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Abstract—This paper presents a modified water cycle algorithm (WCA) adapted to the problem of
finding the location and size of distributed generation (DG). Power losses minimization was used as an
objective function to compare the proposed algorithm with particle swarm optimization (PSO), the bat-
inspired Algorithm (BA), and harmony search (HS). The test scenarios consisted of locating five to seven
generators with a maximum real and reactive power in the 33-node and 69-node radial distribution
networks. The experiment was designed to start iterations from the same initial population to identify the
algorithms' performance when searching for the best solutions. Theresults demonstrate that the modified
WCA found the minimum power losses after locating and sizing distributed generators for most of the
test scenarios. The algorithm converged quickly to the best solution and the solutions for all repetitions
tested wer e close to the best for each case simulated.

Keywords: bat-inspired algorithm, harmony search, particle swarm optimization, water cycle algorithm,
power losses, distributed generation, distribution network

I. INTRODUCTION

Power losses are a concern for electricity companies, especially when they represent high percentages of the
total power transfer during the operation of power networks. There are many ways to mitigate power 10sses,
such as feeder restructuring [1], distributed generation (DG) placement [2]-{8], capacitor placement [1], [8], and
network reconfiguration [9], [10].

DG is one of the most appropriate methods to minimize power losses due to the installation of generators
close to the loads. Several techniques have been tested to locate and size DG, but metaheuristics are preferred
for problems with large numbers of combinations, athough the problem of finding a globa optimum is
sometimes an issue.

Some of the algorithms used to solve this problem are particle swarm optimization (PSO) [11]-{14], the ant
colony (AC) [15], [16], the evolutionary algorithm (EA) [17]-{19], smulated annealing (SA) [20]-{22], the bat-
inspired algorithm (BA) [23], [24], harmony search (HS) [25], [26].

Some convergence problems have been detected when testing difficult DG placement and sizing problems
[24], [27] because of the distribution network selected, the number of possible nodes, the number of generators
to locate, and the size of the generators. The number of combinations to solve this problem is high and not easy
for some algorithms to compute.

Other concerns are adopting good solutions with the agorithms within the time needed, avoiding local
solutions in the security of convergence to the global optimum, and finding the best solutions with minimum
repetitions of the simulations. Improvement of these features could reduce the evaluation time for more difficult
problems, considering the large number of power flows evaluated to meet all the constraints.

The water cycle agorithm (WCA) has been proposed to solve several functions [28] and to find better
solutions converging to the optimum. In this paper, the WCA was modified and adjusted to solve the problem of
location and size of DG with the objective function of minimizing power losses. The aim of this work is to find
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an improved algorithm that will solve a combinatorial problem with the possibility to place and size DG with
consistent results through all iterations and repetitions.

PROBLEM FORMULATION
Thetotal real power losses of a distribution network can be represented using (1) [29].

n n
P D Ai(RP, +QQ;)+B;(QP +RQ)) (D)

i=1 j=1
Where P; is the real power injected to the node i, Q; is the reactive power injected to the node i, P; is the real

power injected to the node j, and Q; is the reactive power injected to the node j. The parameters A; and B; are
defined in (2) and (3), respectively.
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Where R; is the resistance between the nodes i and j, V; is the voltage magnitude of the node i, 4 is the
voltage angle of the node i, V; is the voltage magnitude of the node j, and 4 is the voltage angle of the nodej.
The best fitness is defined as the minimum power losses of all possible solutions found with the algorithms,
as expressed in (4).

Foest = MIN(PLoss) (4)
i=l.n

Where Fpe4 is the best fitness calculated as the minimum power losses obtained when evaluating all solutions
proposed by the algorithms (i=1...n), P s iSavector containing all the solutions of power losses found with the
power flow, and n represents the maximum number of evaluations contained in the vector. Asthe vector P iS
updated with new evaluations, Fye is recal culated.

This objective function is subject to the real and reactive power balance of the distribution network, as
expressed in (5) and (6).

n n
Pgack + Z Poci = Z Poi + Ploss (5)
i=1 i=1
n n
Quack + Y Qo = Y, i +Quoss (6)
i=1 i=1

Where Pg,« is the real power supplied from the main source, Ppg; is the real power supplied from the DG
located at node i, Pp; is the real power consumed by the load at node i, and P is the total real power of the
distribution network. Qga IS the reactive power supplied by the main source, Qpg; iS the reactive power
supplied by the DG located at node i, Qp; is the reactive power consumed by the load at node i, and Q. IS the
total reactive power of the distribution network.

