, Rajam.
Srikakulum dist., AP, 532127, India.

1 ranjan.senapati@kluniversity.in, 2mkprasad.p@gmrit.org
3 syedshabnam39@gmail.com, 4 jagadeesh.chadarajupalli@gmail.com

5srinathkommineni24249@gmail.com

Abstract—Discrete Tchebichef Transform (DTT) is an orthogonal transform and is used in many
applications like image and video compression, feature extraction, artefact analysis, blind integrity
verification and pattern recognition. In comparison with DCT, DTT has better image reconstruction
quality for certain class of images. Direct implementation of DTT requires large number of
multiplications, which are time-consuming and expensive in a simple processor. To perform in real time,
these large number of operations can be completely avoided in our proposed architecture. The proposed
architecture uses distributed (DA) based technique which offers high speed and small area. The basic
architecture consists of one dimensional (1D) row DTT followed by a transpose register array and
another 1D column DTT. The 1D DTT structure only requires 15 adders to build a compressed adder
matrix and is also ROM free. Compared with DCT architecture, the proposed architecture shows an
improvement in speed and reduction in area by 5% on a Xilinx vertex-4 FPGA platform.

Keyword-Discrete Tchebichef Transform, Discrete Cosine Transform, Distributed Arithmetic, New
Distributed Arithmetic, Image Compression, FPGA.

I. INTRODUCTION

 Portable electronic systems like mobiles, PDAs, digital cameras run on batteries. In order to achieve
maximum performance, the design of such devices should be optimised in terms of area and power. Image
transforms such as discrete cosine transform (DCT) is widely used for processing and storage in such devices.
For example, DCT is adopted as the core transform in JPEG, MPEGx, and H.26x [1]-[2]. Direct
implementation of DCT needs floating point multiplication. Floating point multipliers are the major sources of
area and power consumption for such devices. In order to eliminate multipliers, distributed arithmetic (DA)
based technique has been emerged. DA was invented over two decades ago and has since been seen widespread
applications in areas of VLSI implementation and DSP algorithms [3].
 DA has become an efficient tool to implement multiply and accumulate (MAC) unit in a DSP processor.
Using ROM based DA, the usage of multipliers in the MAC unit can be efficiently replaced by pre-computing
all possible products and storing them in each address of ROM [4]-[10]. However, the size of ROM grows
exponentially with the size of the transform and bit width precision. Usage of ROM can be eliminated if the set
of inputs are of fixed size. This is done by distributing the coefficients to the input of the unit. The approached is
called New Distributed Arithmetic (NEDA) [11]. Thus, NEDA can be used to implement the inner product of
vectors in the form of 2’s complement numbers using only addition followed by a small number of shifts at the
final stage. Recently, NEDA is successfully applied to many transforms such as DCT [12]-[13], DHT [14], FFT
[15]-[16].
 Discrete Tchebichef transform is a novel orthogonal transform which has similar energy compaction
properties like DCT. Recently, DTT is applied to many image and signal processing applications, like
compression [17]-[21], feature extraction [22], pattern recognition [23], blind integrity verification [24], and
artefact measurement [25]. Some applications requires real time manipulation of images. So many fast
algorithms and specific circuits have been developed using DCT [4]-[10]. As DTT outperform DCT for some
class of images, it is expected that DTT can be applied for such applications. Recently, Oliveira et al. [26] have
reported a low complexity approximated DTT transform. The transform can be applied in distributed video
coding where video is encoded once and decoded several times. Several ROM free DA implementation of DCT,
FFT and DHT is reported in literature [12]-[16]. However, to the best of our knowledge, ROM free DA
implementation is not reported for DTT. Out of several approaches, Row-column decomposition method is best
adopted for H/W implementation in DCT, FFT and DHT. Similar in kind, we have also implemented the ROM
free DA implementation on DTT in this paper.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1278

 In this paper, we have proposed a reduced area and reduced power 2D DTT architecture based on row-column
decomposition. In this method 1D-DTT is taken on row wise, and then column wise 1D-DTT is performed. A
compressed adder/subtractor matrix is adopted. This results a reduced hardware with speed improvement. The
input data width is kept at 8-bit and the DTT basis elements are set to 13-bit precision to ensure minimum error
during reconstruction.
 The rest of the paper is as follows: A brief explanation of NEDA is presented in section 2. In Section 3, DTT
transform and formulation of DTT using DA approach is demonstrated. Proposed 2D DTT architecture is
presented by using row-column decomposition of 1D DTT in Section 4. Simulation and synthesis results are
presented in Section 5. Finally, we conclude the paper with mentioning further improvements.

