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Abstract—Discrete Tchebichef Transform (DTT) is an orthogonal transform and is used in many 
applications like image and video compression, feature extraction, artefact analysis, blind integrity 
verification and pattern recognition. In comparison with DCT, DTT has better image reconstruction 
quality for certain class of images. Direct implementation of DTT requires large number of 
multiplications, which are time-consuming and expensive in a simple processor. To perform in real time, 
these large number of operations can be completely avoided in our proposed architecture. The proposed 
architecture uses distributed (DA) based technique which offers high speed and small area. The basic 
architecture consists of one dimensional (1D) row DTT followed by a transpose register array and 
another 1D column DTT. The 1D DTT structure only requires 15 adders to build a compressed adder 
matrix and is also ROM free. Compared with DCT architecture, the proposed architecture shows an 
improvement in speed and reduction in area by 5% on a Xilinx vertex-4 FPGA platform. 

Keyword-Discrete Tchebichef Transform, Discrete Cosine Transform, Distributed Arithmetic, New 
Distributed Arithmetic, Image Compression, FPGA. 

I.  INTRODUCTION 

    Portable electronic systems like mobiles, PDAs, digital cameras run on batteries. In order to achieve 
maximum performance, the design of such devices should be optimised in terms of area and power. Image 
transforms such as discrete cosine transform (DCT) is widely used for processing and storage in such devices.  
For example, DCT is adopted as the core transform in JPEG, MPEGx, and H.26x [1]-[2].  Direct 
implementation of DCT needs floating point multiplication. Floating point multipliers are the major sources of 
area and power consumption for such devices. In order to eliminate multipliers, distributed arithmetic (DA) 
based technique has been emerged.  DA was invented over two decades ago and has since been seen widespread 
applications in areas of VLSI implementation and DSP algorithms [3].  
   DA has become an efficient tool to implement multiply and accumulate (MAC) unit in a DSP processor. 
Using ROM based DA, the usage of multipliers in the MAC unit can be efficiently replaced by pre-computing 
all possible products and storing them in each address of ROM [4]-[10]. However, the size of ROM grows 
exponentially with the size of the transform and bit width precision. Usage of ROM can be eliminated if the set 
of inputs are of fixed size. This is done by distributing the coefficients to the input of the unit. The approached is 
called New Distributed Arithmetic (NEDA) [11]. Thus, NEDA can be used to implement the inner product of 
vectors in the form of 2’s complement numbers using only addition followed by a small number of shifts at the 
final stage. Recently, NEDA is successfully applied to many transforms such as DCT [12]-[13],  DHT [14], FFT 
[15]-[16]. 
   Discrete Tchebichef transform is a novel orthogonal transform which has similar energy compaction 
properties like DCT. Recently, DTT is applied to many image and signal processing applications, like 
compression [17]-[21], feature extraction [22], pattern recognition [23], blind integrity verification [24], and 
artefact measurement [25]. Some applications requires real time manipulation of images. So many fast 
algorithms and specific circuits have been developed using DCT [4]-[10]. As DTT outperform DCT for some 
class of images, it is expected that DTT can be applied for such applications. Recently, Oliveira et al. [26] have 
reported a low complexity approximated DTT transform. The transform can be applied in distributed video 
coding where video is encoded once and decoded several times. Several ROM free DA implementation of DCT, 
FFT and DHT is reported in literature [12]-[16].  However, to the best of our knowledge, ROM free DA 
implementation is not reported for DTT. Out of several approaches, Row-column decomposition method is best 
adopted for H/W implementation in DCT, FFT and DHT. Similar in kind, we have also implemented the ROM 
free DA implementation on DTT in this paper.  
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   In this paper, we have proposed a reduced area and reduced power 2D DTT architecture based on row-column 
decomposition. In this method 1D-DTT is taken on row wise, and then column wise 1D-DTT is performed. A 
compressed adder/subtractor matrix is adopted. This results a reduced hardware with speed improvement. The 
input data width is kept at 8-bit and the DTT basis elements are set to 13-bit precision to ensure minimum error 
during reconstruction.  
   The rest of the paper is as follows: A brief explanation of NEDA is presented in section 2. In Section 3, DTT 
transform and formulation of DTT using DA approach is demonstrated. Proposed 2D DTT architecture is 
presented by using row-column decomposition of 1D DTT in Section 4. Simulation and synthesis results are 
presented in Section 5. Finally, we conclude the paper with mentioning further improvements. 