V oltage magnitudes of each node ||\/I | , must comply with the minimum voltage magnitude, [\/I |min , and the
maximum voltage magnitude, [\/I |maX , asexpressed in (7).
MI™ <Ml =M™ (7)

The real and reactive power supplied by the DG is limited to the minimum and maximum values, as defined
in (8) and (9).

P& < Poai < Po& (8)
Qb6 < Qoai < Q& (9)
Where, P, isthe real power of generators located at nodei, P is the minimum real power of generators

located at node i, and Py is the maximum real power of generators located at node i. Qpg; is the reactive
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power of generators located at node i, ang is the minimum reactive power of generators located at node i, and

Qg‘gf is the maximum reactive power of generators located at nodei.

Finally, the current circulating through the branches of the distribution network must be limited to the
maximum current accepted, as shown in (10) and (11).
iij < iﬁ"ax (20)

i <ip (11)
Where ij; is the current of the branch circulating from node i to node j, and ij is the current of the branch

circulating from node j to node i. ii;“ax is the maximum current of the branch circulating from node i to node j,

and | J"fax is the maximum current of the branch circulating from nodej to nodei.
ALGORITHMS
A. Codification for the search

Figure 1 shows the codification of the problem for locating and sizing DG. The vector is formed by the
elements that represent the DG’ s real power, reactive power, and position.

X1 |\ Y1 |4 [ X (Y2 |2 | ..o | X |Yd|Zd | |Xd | Yd | Zud

Fig. 1. Problem codification for location and size of distributed generators
Where x, y, and z represent the real power supplied, the reactive power supplied, and the number of the node
where the generator is located, respectively. The number of generatorsis represented by nd.
B. Bat-inspired Algorithm
This agorithm is based on the echolocation of bats during the search for a prey [30]. An initia population is

defined, and the frequency and velocity is used to move all bats. Random flies help to find new solutions in the
searching region.
The steps of this algorithm are as follows:
(1) Definethe frequency f; using (12), the pulse rate r;, and the loudness A,.
(2) Initiaize the population and the velocities of the bats.
(3) Evaluatethefitness and select the best.
(4) Usethefitness vector to rank the solutions as Fpeg.
(5) Whileiter <iter™*
@ With the frequency defined in (12) and the velocities defined in (13), find the new solutions of
Xnew USING (14)
(b) If rand >ri
* Create a new solution close to the best

(© Endif
(d) Use random flies of bats to create new solutions
(e Find the new fitness Fpay (Xnew)
()] if (Frew< Fpeg and rand < Ai)
» Update the solution
(9) Endif
(h) Increase r; and reduce A;
0] Rank the solutions and update the best fitness Fpeq
(6) Endwhile
The frequency f; can be calculated using (12), and the velocity is defined using (13) [31].
fi = foin + (fmax - fmin)*B (12)
W =W (0 %) (13)
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Where fo is the maximum frequency, f.,, is the minimum frequency, and § is a random number to generate
different frequencies. vik is the velocity of the bat i at the iteration Kk, \/ik_1 is the velocity of the bat i at the

iteration k-1, )(ik isthe position of the bat i at the iteration k, and X,eq IS the best position of the bats.

The new position of the particle, Xik , Is updated after adding the new velocity, \/ik , to the previous position
X<, as shown in (14).
X=Xy (14)
This algorithm converges to the solutions found quickly and obtains good resultsin afew iterations [23], [24].
C. Particle Swvarm Optimization

This metaheuristic is based on the social behavior of birds during flight [32]. The algorithm generates an
initial population, and with an iterative and stochastic method, the search for the best positioned is performed.

The algorithm implemented in thiswork is based on [22]:

(1) Define the parameters of the algorithm.

(2) Initialize the population and the velocities of particles.

(3) Evaluate the fitness and select the best particles.

(4) While the number of generationsis lower than the limit nr, do:
(a) Update the velocity of all particles using (15)
(b) Update the new position of particles using (16)
(c) Find new best solutions

(5) End while.

