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Abstract—This paper presents a modified water cycle algorithm (WCA) adapted to the problem of 
finding the location and size of distributed generation (DG). Power losses minimization was used as an 
objective function to compare the proposed algorithm with particle swarm optimization (PSO), the bat-
inspired Algorithm (BA), and harmony search (HS). The test scenarios consisted of locating five to seven 
generators with a maximum real and reactive power in the 33-node and 69-node radial distribution 
networks. The experiment was designed to start iterations from the same initial population to identify the 
algorithms’ performance when searching for the best solutions. The results demonstrate that the modified 
WCA found the minimum power losses after locating and sizing distributed generators for most of the 
test scenarios. The algorithm converged quickly to the best solution and the solutions for all repetitions 
tested were close to the best for each case simulated. 

Keywords: bat-inspired algorithm, harmony search, particle swarm optimization, water cycle algorithm, 
power losses, distributed generation, distribution network 

I. INTRODUCTION 

Power losses are a concern for electricity companies, especially when they represent high percentages of the 
total power transfer during the operation of power networks. There are many ways to mitigate power losses, 
such as feeder restructuring [1], distributed generation (DG) placement [2]–[8], capacitor placement [1], [8], and 
network reconfiguration [9], [10]. 

DG is one of the most appropriate methods to minimize power losses due to the installation of generators 
close to the loads. Several techniques have been tested to locate and size DG, but metaheuristics are preferred 
for problems with large numbers of combinations, although the problem of finding a global optimum is 
sometimes an issue.  

Some of the algorithms used to solve this problem are particle swarm optimization (PSO) [11]–[14], the ant 
colony (AC) [15], [16], the evolutionary algorithm (EA) [17]–[19], simulated annealing (SA) [20]–[22], the bat-
inspired algorithm (BA) [23], [24], harmony search (HS) [25], [26]. 

Some convergence problems have been detected when testing difficult DG placement and sizing problems 
[24], [27] because of the distribution network selected, the number of possible nodes, the number of generators 
to locate, and the size of the generators. The number of combinations to solve this problem is high and not easy 
for some algorithms to compute.  

Other concerns are adopting good solutions with the algorithms within the time needed, avoiding local 
solutions in the security of convergence to the global optimum, and finding the best solutions with minimum 
repetitions of the simulations. Improvement of these features could reduce the evaluation time for more difficult 
problems, considering the large number of power flows evaluated to meet all the constraints. 

The water cycle algorithm (WCA) has been proposed to solve several functions [28] and to find better 
solutions converging to the optimum. In this paper, the WCA was modified and adjusted to solve the problem of 
location and size of DG with the objective function of minimizing power losses. The aim of this work is to find 
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an improved algorithm that will solve a combinatorial problem with the possibility to place and size DG with 
consistent results through all iterations and repetitions. 

PROBLEM FORMULATION 

The total real power losses of a distribution network can be represented using (1) [29]. 
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Where Pi is the real power injected to the node i, Qi is the reactive power injected to the node i, Pj is the real 
power injected to the node j, and Qj is the reactive power injected to the node j. The parameters Aij and Bij are 
defined in (2) and (3), respectively. 

ji

jiij
ij VV

R
=A

)cos( δ−δ
          (2) 

ji

jiij
ij VV

R
=B

)sin( δ−δ
          (3) 

Where Rij is the resistance between the nodes i and j, Vi is the voltage magnitude of the node i, δi is the 
voltage angle of the node i, Vj is the voltage magnitude of the node j, and δj is the voltage angle of the node j. 

The best fitness is defined as the minimum power losses of all possible solutions found with the algorithms, 
as expressed in (4). 
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Where Fbest is the best fitness calculated as the minimum power losses obtained when evaluating all solutions 
proposed by the algorithms (i=1…n), PLossi is a vector containing all the solutions of power losses found with the 
power flow, and n represents the maximum number of evaluations contained in the vector. As the vector PLossi is 
updated with new evaluations, Fbest is recalculated. 