II. BRIEF EXPLANATION OF NEDA

 Earlier works witness that transforms such as DCT, FFT, DHT, DST, etc. can be efficiently implemented
using NEDA. This is because, NEDA improves the performance of the system in terms of area, speed and power.
The brief mathematical derivation of NEDA can be as follows:
The inner product calculation of two sequences may be represented as

 
=

=
K

k
kk XDZ

1

 (1)

where kD are the constant coefficients and kX are the varying inputs.

Equation (1) can be represented in matrix form as

 []




















=

K

K

X

X

X

DDDZ

.

......
2

1

21
 (2)

Considering both iD and iX are in 2’s complement format, these can be expressed in the form as

 k
M

Nk

k
i

MM
ii ddD 22

1


−

=

+−= (3)

=id 0 or 1. M
id is the sign bit and N

id is the LSB. Substituting (3) in (2), we can write Z as

[]













































−=

−
−−−−

−−−

1

1

)1()1(
1

00
1

)1(10

.

.

.

...
.....
.....
.....

...

2...22

M
M

k
M

k

M

X

X

dd

dd

Z
 (4)

The matrix k
id is a sparse matrix. The number of rows in k

id determines the precision. Equation (4) can be
rearrange as

 []























−=

−

−−−

1

1

)1(10

.

.

.
2...22

M

M

W

W

Z
 (5)

 where,













































=























−
−−−−

− 1

1

)1()1(
1

00
1

1

0

.

.

.

...
.....
.....
.....

...

.

.

.

M
M

k
M

k

M X

X

dd

dd

W

W

The [W] represents the sum/difference of the input depending on the coefficient values. Multiplication with k−2 ,

where +∈ Zk in (5) can be realized with shifters. Thus the output Z is realized by shift and add operations.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1279

The output Z is essentially a column matrix consisting of partial products. Therefore, NEDA based architecture
designs have less critical path compared to traditional MAC unit without multipliers and memory.

III. DTT TRANSFORM AND FORMULATION USING DISTRIBUTED ARITHMETIC

The 2D DTT (pqY) of order qp + is defined as [18]

),()()(
1

0

1

0

yxXytxtY
N

x

N

y
qppq 

−

=

−

=

= (6)

where,)(xtp and)(ytq are Tchebichef polynomials of order p and q respectively.),(yxX is the input 2D

signal (e.g., image). .1,.....,1,0, −= Nqp The values of Tchebichef polynomials are defined using the recursive
relation as

)()()()(23121 itAitAiAit nnn −− ++= (7)

where,
22

2

1
142

nN

n

n
A

−
−= , 22

2

2
141

nN

n

n

N
A

−
−−=

and 22

22

3
)1(

32
121

nN

nN

n

n

n

n
A

−
−−

−
+−=

Using separable properties, we can write (6) as

),()()(
1

0

1

0

yxXytxtY
N

x

N

y
qppq  

−

=

−

=

= (8)

Equation (8) can be written as

)()(
1

0

xgxtY q

N

x
ppq 

−

=

= (9)

where, 
−

=

=
1

0

),()()(
N

y
qq yxXytxg is the row wise 1D DTT. It is clear from (9) that 2D DTT can be evaluated

by taking row wise 1D DTT and then column wise 1D DTT.
Equation (6) can be also written as

),(),,,(
1

0

1

0

yxXyxqpY
N

x

N

y
pq 

−

=

−

=

= ψ (10)

Where)()(),,,(ytxtyxqp qp=ψ is called the basis matrix, and is defined as follows:























−−−−

−
−

=

)1()1(..)1()1()0()1(
.....
.....