The velocity of particlesisfound using (15).

Vik+1 =w* Vik + ¢, * rand; * ( pbest; - Xik) +¢p*rand,* (g; — Xik) 1

Where vik*1 is the new velocity of the particle i, w is the factor of inertia of the particle i, ¢; and ¢, are

weights to control the cognitive and social components, and rand; and rand, are uniformly distributed random
numbers between zero and one.

Each particle’ s new position is calculated using the current position and the new velocity, as shown in (16).
XikJrl — Xik + Vik+l (16)

Where xik+1 is the new position of the particlei, ><ik is the previous position of the particle i, and vi"+1 isthe

new velocity calculated with (15).
Several applications for the planning of DG systems have been presented using this algorithm [33-37].
D. Harmony Search

This metaheuristic algorithm is based on a population that mimics the natural behavior of musicians playing
instruments together to achieve a fantastic aesthetic harmony [32]. This algorithm can explore the search space
of a set of data contained in the parallel optimization environment, where every solution (harmony) vector is
generated intelligently by the exploration and exploitation of a search space. Its many features make it a
preferable technique not only as an independent algorithm, but also when combined with other metaheuristic
algorithms.

The steps of the algorithm are defined as follows:
(1) Definetheinitial parameters.
(2) Initiaize the population in the vector HM.
(3) Rank the solutions and select the best positioned with their fitness Fyeg.
(4 Whileiter <iter™
@ Generate new solution Xney
(b) Calculate the fitness for the new solution
(© Update the vector HM
(d) Update the best harmony vector
(e Rank the solutions and select the best positioned with their fitness Fpeq
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(5 Endwhile.

The agorithm is based on the generation of a vector’'s initial population, which is used later to combine
solutions with the current values obtained from simulations. Thisis advantageous, for it allows the generation of
new solutions with the best positioned solutions inside the vector.

E. Water Cycle Algorithm

Similar to other metaheuristic techniques, this algorithm is based on an initial population set. After the initial
evaluation of the population, the best positioned is selected as the sea. Others solutions are ranked as rivers and
streams, continuing with the search by using the direction of the streams following the rivers, and the rivers
following the sea[28].

The steps of the algorithm are presented as follows [28]:
(1) Choosetheinitial parameters Nsr, dmax, Npop, and Max _iter.
(2) Generate arandom initial population.
(3) Formtheinitial raindrops, rivers, and sea[28].
(4) Evauate the cost of raindrops and the intensity of flows for the rivers and the sea [28].
(5) Whileiter <itermax:
(8) Each stream flows to the riversusing (17), and each river flowsto the sea using (18)
(b) Change position if the stream has a better position than the river
() Change position if the river has a better position than the sea
(d) If the evaporation condition is satisfied
e Start theraining process with (20) and (21)
(e) Endif
(f) Update the value of dmax with (19)
(6) Endwhile.

The new positions of streams are calculated using (17), and the position of riversis updated using (18).

k+1 k k k
XSteam = Xaream + 1ANd * C* (Xgiver — Xgream) (17)

Xy = Xfiver +1@NA* C* (X0 — Xfiver) (18)

';T;m is the new position of the stream, Xgream is the current position of the stream, X

new position of the river, X,ﬁiver is the current position of the river, Xk% is the current position of the sea, rand

isauniformly distributed random number and C is a number between 1 and 2.
The distance between the river and the sea, dnay, IS Updated after each iteration, as expressed in (19) [28].

k
dmax

k+1
River

Where X is the

dlt =gk + (19)
max iteration

Theraining process for the streams is conducted randomly using (20) and (21) [28].

Xgw = LB+rand * (UB - LB) (20)

X = Xeem + /1L # randn(l, Ny, ) (22)

Where Xg e, iS the new position of the stream generated randomly, X, is the current position of the sea,

LB is the minimum value of the position, UB is the maximum value of the position, U is a coefficient which
shows the range of searching region near the sea, and randn is anormally distributed random number.