II.  BRIEF EXPLANATION OF NEDA 

    Earlier works witness that transforms such as DCT, FFT, DHT, DST, etc. can be efficiently implemented 
using NEDA. This is because, NEDA improves the performance of the system in terms of area, speed and power. 
The brief mathematical derivation of NEDA can be as follows:   
The inner product calculation of two sequences may be represented as 

           
=

=
K

k
kk XDZ

1

                                                                          (1) 

where kD are the constant coefficients and kX are the varying inputs. 
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Considering both iD and iX are in 2’s complement format, these can be expressed in the form as 
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The matrix k
id is a sparse matrix. The number of rows in k

id determines the precision. Equation (4) can be 
rearrange as  
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The [W] represents the sum/difference of the input depending on the coefficient values. Multiplication with k−2 , 

where +∈ Zk in (5) can be realized with shifters. Thus the output Z  is realized by shift and add operations. 
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The output Z is essentially a column matrix consisting of partial products. Therefore, NEDA based architecture 
designs have less critical path compared to traditional MAC unit without multipliers and memory. 

III.  DTT TRANSFORM AND FORMULATION USING DISTRIBUTED ARITHMETIC 

The 2D DTT ( pqY ) of order qp + is defined as [18] 
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where, )(xtp and )(ytq are Tchebichef polynomials of order p and q respectively. ),( yxX is the input 2D 

signal (e.g., image). .1,.....,1,0, −= Nqp The values of Tchebichef polynomials are defined using the recursive 
relation as 
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Using separable properties, we can write (6) as 
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Equation (8) can be written as 
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qq yxXytxg  is the row wise 1D DTT. It is clear from (9) that 2D DTT can be evaluated 

by taking row wise 1D DTT and then column wise 1D DTT. 
Equation (6) can be also written as 
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Where )()(),,,( ytxtyxqp qp=ψ is called the basis matrix, and is defined as follows: 
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Expanding the basis matrix defined in (11), we can evaluate the transform kernel of for 8=N  as 
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The transform in (10) can be written in matrix form as 
TXY ψψ=                     (12) 

Tψ denotes the transpose operation. 

Representing (12) in 1D form, we can write  
XY ψ=                    (13) 

Elaborating (13) we can write with assumption that Y and X are 8 input column vectors 
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The value of above basis matrix of 1D DTT can be broken as, 
)]4()3([3536.0)]5()2([3536.0)]6()1([3536.0)]7()0([3536.0)0( XXXXXXXXY +++++++=
)]4()3([3536.0)]5()2([3536.0)]6()1([3858.0)]7()0([5401.0)1( XXXXXXXXY +++−−−−−=

)]4()3([3858.0)]5()2([2315.0)]6()1([3858.0)]7()0([5401.0)2( XXXXXXXXY +−+−−−−−=
)]4()3([1846.0)]5()2([4308.0)]6()1([3077.0)]7()0([4308.0)3( XXXXXXXXY −+−+−+−−=

)]4()3([3626.0)]5()2([1209.0)]6()1([5238.0)]7()0([2820.0)4( XXXXXXXXY +++−+−+=
)]4()3([3210.0)]5()2([3638.0)]6()1([4922.0)]7()0([1498.0)5( XXXXXXXXY −−−−−+−−=

)]4()3([3077.0)]5()2([5539.0)]6()1([3077.0)]7()0([0615.0)6( XXXXXXXXY +−+++−+=
)]4()3([5974.0)]5()2([3585.0)]6()1([1195.0)]7()0([0171.0)7( XXXXXXXXY −+−−−+−−=

             (14) 
Now, ROM  free  DA  based  algorithm  can  be  used  to  implement   the  above  equation  of  DTT. Constant  
coefficients  can  be  written  in  2’s  complement  binary  fractional  form  to  exploit  DA. For example, )1(Y   
coefficient  can  be  written  with  12-bit  DA  precision  according  to (14)  as: 
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where  powers  of  Y   denote  the  number  of  times  shifting  is  required  after  evaluating  right  part of (15). 
 From (15), it  can  be  deduced  that  )1(Y  is  the  sum of the terms 

.2/)1(,..........,.........2/)1(),1( 121210 YYY The  computation  process  of  )1(,),........1(),1( 1210 YYY  are  shown  
in  Fig. 1. Here  adders  and  subtractors  are  being  shared. i.e. addition  and  subtraction  operation  are  done  
by  a  simple  ALU, which  comprises  adder  and  subtractor  simultaneously. Therefore, the usage of  hardware  
can  be  further  reduced. 