)1()1(..)1()1()0()1(
)1()0(..)1()0()0()0(

NtNttNttNt

Ntttttt

Ntttttt

qpqpqp

qpqpqp

qpqpqp

ψ (11)

Expanding the basis matrix defined in (11), we can evaluate the transform kernel of for 8=N as

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1280

































−−−−
−−−−
−−−−
−−−
−−−

−−−−
−−−−

=

0171.01195.03585.05974.05974.03585.01195.00171.0
0615.03077.05539.03077.03077.05539.03077.00615.0
1498.04922.03638.03210.03210.03638.04922.01498.0
2820.05238.01209.03626.03626.01209.05238.02820.0
4308.03077.04308.01846.01846.04308.03077.04308.0
5401.00772.02315.03858.03858.02315.00772.05401.0
5401.03858.02315.00772.00772.02315.03858.05401.0
3536.03536.03536.03536.03536.03536.03536.03536.0

ψ

The transform in (10) can be written in matrix form as
TXY ψψ= (12)

Tψ denotes the transpose operation.

Representing (12) in 1D form, we can write
XY ψ= (13)

Elaborating (13) we can write with assumption that Y and X are 8 input column vectors

































































−−−−
−−−−
−−−−
−−−
−−−

−−−−
−−−−

=

































)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

0171.01195.03585.05974.05974.03585.01195.00171.0
0615.03077.05539.03077.03077.05539.03077.00615.0
1498.04922.03638.03210.03210.03638.04922.01498.0
2820.05238.01209.03626.03626.01209.05238.02820.0
4308.03077.04308.01846.01846.04308.03077.04308.0
5401.00772.02315.03858.03858.02315.00772.05401.0
5401.03858.02315.00772.00772.02315.03858.05401.0
3536.03536.03536.03536.03536.03536.03536.03536.0

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

X

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Y

The value of above basis matrix of 1D DTT can be broken as,
)]4()3([3536.0)]5()2([3536.0)]6()1([3536.0)]7()0([3536.0)0(XXXXXXXXY +++++++=
)]4()3([3536.0)]5()2([3536.0)]6()1([3858.0)]7()0([5401.0)1(XXXXXXXXY +++−−−−−=

)]4()3([3858.0)]5()2([2315.0)]6()1([3858.0)]7()0([5401.0)2(XXXXXXXXY +−+−−−−−=
)]4()3([1846.0)]5()2([4308.0)]6()1([3077.0)]7()0([4308.0)3(XXXXXXXXY −+−+−+−−=

)]4()3([3626.0)]5()2([1209.0)]6()1([5238.0)]7()0([2820.0)4(XXXXXXXXY +++−+−+=
)]4()3([3210.0)]5()2([3638.0)]6()1([4922.0)]7()0([1498.0)5(XXXXXXXXY −−−−−+−−=

)]4()3([3077.0)]5()2([5539.0)]6()1([3077.0)]7()0([0615.0)6(XXXXXXXXY +−+++−+=
)]4()3([5974.0)]5()2([3585.0)]6()1([1195.0)]7()0([0171.0)7(XXXXXXXXY −+−−−+−−=

 (14)
Now, ROM free DA based algorithm can be used to implement the above equation of DTT. Constant
coefficients can be written in 2’s complement binary fractional form to exploit DA. For example,)1(Y
coefficient can be written with 12-bit DA precision according to (14) as:

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1281

 []


















−
−
−
−

















































−= −−

))4()3((
))5()2((
))6()1((
)7()0((

.

1111
1111
0000
0101
0011
0000
1111
1010
0011
1001
1101
1110
1111

222)1(1210

XX

XX

XX

XX

Y  (15)

where powers of Y denote the number of times shifting is required after evaluating right part of (15).
 From (15), it can be deduced that)1(Y is the sum of the terms

.2/)1(,..........,.........2/)1(),1(121210 YYY The computation process of)1(,),........1(),1(1210 YYY are shown
in Fig. 1. Here adders and subtractors are being shared. i.e. addition and subtraction operation are done
by a simple ALU, which comprises adder and subtractor simultaneously. Therefore, the usage of hardware
can be further reduced.