This objective function is subject to the real and reactive power balance of the distribution network, as 
expressed in (5) and (6). 
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Where PSlack is the real power supplied from the main source, PDGi is the real power supplied from the DG 
located at node i, PDi is the real power consumed by the load at node i, and PLoss is the total real power of the 
distribution network. QSlack is the reactive power supplied by the main source, QDGi is the reactive power 
supplied by the DG located at node i, QDi is the reactive power consumed by the load at node i, and QLoss is the 
total reactive power of the distribution network. 

Voltage magnitudes of each node i, iV , must comply with the minimum voltage magnitude, 
min

iV , and the 

maximum voltage magnitude, 
max

iV , as expressed in (7). 

maxmin
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The real and reactive power supplied by the DG is limited to the minimum and maximum values, as defined 
in (8) and (9). 
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min
DGi PPP ≤≤           (8) 
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Where, DGiP  is the real power of generators located at node i, min
DGiP  is the minimum real power of generators 

located at node i, and max
DGiP  is the maximum real power of generators located at node i. DGiQ  is the reactive 
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power of generators located at node i, min
DGiQ  is the minimum reactive power of generators located at node i, and 

max
DGiQ  is the maximum reactive power of generators located at node i. 

Finally, the current circulating through the branches of the distribution network must be limited to the 
maximum current accepted, as shown in (10) and (11). 

max
ijij ii ≤            (10) 

max
jiji ii ≤            (11) 

Where iij is the current of the branch circulating from node i to node j, and iji is the current of the branch 
circulating from node j to node i. max

iji is the maximum current of the branch circulating from node i to node j, 

and max
jii  is the maximum current of the branch circulating from node j to node i. 

ALGORITHMS 

A. Codification for the search 
Figure 1 shows the codification of the problem for locating and sizing DG. The vector is formed by the 

elements that represent the DG’s real power, reactive power, and position. 

x1 y1 z1 x2 y2 z2 … xd yd zd … xnd ynd znd 

Fig. 1. Problem codification for location and size of distributed generators 

Where x, y, and z represent the real power supplied, the reactive power supplied, and the number of the node 
where the generator is located, respectively. The number of generators is represented by nd. 
B. Bat-inspired Algorithm 

This algorithm is based on the echolocation of bats during the search for a prey [30]. An initial population is 
defined, and the frequency and velocity is used to move all bats. Random flies help to find new solutions in the 
searching region.  

The steps of this algorithm are as follows: 
(1) Define the frequency fi using (12), the pulse rate ri, and the loudness Ai. 
(2) Initialize the population and the velocities of the bats. 
(3) Evaluate the fitness and select the best. 
(4) Use the fitness vector to rank the solutions as Fbest. 
(5) While iter < itermax: 

(a) With the frequency defined in (12) and the velocities defined in (13), find the new solutions of 
xnew using (14) 

(b) If rand > ri 
• Create a new solution close to the best 

(c) End if 
(d) Use random flies of bats to create new solutions 
(e) Find the new fitness Fnew (xnew) 
(f) if (Fnew < Fbest and rand < Ai) 

• Update the solution 
(g) End if 
(h) Increase ri and reduce Ai 
(i) Rank the solutions and update the best fitness Fbest 

(6)  End while 
The frequency fi can be calculated using (12), and the velocity is defined using (13) [31]. 
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Where fmax is the maximum frequency, fmin is the minimum frequency, and β is a random number to generate 
different frequencies. k

iv  is the velocity of the bat i at the iteration k, 1−k
iv  is the velocity of the bat i at the 

iteration k-1, k
ix  is the position of the bat i at the iteration k, and xbest is the best position of the bats. 

The new position of the particle, k
ix , is updated after adding the new velocity, k

iv , to the previous position 
1−k

ix , as shown in (14). 

k
i

k
i

k
i vxx += −1            (14) 

This algorithm converges to the solutions found quickly and obtains good results in a few iterations [23], [24]. 
C. Particle Swarm Optimization 

This metaheuristic is based on the social behavior of birds during flight [32]. The algorithm generates an 
initial population, and with an iterative and stochastic method, the search for the best positioned is performed. 