 
Fig. 1. The adder/subtractor matrix of )1(Y  

In  the  next  step,  121110 ,.,........., YYYY   are  needed  to  shift  and  add  up  for finding the  value  of ).1(Y  
The structure of compressed  shift-adder  tree can be  shown  in  Fig. 2. In Fig. 2 Mi where i=0, 1,…..,12 
represents the number of right shift of the output of adder/substractor matrix of Fig. 1. For example, M1 
represents Y shift right by 1 and M2 represents Y shift shift right by 2. If M1 is 10 bit and M2 is 9 bit after 
arithmetic shift, then the value of M1+M2=10 bits in compressed shift adder tree. The final value of Y(1) in the 
compressed adder tree is obtained by required number of shift of M values of Fig. 2. 
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Fig. 2. Compressed Shift-Adder-Tree 

 
Fig. 3. Adder/Subtractor  matrix  of  all  data (Y(0),Y(1),Y(2),Y(3), Y(4), Y(5), Y(6), Y(7)) 

TABLE 1.  Functions of each ALU for different coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All the  1D DTT  coefficients  can  be  calculated  by  using  adder/subtractor  structure  in  Fig. 3. Table 1 
describe the functionality of Fig. 3. The ‘+’ and ‘-‘  sign  in  the  rows indicate the required  function (addition  
or  subtraction) to  be  performed  by  the  ALUs. Then, each  DTT  coefficient Y(i) can be  obtained  by  

 Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) 
ALU1 + - + - + - + - 
ALU2 + - + - + - + - 
ALU3 + - + - + - + - 
ALU4 + - + - + - + - 

Y0 0 R3 R4 R13 R12 R5 R8 R9 
Y1 0 R6 R5 R13 R11 R5 R6 R5 
Y2 R3 R5 R11 R12 R3 R2 0 R13 
Y3 0 R7 0 R4 R12 R6 R8 R9 
Y4 R3 R2 R8 R13 R8 R2 R8 R14 
Y5 R3 R8 R7 R6 R14 R14 R9 R14 
Y6 0 R3 R4 R6 R8 R8 R9 R12 
Y7 R3 0 R2 R6 0 R12 R13 R2 
Y8 0 R2 R8 R7 R12 R7 R3 R13 
Y9 R3 R9 R12 R2 R8 R5 R9 R14 
Y10 0 0 R2 R6 R8 R4 R11 R10 
Y11 0 R3 R4 R13 R2 R13 R14 R4 
Y12 0 R3 R4 R13 R7 R4 R14 R1 
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summing  iR   values  in  the  same  column. Shifting  must  be  done  before  summing  the  column  values and 
number  of  bit  to  be  shifted  is  decided  by  the  power  of  Y shown in  that  row. For  example, the 
coefficient  )1(Y   is  calculated  as follows: 
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The iR   values obtained from Fig. 3 and Table 1 are 
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Division  operations  of  power  of  2  in  (16)  is  performed  by  shifting  the  corresponding  iR   values  right. 
Since  the  binary  contents  become  smaller  after  shifting i.e., bit  width  decreases, adders  can  be  made  
smaller  accordingly in order  to  reduce  the  area. For  example, if  1R  and 2R  sizes  are  of  11-bits  each,  

then  adder  bit  width  required  to  add  them  should  be  of  size  11-bits. Since  5R   is  shifted  by  2-bits  and  

7R   is  shifted  by  3-bits  right, it  can  be  realized  by  using  9-bits  adder  as  shown  in  Fig. 4. 

 
Fig.4. Adder  bit width  reduction  in  ROM  free DA to save area and  power (a1) without  shift and (b1) with  right shift 

A. Realization of Y(0), Y(1), ……, Y(7) of 8×1 DTT 

    The hardware realization of 1D DTT outputs are presented in Fig. 5. The  first  step  of  realization  is  
computed  in  figures from a-h below. In  the  next  step  R1, R2, ...........,R14  are  needed  to  shift  and  add  up  
for  the  value  of  Y(0), Y(1)................,Y(7). The  shift  operation  is  implemented  by  wirings, which  costs  
little  delay  and  hardware  resources. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

 
(h) 

Fig. 5.  Butterfly structures  for  computing 8×1 DTT for (a)Y(0), (b)Y(1), (c)Y(2), (d)Y(3), (e)Y(4), (f)Y(5), (g)Y(6), (h)Y(7). 