Fig. 1. The adder/subtractor matrix of)1(Y

In the next step, 121110 ,.,........., YYYY are needed to shift and add up for finding the value of).1(Y
The structure of compressed shift-adder tree can be shown in Fig. 2. In Fig. 2 Mi where i=0, 1,…..,12
represents the number of right shift of the output of adder/substractor matrix of Fig. 1. For example, M1
represents Y shift right by 1 and M2 represents Y shift shift right by 2. If M1 is 10 bit and M2 is 9 bit after
arithmetic shift, then the value of M1+M2=10 bits in compressed shift adder tree. The final value of Y(1) in the
compressed adder tree is obtained by required number of shift of M values of Fig. 2.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1282

Fig. 2. Compressed Shift-Adder-Tree

Fig. 3. Adder/Subtractor matrix of all data (Y(0),Y(1),Y(2),Y(3), Y(4), Y(5), Y(6), Y(7))

TABLE 1. Functions of each ALU for different coefficients

All the 1D DTT coefficients can be calculated by using adder/subtractor structure in Fig. 3. Table 1
describe the functionality of Fig. 3. The ‘+’ and ‘-‘ sign in the rows indicate the required function (addition
or subtraction) to be performed by the ALUs. Then, each DTT coefficient Y(i) can be obtained by

 Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7)
ALU1 + - + - + - + -
ALU2 + - + - + - + -
ALU3 + - + - + - + -
ALU4 + - + - + - + -

Y0 0 R3 R4 R13 R12 R5 R8 R9
Y1 0 R6 R5 R13 R11 R5 R6 R5
Y2 R3 R5 R11 R12 R3 R2 0 R13
Y3 0 R7 0 R4 R12 R6 R8 R9
Y4 R3 R2 R8 R13 R8 R2 R8 R14
Y5 R3 R8 R7 R6 R14 R14 R9 R14
Y6 0 R3 R4 R6 R8 R8 R9 R12
Y7 R3 0 R2 R6 0 R12 R13 R2
Y8 0 R2 R8 R7 R12 R7 R3 R13
Y9 R3 R9 R12 R2 R8 R5 R9 R14
Y10 0 0 R2 R6 R8 R4 R11 R10
Y11 0 R3 R4 R13 R2 R13 R14 R4
Y12 0 R3 R4 R13 R7 R4 R14 R1

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1283

summing iR values in the same column. Shifting must be done before summing the column values and
number of bit to be shifted is decided by the power of Y shown in that row. For example, the
coefficient)1(Y is calculated as follows:

)2/9()2/8()2/7(
)2/6()2/5()2/3()2/3()2/3()2/3()2/2()2/2()1(

953

1212116084

RRR

RRRRRRRRY

++
++++++++=

 (16)

The iR values obtained from Fig. 3 and Table 1 are

)]5()2([)]7()0([9
)]4()3([)]6()1([8
)]4()3([)]7()0([7

)]4()3([)]5()2([)]6()1([6
)]4()3([)]5()2([)]7()0([5

)]4()3([
)]5()2([)]6()1([)]7()0([3

)]6()1([)]7()0([2

XXXXR

XXXXR

XXXXR

XXXXXXR

XXXXXXR

XX

XXXXXXR

XXXXR

−+−=
−+−=
−+−=

−+−+−=
−+−+−=

−
+−+−+−=

−+−=

Division operations of power of 2 in (16) is performed by shifting the corresponding iR values right.
Since the binary contents become smaller after shifting i.e., bit width decreases, adders can be made
smaller accordingly in order to reduce the area. For example, if 1R and 2R sizes are of 11-bits each,

then adder bit width required to add them should be of size 11-bits. Since 5R is shifted by 2-bits and

7R is shifted by 3-bits right, it can be realized by using 9-bits adder as shown in Fig. 4.

Fig.4. Adder bit width reduction in ROM free DA to save area and power (a1) without shift and (b1) with right shift

A. Realization of Y(0), Y(1), ……, Y(7) of 8×1 DTT

 The hardware realization of 1D DTT outputs are presented in Fig. 5. The first step of realization is
computed in figures from a-h below. In the next step R1, R2,,R14 are needed to shift and add up
for the value of Y(0), Y(1)................,Y(7). The shift operation is implemented by wirings, which costs
little delay and hardware resources.

(a)

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1284

(b)

(c)

(d)

(e)

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1285

(f)

(g)

(h)

Fig. 5. Butterfly structures for computing 8×1 DTT for (a)Y(0), (b)Y(1), (c)Y(2), (d)Y(3), (e)Y(4), (f)Y(5), (g)Y(6), (h)Y(7).