The algorithm implemented in this work is based on [22]: 
(1) Define the parameters of the algorithm. 
(2) Initialize the population and the velocities of particles. 
(3) Evaluate the fitness and select the best particles. 
(4) While the number of generations is lower than the limit nr, do: 

(a) Update the velocity of all particles using (15) 
(b) Update the new position of particles using (16) 
(c) Find new best solutions 

(5) End while. 
The velocity of particles is found using (15). 
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Where 1+k
iv  is the new velocity of the particle i, w is the factor of inertia of the particle i, φ1 and φ2 are 

weights to control the cognitive and social components, and rand1 and rand2 are uniformly distributed random 
numbers between zero and one. 

Each particle’s new position is calculated using the current position and the new velocity, as shown in (16). 
11 ++ += k

i
k
i

k
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Where 1+k
ix  is the new position of the particle i, k

ix  is the previous position of the particle i, and 1+k
iv  is the 

new velocity calculated with (15). 
Several applications for the planning of DG systems have been presented using this algorithm [33-37]. 

D. Harmony Search  
This metaheuristic algorithm is based on a population that mimics the natural behavior of musicians playing 

instruments together to achieve a fantastic aesthetic harmony [32]. This algorithm can explore the search space 
of a set of data contained in the parallel optimization environment, where every solution (harmony) vector is 
generated intelligently by the exploration and exploitation of a search space. Its many features make it a 
preferable technique not only as an independent algorithm, but also when combined with other metaheuristic 
algorithms.  

The steps of the algorithm are defined as follows: 
(1) Define the initial parameters. 
(2) Initialize the population in the vector HM. 
(3) Rank the solutions and select the best positioned with their fitness Fbest. 
(4) While iter < itermax: 

(a) Generate new solution xnew  
(b) Calculate the fitness for the new solution 
(c) Update the vector HM 
(d) Update the best harmony vector 
(e) Rank the solutions and select the best positioned with their fitness Fbest 
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(5) End while. 
The algorithm is based on the generation of a vector’s initial population, which is used later to combine 

solutions with the current values obtained from simulations. This is advantageous, for it allows the generation of 
new solutions with the best positioned solutions inside the vector. 
E. Water Cycle Algorithm  

Similar to other metaheuristic techniques, this algorithm is based on an initial population set. After the initial 
evaluation of the population, the best positioned is selected as the sea. Others solutions are ranked as rivers and 
streams, continuing with the search by using the direction of the streams following the rivers, and the rivers 
following the sea [28].  

The steps of the algorithm are presented as follows [28]: 
(1) Choose the initial parameters Nsr, dmax, Npop, and Max_iter. 
(2) Generate a random initial population. 
(3) Form the initial raindrops, rivers, and sea [28]. 
(4) Evaluate the cost of raindrops and the intensity of flows for the rivers and the sea [28]. 
(5) While iter < itermax: 

(a) Each stream flows to the rivers using (17), and each river flows to the sea using (18) 
(b) Change position if the stream has a better position than the river 
(c) Change position if the river has a better position than the sea 
(d) If the evaporation condition is satisfied 

• Start the raining process with (20) and (21) 
(e) End if 
(f) Update the value of dmax with (19) 

(6) End while. 
The new positions of streams are calculated using (17), and the position of rivers is updated using (18). 
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Where 1+k
Streamx  is the new position of the stream, k

Streamx  is the current position of the stream, 1+k
Riverx  is the 

new position of the river, k
Riverx  is the current position of the river, k

Seax is the current position of the sea, rand 
is a uniformly distributed random number and C is a number between 1 and 2. 

The distance between the river and the sea, dmax, is updated after each iteration, as expressed in (19) [28]. 
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The raining process for the streams is conducted randomly using (20) and (21) [28]. 
)(* LBUBrandLBxnew

Stream −+=          (20) 

),1( VarSea
new
Stream Nrandnxx ∗μ+=         (21) 

Where new
Streamx  is the new position of the stream generated randomly, Seax is the current position of the sea, 

LB is the minimum value of the position, UB is the maximum value of the position, µ is a coefficient which 
shows the range of searching region near the sea, and randn is a normally distributed random number. 