IV.  IMPLEMENTATION OF 2-D 8×8 DTT 

 2D DTT is a separable transform. Therefore, an  8×8 DTT  can  be  implemented  by  row-column  
decomposition  techniques, i.e., taking the  8×1 DTT  of  each  row  of  the  input  data  matrix. In Fig. 6 the 
input vectors 70 XX −  are applied to the 1D DTT. The transformed outputs are latched into the buffer one row 
at a time. The buffer needs 8 clock pulses to latch all the 8 rows of transformed coefficients. In order to perform 
column wise transformation, the transformed coefficients of each row need to be pass through a transposition 
matrix. The transposition matrix generally performs a row to column transformation which can be simply a 
wiring operation. The output from the transposition matrix need to be pushed in to the register file. This is done 
by pushing each column of the transformed coefficients per clock pulse (parallel load). In the same clock, the 
column transposition matrix converts the column of the transformed values to row and input the values to 
second 1D DTT module. It is seen that a total 8+8=16 clock pulses are required to get the first rows of 
transformed coefficients, i.e., Y0-Y7. Additional 1+1=2 clock pulses for initial clear and wait state between 
row-to-column transpositions. Therefore, a total of 18+8=26 clock pulses are required to do a complete 8×8 
conversion.  
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Fig. 6. Diagram of 2D 8×8 DTT core processor architecture using 1D DTT module 

V.  RESULTS AND DISCUSSIONS 

Table 2 shows a comparison of adder cost savings between different methods of implementation. It can be 
observed that the proposed DTT implementation using NEDA shows 94% saving of the cost metric. In 2D DTT, 
the adder matrix consists of 4 ALUs and 11 adders while 2D  DCT implementation consists 9 ALUs and 6 
adders. Each ALU consists of  two  components (adder  and  subtractor). This implies that DCT has 15 adders  
and  9 subtractors, whereas in DTT there are 15 adders and 4 subtractors. Hence, there  is  a  24%  adder  cost  
saving  in  the  proposed  DTT. 
A. Device and Power Utilization Summary 

 According  to  the  results  shown  below, we  find  that  2-D  DTT  saves 5% more area  than  2-D  DCT. 
Area saving is estimated in terms of device utilization parameter from Table 3. The power and max. frequency 
comparison is shown in Table 4.   
B. 2D DTT Simulation Results 

       Applying an arbitrary input inX in (17), the Simulation results using ModelSim  and Matlab is shown in Fig. 
7 (a) and (b) respectively. 

TABLE 2.  Comparison of adder cost savings 

 
 
 
 

 
 
 

TABLE 3.   Device utilization for 2D 8×8 DCT and 8×8 DTT on the Xilinx vertex-4 FPGA 

 
 
 
 
 

Scheme Adder Matrix Adder bit-width Saving 

Direct DCT       308        2496      - 
NEDA [11]        35        1800    88% 
DCT in [12]   9ALU+6         850    92% 
Proposed DTT  4ALU+11         840    94% 

FPGA Resources  2D DCT  2D DTT  Available Utilization For DCT Utilization For DTT 

No of Slices 2612 2596 5472   47%  47% 

No of Slice Flip 
Flops 

875 819 10944    7%    7% 

No of 4-Input LUTs 4764 4165 10944    43%   38% 

No of IOB Flip Flops 115 115 240    47%    47% 
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TABLE 4.  Power and Frequency calculation on Xilinx XC4VFX12 FPGA 
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inX        (17) 

It can be noted that the error difference between the simulate output and actual output is +/- 4%. The actual 2D 
output results are shown in   matrix.  The error can be further reduced by increasing the precision of the DA 
length sequence. 

 
(a) 
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Y  

(b) 
Fig. 7 Simulation Results of 2D DTT (a) using ModelSim, (b) Matlab 

Parameter DCT DTT 
Power (mW) Total: 197; 

Static: 194; 
Dynamic: 23 

Total: 186; 
Static: 167; 
Dynamic: 19 

Max. Frequency 
(MHz) 

87.7  111.38 
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(a) 

 
(b) 

Fig. 8 (a) Partial synthesis results (b) Floor plan design of 8x8 DTT on Xilinx-4 FPGA device. 

Fig. 8 (a) shows a partial synthesis results of 1D DTT. As the design is large, it is difficult to accommodate the 
entire synthesis result in one page. The floor plan design is also shown in Fig. 8 (b).  

VI.  CONCLUSION 

 In this  paper  we  have presented  an  area  efficient  architecture  for  the  computation  of  2-D DTT. The 
architecture is ROM  free and  implemented  in  Xilinx  vertex-4 FPGA. A detail comparison  with  ROM  free 
2-D DCT is carried out. An area  reduction of 5% and power improvement of 6%  is  achieved  in  proposed 
architecture. We have selected row-column decomposition technique because of its computational advantages. 
The proposed DTT shows 20% adder cost savings over DCT by Chungan et al.  Simulation  results of 2D DTT 
in ModelSim shows  the  transform  error  falls  within  ±4% of the actual result. This is because of finite 
precision selected for the floating point basis values during DA calculation. The future direction is to develop 
novel integer Tchebichef transform (ITT) for extremely low power applications. 
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