IV. IMPLEMENTATION OF 2-D 8×8 DTT

 2D DTT is a separable transform. Therefore, an 8×8 DTT can be implemented by row-column
decomposition techniques, i.e., taking the 8×1 DTT of each row of the input data matrix. In Fig. 6 the
input vectors 70 XX − are applied to the 1D DTT. The transformed outputs are latched into the buffer one row
at a time. The buffer needs 8 clock pulses to latch all the 8 rows of transformed coefficients. In order to perform
column wise transformation, the transformed coefficients of each row need to be pass through a transposition
matrix. The transposition matrix generally performs a row to column transformation which can be simply a
wiring operation. The output from the transposition matrix need to be pushed in to the register file. This is done
by pushing each column of the transformed coefficients per clock pulse (parallel load). In the same clock, the
column transposition matrix converts the column of the transformed values to row and input the values to
second 1D DTT module. It is seen that a total 8+8=16 clock pulses are required to get the first rows of
transformed coefficients, i.e., Y0-Y7. Additional 1+1=2 clock pulses for initial clear and wait state between
row-to-column transpositions. Therefore, a total of 18+8=26 clock pulses are required to do a complete 8×8
conversion.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1286

Fig. 6. Diagram of 2D 8×8 DTT core processor architecture using 1D DTT module

V. RESULTS AND DISCUSSIONS

Table 2 shows a comparison of adder cost savings between different methods of implementation. It can be
observed that the proposed DTT implementation using NEDA shows 94% saving of the cost metric. In 2D DTT,
the adder matrix consists of 4 ALUs and 11 adders while 2D DCT implementation consists 9 ALUs and 6
adders. Each ALU consists of two components (adder and subtractor). This implies that DCT has 15 adders
and 9 subtractors, whereas in DTT there are 15 adders and 4 subtractors. Hence, there is a 24% adder cost
saving in the proposed DTT.
A. Device and Power Utilization Summary

 According to the results shown below, we find that 2-D DTT saves 5% more area than 2-D DCT.
Area saving is estimated in terms of device utilization parameter from Table 3. The power and max. frequency
comparison is shown in Table 4.
B. 2D DTT Simulation Results

 Applying an arbitrary input inX in (17), the Simulation results using ModelSim and Matlab is shown in Fig.
7 (a) and (b) respectively.

TABLE 2. Comparison of adder cost savings

TABLE 3. Device utilization for 2D 8×8 DCT and 8×8 DTT on the Xilinx vertex-4 FPGA

Scheme Adder Matrix Adder bit-width Saving

Direct DCT 308 2496 -
NEDA [11] 35 1800 88%
DCT in [12] 9ALU+6 850 92%
Proposed DTT 4ALU+11 840 94%

FPGA Resources 2D DCT 2D DTT Available Utilization For DCT Utilization For DTT

No of Slices 2612 2596 5472 47% 47%

No of Slice Flip
Flops

875 819 10944 7% 7%

No of 4-Input LUTs 4764 4165 10944 43% 38%

No of IOB Flip Flops 115 115 240 47% 47%

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1287

TABLE 4. Power and Frequency calculation on Xilinx XC4VFX12 FPGA

































−−−−−−−−
−−−−−−−−

−−−−−−
−−−−−−−

−−
−−−

−−

=

574019881074
57401987973

42601986851
58411975632

4158207969699104
6058809432102107

395780949899103108
54571009498999695

inX (17)

It can be noted that the error difference between the simulate output and actual output is +/- 4%. The actual 2D
output results are shown in matrix. The error can be further reduced by increasing the precision of the DA
length sequence.

(a)

































−−−
−−−−−

−
−−−

−−−−
−−−−

−−−−
−−−−−−−

=

2014725795820119
282028336912606
0111119182210
915431440203758
33350384941144108
8559531110610436

930171877361244
97263246363181

Y

(b)
Fig. 7 Simulation Results of 2D DTT (a) using ModelSim, (b) Matlab

Parameter DCT DTT
Power (mW) Total: 197;

Static: 194;
Dynamic: 23

Total: 186;
Static: 167;
Dynamic: 19

Max. Frequency
(MHz)

87.7 111.38

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1288

(a)

(b)

Fig. 8 (a) Partial synthesis results (b) Floor plan design of 8x8 DTT on Xilinx-4 FPGA device.