This algorithm is adapted to the problem of location and size of DG in radial distribution systems. The 
algorithm is modified to achieve similar conditions for comparison with other algorithms and to accelerate the 
search for the best solutions. Changes to the algorithm are proposed to create a similar number of simulations to 
compare all algorithms; the condensation process was relocated to evaluate the process for the rivers and 
streams continuously. The steps implemented in this paper are presented as follows: 

(1) Choose the initial parameters Nsr, dmax, Npop, and Max_iter. 
(2) Generate a random initial population. 
(3) Form the initial raindrops, rivers, and sea [28]. 
(4) While iter < itermax: 
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(a) For i=1:n 
If i is a river 

• If evaporation of the river is satisfied 
a. Start the raining process with (22) and (23) 

• Else 
b. Each river flows to the sea using (18) 
c. Change position if the river has a better position than the sea 

• End if 
End if 
If i is a stream 

• If evaporation of the stream is satisfied 
d. Start the raining process with (20) and (21) 

• Else 
e. Each stream flows to a river selected randomly using (17) 
f. Change position if the stream has a better position than the river 

• End if 
End if 

(b) End for 
(c) Reduce the value of dmax with (19) 
(d) Rank the solutions and select the best positioned with their fitness Fbest 

(5) End while. 
The raining process for the rivers is conducted randomly using (22) and (23) [28]. 

)(* LBUBrandLBxnew
River −+=         (22) 

),1( Varsea
new
River Nrandnxx ∗μ+=         (23) 

Where new
Riverx  is the new position of the stream generated randomly, Seax is the current position of the sea, LB 

is the minimum value of the position, UB is the maximum value of the position, µ is a coefficient which shows 
the range of searching region near the sea, and randn is a normally distributed random number. 

TEST SYSTEMS AND SIMULATIONS 

The proposed method was tested using the 33-node and 69-node radial distribution networks with parameters 
found in [33]–[35]. General information of both distribution networks is presented in Table I. 

TABLE I.  Specification of the Distribution Networks [33]–[35]. 

Elements 33-node test 
feeder 

69-node test 
feeder 

Nodes 33 69 
Lines 32 68 
Slack 1 1 

Transformer
s 

0 0 

Loads 32 49 

Figure 2 shows the single-line diagram of the 33-node radial distribution network [33], [34]. This case had a 
total load of 3715 KW and 2300 kVAr and a total power supply of 3926 KW and 2443 kVAr. Voltage limits 
were defined as Vmin = 0.9 p.u. and Vmax = 1.1 p.u. 
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Fig. 2. Case 33-node radial distribution network [33] 

Figure 3 shows the 69-node radial distribution network [33], [35]. This distribution network had a total load 
of 4014 KW and 2845 kVAr and a total generation of 4265 KW and 2957 kVAr. Voltage limits were defined as 
Vmin = 0.9 p.u. and Vmax = 1.1 p.u. 

 
Fig. 3. Case 69–node radial distribution network [33] 

These two radial distribution networks were used to test the BA, PSO, HS, and WCA when installing DG. 
Both distribution networks have a slack node that is not used to locate new generation; nevertheless, the rest of 
the nodes are possible candidates. The number of combinations increases with the number of nodes, so the case 
69-node network is more difficult for finding good solutions. 
A. Simulations 

To test the algorithms, some case studies considered finding the location and size of five, six, and seven 
generators. The greater the number of generators to install, the more difficult it was to solve the problem for the 
two distribution networks. The algorithms were tested considering 200 individuals, 500 iterations, and ten 
repetitions. The same initial population was generated for all algorithms to evaluate performance starting from 
the same initial point. 

RESULTS AND DISCUSSION 

Table II shows the results obtained from the simulations performed with the PSO, BA, HS, and WCA. 
According to the experiment, similar reductions of power losses were found with all algorithms considering the 
number of individuals, iterations, and repetitions. 