This algorithm is adapted to the problem of location and size of DG in radia distribution systems. The
algorithm is modified to achieve similar conditions for comparison with other algorithms and to accelerate the
search for the best solutions. Changes to the algorithm are proposed to create a similar number of simulations to
compare al agorithms; the condensation process was relocated to evaluate the process for the rivers and
streams continuously. The steps implemented in this paper are presented as follows:

(1) Choosetheinitial parameters Nsr, dmax, Npop, and Max_iter.
(2) Generate arandom initial population.

(3) Formtheinitial raindrops, rivers, and sea[28].

(4) Whileiter <iter™
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(& Fori=1n
Ifiisariver
e |f evaporation of theriver is satisfied
a. Start theraining process with (22) and (23)
o Else
b. Eachriver flowsto the seausing (18)
c. Change position if the river has a better position than the sea
e Endif
End if
Ifi isastream
e If evaporation of the stream is satisfied
d. Start theraining process with (20) and (21)
e Else
e. [Each stream flowsto ariver selected randomly using (17)
f.  Change position if the stream has a better position than the river
e Endif
End if
(b) Endfor
(¢) Reducethe value of dmax with (19)
(d) Rank the solutions and select the best positioned with their fithess Fpeqy
(5) Endwhile.
Theraining process for theriversis conducted randomly using (22) and (23) [28].

XRiwer = LB+rand * (UB—LB) (22)
Xipver = Xega + /1L # randn(L, Ny, ) (23)

Where Xgve, 1Sthe new position of the stream generated randomly, X, isthe current position of the sea, LB

is the minimum value of the position, UB is the maximum value of the position, u is a coefficient which shows
the range of searching region near the sea, and randn is a normally distributed random number.

TEST SYSTEMSAND SIMULATIONS

The proposed method was tested using the 33-node and 69-node radial distribution networks with parameters
found in [33]{35]. General information of both distribution networksis presented in Table .

TABLE . Specification of the Distribution Networks [33]—{35].

Elements 33-node test 69-node test

feeder feeder
Nodes 33 69
Lines 32 68
Slack 1 1

Transformer
S

Loads 32 49

Figure 2 shows the single-line diagram of the 33-node radia distribution network [33], [34]. This case had a
total load of 3715 KW and 2300 kVAr and a total power supply of 3926 KW and 2443 kVAr. Voltage limits
were defined as Vmin = 0.9 p.u. and Vmax = 1.1 p.u.
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e

26 27 28 29 30 31 32 33

Fig. 2. Case 33-noderadial distribution network [33]

Figure 3 shows the 69-node radial distribution network [33], [35]. This distribution network had a total load
of 4014 KW and 2845 kVAr and a total generation of 4265 KW and 2957 kV Ar. Voltage limits were defined as
Vmin = 0.9 p.u. and Vmax = 1.1 p.u.

51 62

1 14 15 6 T 18 19 20 @1 22 23 M 25 27

Fig. 3. Case 69—node radial distribution network [33]

These two radial distribution networks were used to test the BA, PSO, HS, and WCA when installing DG.
Both distribution networks have a slack node that is not used to locate new generation; nevertheless, the rest of
the nodes are possible candidates. The number of combinations increases with the number of nodes, so the case
69-node network is more difficult for finding good solutions.

A. Smulations

To test the agorithms, some case studies considered finding the location and size of five, six, and seven
generators. The greater the number of generators to install, the more difficult it was to solve the problem for the
two distribution networks. The algorithms were tested considering 200 individuals, 500 iterations, and ten
repetitions. The same initial population was generated for all algorithms to evaluate performance starting from
the sameinitia point.

RESULTSAND DISCUSSION

Table Il shows the results obtained from the simulations performed with the PSO, BA, HS, and WCA.
According to the experiment, similar reductions of power losses were found with al algorithms considering the
number of individuals, iterations, and repetitions.

In this table, Case refers to the distribution networks, Gen is the number of generators, Alg is the type of
algorithm used to find the solution, Ptot is the sum of the power installed in the power system, Ploss is the
objective function of power losses, and Pos is the rank of the minimum solution found for each scenario.
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TABLE Ill. Resultsof all agorithms for the 33-node and 69-node radial distribution networks. Source: The authors.