Fig. 8 (a) shows a partial synthesis results of 1D DTT. As the design is large, it is difficult to accommodate the
entire synthesis result in one page. The floor plan design is also shown in Fig. 8 (b).

VI. CONCLUSION

 In this paper we have presented an area efficient architecture for the computation of 2-D DTT. The
architecture is ROM free and implemented in Xilinx vertex-4 FPGA. A detail comparison with ROM free
2-D DCT is carried out. An area reduction of 5% and power improvement of 6% is achieved in proposed
architecture. We have selected row-column decomposition technique because of its computational advantages.
The proposed DTT shows 20% adder cost savings over DCT by Chungan et al. Simulation results of 2D DTT
in ModelSim shows the transform error falls within ±4% of the actual result. This is because of finite
precision selected for the floating point basis values during DA calculation. The future direction is to develop
novel integer Tchebichef transform (ITT) for extremely low power applications.

REFERENCES
[1] W.B.Pennebaker, J.L.Mitchell “JEPG still image compression standard,” Chapman Hall, New York, 1993.
[2] I.E. Richardson, “H.264 and MPEG-4 video compression,” John Wiley and Sons, 2003.
[3] S.A.White, “Applications of distributed arithmetic to digital signal processing: A tutorial review,” IEEE ASSP Mag., Vol. 6, No. 3, pp.

4-19, Jul. 1989.
[4] M.T. Sun, L. Wu, and M.L.Liou, “A concurrent architecture for VLSI implementation of discrete cosine transform,” IEEE Trans,

Circuits Syst., Vol. CAS-34, no. 8, Aug. 1987, pp. 992-994.
[5] M. T. Sun, T.C. Chen, and A.M.Gouulieb, “VLSI implementation of a 16×16 discrete cosine transform,” IEEE Trans. Circuits Syst.,

Vol. CAS-36, No. 4, Apr. 1989, pp. 610-617.
[6] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and M. Yoshimoto, “A 100 MHz 2-D discrete cosine

transform core processor”, J. Solid-State Circuits, Vol. 27, Apr. 1992, pp. 492-498.
[7] Y. –H. Chan and W.-C.Siu, “On the realization of discrete cosine transform using distributed arithmetic,” IEEE Trans, Circuits Syst. I:

Fundam. Theory Appl., Vol. 39, no. 9, Sept. 1992, pp. 705-711.
[8] H.C. Karthanasis, “A low ROM distributed arithmetic implementation of the forward/inverse DCT/DST using rotations,” IEEE Trans.

Consumer Electron., Vol. 41, No. 2, May 1995, pp. 263-272.
[9] V. Srinivasan and K.J.R. Liu, “VLSI design of high-speed time recursive 2-D DCT/IDCT processor for video applications,” IEEE

Trans, Circuits Syst. Video Technol., Vol. 6, No. 1, Feb. 1996, pp. 87-96.
[10] D. Slawecki and W. Li, “DCT/IDCT processor design for high data rate image code,” IEEE Trans, Circuits Syst. Video Technol., Vol.

2, No. 2, Jun. 1992, pp. 135-144.
[11] A. M. Shames, A. Chidanandan, W. Pan and M. A. Bayoumi, “NEDA: A low-power high-performance DCT Architecture,” IEEE

Trans. on signal process., Vol. 54, No. 3, Mar. 2006, pp. 955-963.
[12] P. Chungan, C A O Xixin, Y U Dunshan and Z Xing, “A 250 MHz optimized distributed architecture of 2D 8×8 DCT”, 7th Int. Conf.

on ASICs, Oct. 2007, pp. 189-192.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1289

[13] A.Mankar, N Prasad, and A D Das, “FPGA Implementation of Retimed Low Power and High Throughput DCT Core Using
NEDA,”SCES 2013, 12-14 April 2013, Allahabad, India.

[14] V. K. Sharma, R. Agrawal and K.K. Mahapatra, “2-D Separable discrete Hartley transform for efficient FPGA resource,” ICCCT,
2010.