In this table, Case refers to the distribution networks, Gen is the number of generators, Alg is the type of 
algorithm used to find the solution, Ptot is the sum of the power installed in the power system, Ploss is the 
objective function of power losses, and Pos is the rank of the minimum solution found for each scenario. 
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TABLE III.  Results of all algorithms for the 33-node and 69-node radial distribution networks. Source: The authors. 

Case Gen Alg Nodes 
Ptot 
(kW) 

Ploss  
(kW) Pos 

33-node 

0 - 0 0 210.9 - 

5 

PSO 14  30  32  24  7  3396.3 35.50 4 
BA 14  30  32  24  7  3442.3 35.46 2 
HS 6  31  15  24  10  3452.6 35.49 3 
WCA 32  30  24  14  7  3429.5 35.44 1 

6 

PSO 6  9  30  32  15  24  3480.3 34.32 2 
BA 30  10  25  32  6  16  3468.9 34.40 3 
HS 32  25  30  12  14  7  3346.0 35.03 4 
WCA 7  30  24  16  11  32  3452.9 34.21 1 

7 

PSO 7 10 15 21 24 30 32 3494.6 33.56 3 
BA 24  25  16  30  6  11  32  3488.4 33.06 2 
HS 7  25  29  14  9  24  32  3631.2 33.96 4 
WCA 10  32  16  24  21  6  30  3708.0 33.03 1 

69-node 

0 - 0 0.0 265.0 - 

5 

PSO 50  12  61  69  23  3725.7 37.47 4 
BA 12  50  61  53  22  4111.9 37.38 3 
HS 8  12  61  49  23  3872.2 37.13 2 
WCA 61  11  49  25  18  4072.2 37.13 1 

6 

PSO 23  67  11  50  65  61  3441.4 37.28 4 
BA 61  50  15  64  24  10  3674.5 37.04 2 
HS 44  12  8  50  23  61  3520.2 37.11 3 
WCA 50  25  9  61  17  12  3695.9 36.81 1 

7 

PSO 2  27  38  50  22  11  61  3756.3 37.39 4 
BA 2  11  22  49  57  61  64 4797.8 36.96 2 
HS 64  68  11  6  50  61  23  4068.3 37.14 3 
WCA 64  17  61  11  8  25  50  4086.0 36.22 1 

After running the ten repetitions, the modified WCA found the best solutions for the most cases compared 
with the other algorithms. For most of the cases, the BA solutions were good, confirming the results found in 
[24]. The HS algorithm found better results for the 69-node radial distribution network, confirming that this 
algorithm is good for a large number of combinations. The PSO had no good performance for the cases analyzed, 
but its solutions were close to the best solutions for all the scenarios with the number of repetitions performed in 
this study. 

For the 33-node radial distribution network, the location of the five generators brought no complications for 
the algorithms, with findings of similar reductions in power losses. For six generators, the PSO, BA, and WCA 
obtained similar reductions in power losses. For seven generators, the WCA provided the best solutions, 
followed by the PSO, BA, and HS.  

For the 69-node radial distribution network, the WCA found the best locations for all the cases studied, the 
HS and BA provided good solutions, and the PSO obtained the worst solutions. The location of the five 
generators brought no complications for the algorithms, with findings of similar reductions in power losses. For 
six generators, the WCA obtained the best results, followed by good results from the BA, HS, and PSO. For 
seven generators, the WCA provided the best solutions, followed by the BA, HS, and PSO. 

Figures 4a and 4b show the solutions of the algorithms for the ten repetitions performed in the 33-node and 
69-node radial distribution networks, respectively. In these figures, the fitness is used to compare the algorithms 
with the solutions found at each repetition. The solutions in these figures were organized from the minimum to 
the maximum value for each algorithm. 
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(a) 

 
(b) 

Fig. 4. Minimum solutions for all repetitions in (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network. 
Source: The authors 

The PSO found better results for the 33-node network than for the 69-node network; some repetitions show 
that the solutions found were very high, which creates doubt for finding good solutions for the problem.  

The HS found good solutions for a great number of the cases, but the solutions were not always good. The HS 
provided good solutions for the 33-node case, but its solutions for the 69-case were higher than the found with 
the other algorithms. 