Ptot Ploss
Case Gen Alg Nodes (kW) (kW) Pos
0 - 0 0 2109 -
PSO 14 30 32 24 7| 3396.3 36550 4
BA 14 30 32 24 7| 34423 35.46| 2
HS 6 31 15 24 10| 34526 3549 3
5 WCA 323024 14 7| 34295 3544 1
PSO 6 9 30 32 15 24| 3480.3 3432 2
BA 30 10 25 32 6 16| 3468.9 3440, 3
HS 3225301214 7| 3346.0 35.03| 4
6 WCA 7 30 24 16 11 32| 34529 3421 1
PSO 7101521243032| 34946 3356 3
BA 24 25 16 30 6 11 32| 34884 33.06| 2
HS 72529 14924 32| 36312 339 | 4
33-node| 7 WCA 10 32 16 24 21 6 30| 3708.0 3303 1
- 0 0.0 2650 -
PSO 50 12 61 69 23| 3725.7 3747 4
BA 12 50 61 53 22| 41119 37.38| 3
HS 8 12 61 49 23| 38722 3713 2
5 WCA 61 11 49 25 18| 4072.2 3713 1
PSO 23 67 11 50 65 61| 34414 37.28| 4
BA 61 50 15 64 24 10| 36745 37.04| 2
HS 44 12 8 50 23 61| 3520.2 3711 3
6 WCA 50 25 9 61 17 12| 3695.9 3681 1
PSO 2 27 3850 22 11 61| 3756.3 37.39| 4
BA 211 22 49 57 61 64| 4797.8 3696 2
HS 64 68 11 6 50 61 23| 4068.3 37.14| 3
69-node | 7 WCA 64 17 61 11 8 25 50| 4086.0 3622 1

After running the ten repetitions, the modified WCA found the best solutions for the most cases compared
with the other algorithms. For most of the cases, the BA solutions were good, confirming the results found in
[24]. The HS agorithm found better results for the 69-node radial distribution network, confirming that this
algorithm is good for alarge number of combinations. The PSO had no good performance for the cases analyzed,
but its solutions were close to the best solutions for al the scenarios with the number of repetitions performed in
this study.

For the 33-node radia distribution network, the location of the five generators brought no complications for
the algorithms, with findings of similar reductions in power losses. For six generators, the PSO, BA, and WCA
obtained similar reductions in power losses. For seven generators, the WCA provided the best solutions,
followed by the PSO, BA, and HS.

For the 69-node radial distribution network, the WCA found the best locations for all the cases studied, the
HS and BA provided good solutions, and the PSO obtained the worst solutions. The location of the five
generators brought no complications for the algorithms, with findings of similar reductions in power losses. For
six generators, the WCA obtained the best results, followed by good results from the BA, HS, and PSO. For
seven generators, the WCA provided the best solutions, followed by the BA, HS, and PSO.

Figures 4a and 4b show the solutions of the algorithms for the ten repetitions performed in the 33-node and
69-node radial distribution networks, respectively. In these figures, the fitness is used to compare the algorithms
with the solutions found at each repetition. The solutions in these figures were organized from the minimum to
the maximum value for each algorithm.
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------- PsO BA ----HS WC

Fitness

Number of repetition

PO BA ====HS we

60

Fitness

Mumber of repetition

(b)

Fig. 4. Minimum solutions for all repetitionsin (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network.
Source: The authors

The PSO found better results for the 33-node network than for the 69-node network; some repetitions show
that the solutions found were very high, which creates doubt for finding good solutions for the problem.

The HS found good solutions for a great number of the cases, but the solutions were not always good. The HS
provided good solutions for the 33-node case, but its solutions for the 69-case were higher than the found with
the other algorithms.

Although some of its solutions were higher than the best solutions found, the BA found good results for both
power systems and for al repetitions, confirming it is a good method.

The WCA found the best solutions for the different repetitions in both distribution networks. The results
demonstrate that the results obtained with the WCA were aways the minimum values for all repetitions. This
result provides reassurance that using the modified WCA can find a good solution regardless of the repetitions
of simulations.