[15] A. Das, A. Mankar, N. Prasad, K. K. Mahapatra, A. S. Swain, “Efficient VLSI architectures of split radix FFT using NEDA,” IJSCE,
Vol. 3, No. 1, Mar. 2013, pp. 264-271.

[16] A.Mankar, A D Das, and N Prasad, “FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA,”SCES 2013, 12-14
April 2013, Allahabad, India.

[17] G.K.Wallace, The JPEG still picture compression standard, Communications of the ACM, Vol. 34, No. 4, 1991, pp. 30-44.
[18] K. Nakagaki and R. Mukundan, “A fast 4×4 forward discrete Tchebichef transform algorithm,” IEEE Signal Proc. Letts., Vol. 14, No.

10, Oct. 2010, pp. 684-687.
[19] R. K. Senapati, U. C. Pati and K. K. Mahapatra, “Reduced memory, low complexity embedded image coding algorithm using

hierarchical listless DTT,” IET Image Proc., Vol. 8, No. 4, Apr. 2014, pp. 1-26.
[20] R. K. Senapati, U. C. Pati and K. K. Mahapatra, “A fast zigzag prune 4×4 DTT algorithm for image compression,” WSEAS Trans. on

signal proc., Vol. 7, No. 1, 2011, pp. 34-43.
[21] S. Ishwar, P. K. Meher and M.N.S. Swamy, “A fast 4×4 algorithm and its application to image/video compression,” ISCAS Seattle,

USA, 2008, pp. 260-263.
[22] R. Mukundan, “Image analysis by Tchebichef moments,” IEEE Trans. on image proc., Vol. 10, No. 9, 2001, pp. 1357-1364.
[23] Bin Xiao, Jian-Feng Ma, Jiang-Tao Cui, “Invariant pattern recognition using radial Tchebichef moments,” Chinese conference on

pattern recognition, China, 21-23 oct., 2010.
[24] Hui Huang, G. Coatrieux, Huazheng Shu, Limin Luo, Christian Roux, “Blind integrity verification of medical images,” IEEE Trans.

on information technology in Biomedicine, Vol. 16, No. 6, Nov. 2012, pp. 1122-1126.
[25] Leida Li, H. Zhu, G. Yang, J. Qian, “Referenceless measure of blocking artifacts by Tchebichef kernel analysis,” IEEE signal proc.

Letts., Vol. 21, No. 1, Jan 2014, pp. 122-125.
[26] P.A.M.Oliveira, R.J.Cintra, F.M.Bayer, S.Kulasekera and A.Madanayake, “A discrete Tchebichef transform approximation for image

and video coding,” IEEE signal proc. lett., Vol. 22, No. 8, Aug. 2015, pp. 1137-1141.

AUTHOR PROFILE

Ranjan Kumar Senapati received his M. Tech degree from National Institute of
Technology, Warangal, India and Ph. D. degree from National Institute Technology,
Rourkela, India in 2004 and 2014 respectively. At present he is working as a
Professor in the department of Electronics and Communication Engineering, K L
University, Vijayawada, Andhra Pradesh. He has published more than 20 research
papers in international as well as national journals and conference proceedings. His
research interests include development and VLSI implementation of image and video
coding algorithms, microprocessor and microcontroller-based system designing and
signal processing. He is a life member of various professional societies such as IETE
and ISTE.

PMK Prasad received M.E. in Systems and Signal Processing from University
college of Engineering, Osmania University, Hyderabad. Now, he is pursuing Ph.D.
from Andhra University, Visakhapatnam. He has nearly twenty years of experience
in teaching. Currently working as Associate professor in Dept. of ECE, GMR
Institute of Technology, Rajam, India. His research interests include Signal
processing, communications and Image processing.

Ranjan K. Senapati et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 4 Aug-Sep 2015 1290

	An Optimised Distributed ArithmeticArchitecture for 8×8 DTT
	Abstract
	Keyword
	I. INTRODUCTION
	II. BRIEF EXPLANATION OF NEDA
	III. DTT TRANSFORM AND FORMULATION USING DISTRIBUTED ARITHMETIC
	IV. IMPLEMENTATION OF 2-D 8×8 DTT
	V. RESULTS AND DISCUSSIONS
	VI. CONCLUSION
	REFERENCES
	AUTHOR PROFILE