Figures 5a and 5b show the convergence of the algorithms for the 33-node and the 69-node radial distribution
networks, respectively. The curves were computed using the mean of the solutions contained in the population
after each iteration. This curve was plotted with the solutions evaluated from the 500 iterations tested in this
work, representing how the popul ation behaves.
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Average fitness for the 33-node radial distribution network

------- PSO — =BA ===-H§ ——WC

Average of Fitness
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= pump B bl P g o e T R e o e e M P e o

Number of [teration

(@

Average fitness for the 69-node radial distribution network
s PSO — =BA  ===-H§ ——WC
210

190

150 E

130 |

110

o0 |f}

Average of Fitness

Number of iteration

(b)

Fig. 5. Convergence of algorithmsin (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network. Source:
The authors

The PSO'’s average solutions were high throughout the iterations, as shown in previous research [24], [27].
The BA quickly reduced the fitness average, but the algorithm got trapped and remained this way for the rest of
the iterations. The HS algorithm needed a large number of iterations to find good solutions, while the WCA
quickly found the best solutions.

Comparing the behavior of these algorithms for the different distribution network cases, al showed similar
results, but the WCA was the fastest algorithm in finding the minimum value. The HS was faster for the 69-node
network compared to the solution found for the 33-node network, reducing the time to find good solutions and
reaching the best solutions found with the WCA, although requiring alarger number of iterations.

Figures 6a and 6b show the minimum fitness solutions found after the ten repetitions tested in the 33-node
and 69-node radial distribution networks, respectively. These figures show the minimum fitness and the
evolution of the best points found throughout al the iterations of the algorithms, for the purpose of locating five
generators in both distribution networks.
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Minimum fitness solution for the 33-node radial distribution network
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Minimum fitness solution for the 69-node radial distribution network
------- PSO — -BA ——HS ——WC
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Fig. 6. Minimum solution found with the algorithms in (a) the 33-node radial distribution network, and (b) the 69-node radial distribution
network. Source: The authors

For both radial distribution networks, the BA and WCA were the best and fastest to find solutions. The PSO
had slower results through all iterations, followed by the HS algorithm. The behavior of the four algorithmsin
finding the best solutions was similar for both cases presented in the figures.

Figures 7a and Fig 7b show the voltage magnitudes of the 33-node and 69-node radial distribution networks,
respectively. The voltage magnitudes with no DGs and for the solutions found are presented in these figures for
the purpose of locating five generators in both distribution networks.
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Voltage magnitude of the 33-node radial distribution network

T s— 0 o —_—WC — - 3
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Voltage magnitudes for the 69-node radial distribution network
------ PSO — -BA = — HS ——WC — - Base
1.06 2 : - =24
1.04
= 1,02
=
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< 0.9
0,94
0.92 \ I
0.9 1
1 3 57 9 111315171921 23252729 3133 3537 394143 4547 49 51 53 55 57 59 61 63 65 67 69
Number of node
(b)
Fig. 7. Voltage magnitudes for (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network. Source: The
authors

The solutions show that DG improves the voltage magnitudes of the nodes in the distribution networks. For
both radial distribution networks, the voltage magnitudes improved with the solutions proposed by each
algorithm, considering the voltage constraints. The WCA and HS found similar improvement of voltage
magnitudes for most nodes of the 33-node radial distribution network, with a difference in nodes 19-25. For the
69-node radial distribution network, the solution of the WCA was different than the other algorithms, showing
more improvement in nodes 51-65.

CONCLUSIONS

PSO, BA, HS, and a modified WCA were used to find the location and size of DG for two distribution
networks. The tests performed in this research showed that the modified WCA obtained the minimum fitness in
most cases after all scenarios and repetitions.

The evaluation of the algorithms’ convergence was conducted with the average of the solutions found in the
population, suggesting that the WCA is a good technique for finding solutions with few iterations and
maintaining the good solutions until the end of the evaluations. The BA showed a good convergence to the best
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solutions, but the solutions were trapped in some local solutions and did not reduce after severa iterations. The
HS showed a slower convergence, but the WCA reached the best solutions for both distribution networks. The
HS was faster with more numbers of nodes for all smulated scenarios. The PSO had some difficulty in
improving the solutions with the number of iterations defined for the experiment.

The repetition tests show that the modified WCA found good results for all scenarios and similar minimum
solutions after all iterations. These results demonstrate that this algorithm could provide the best solutions,
independent of the number of repetitions conducted. Other agorithms such as the BA and HS found good
results for most cases with a slight increase. The PSO provided some good solutions, especially for the smaller
distribution network, but some solutions were high, especially for the larger distribution network.
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