Although some of its solutions were higher than the best solutions found, the BA found good results for both 
power systems and for all repetitions, confirming it is a good method. 

The WCA found the best solutions for the different repetitions in both distribution networks. The results 
demonstrate that the results obtained with the WCA were always the minimum values for all repetitions. This 
result provides reassurance that using the modified WCA can find a good solution regardless of the repetitions 
of simulations. 

Figures 5a and 5b show the convergence of the algorithms for the 33-node and the 69-node radial distribution 
networks, respectively. The curves were computed using the mean of the solutions contained in the population 
after each iteration. This curve was plotted with the solutions evaluated from the 500 iterations tested in this 
work, representing how the population behaves. 
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(a) 

 
(b) 

Fig. 5. Convergence of algorithms in (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network. Source: 
The authors 

The PSO’s average solutions were high throughout the iterations, as shown in previous research [24], [27]. 
The BA quickly reduced the fitness average, but the algorithm got trapped and remained this way for the rest of 
the iterations. The HS algorithm needed a large number of iterations to find good solutions, while the WCA 
quickly found the best solutions.  

Comparing the behavior of these algorithms for the different distribution network cases, all showed similar 
results, but the WCA was the fastest algorithm in finding the minimum value. The HS was faster for the 69-node 
network compared to the solution found for the 33-node network, reducing the time to find good solutions and 
reaching the best solutions found with the WCA, although requiring a larger number of iterations. 

Figures 6a and 6b show the minimum fitness solutions found after the ten repetitions tested in the 33-node 
and 69-node radial distribution networks, respectively. These figures show the minimum fitness and the 
evolution of the best points found throughout all the iterations of the algorithms, for the purpose of locating five 
generators in both distribution networks. 
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(a) 

 
(b) 

Fig. 6. Minimum solution found with the algorithms in (a) the 33-node radial distribution network, and (b) the 69-node radial distribution 
network. Source: The authors 

For both radial distribution networks, the BA and WCA were the best and fastest to find solutions. The PSO 
had slower results through all iterations, followed by the HS algorithm. The behavior of the four algorithms in 
finding the best solutions was similar for both cases presented in the figures. 

Figures 7a and Fig 7b show the voltage magnitudes of the 33-node and 69-node radial distribution networks, 
respectively. The voltage magnitudes with no DGs and for the solutions found are presented in these figures for 
the purpose of locating five generators in both distribution networks. 
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(a) 

 
(b) 

Fig. 7. Voltage magnitudes for (a) the 33-node radial distribution network, and (b) the 69-node radial distribution network. Source: The 
authors 

The solutions show that DG improves the voltage magnitudes of the nodes in the distribution networks. For 
both radial distribution networks, the voltage magnitudes improved with the solutions proposed by each 
algorithm, considering the voltage constraints. The WCA and HS found similar improvement of voltage 
magnitudes for most nodes of the 33-node radial distribution network, with a difference in nodes 19–25. For the 
69-node radial distribution network, the solution of the WCA was different than the other algorithms, showing 
more improvement in nodes 51–65.  

CONCLUSIONS 

PSO, BA, HS, and a modified WCA were used to find the location and size of DG for two distribution 
networks. The tests performed in this research showed that the modified WCA obtained the minimum fitness in 
most cases after all scenarios and repetitions. 

The evaluation of the algorithms’ convergence was conducted with the average of the solutions found in the 
population, suggesting that the WCA is a good technique for finding solutions with few iterations and 
maintaining the good solutions until the end of the evaluations. The BA showed a good convergence to the best 
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solutions, but the solutions were trapped in some local solutions and did not reduce after several iterations. The 
HS showed a slower convergence, but the WCA reached the best solutions for both distribution networks. The 
HS was faster with more numbers of nodes for all simulated scenarios. The PSO had some difficulty in 
improving the solutions with the number of iterations defined for the experiment. 

The repetition tests show that the modified WCA found good results for all scenarios and similar minimum 
solutions after all iterations. These results demonstrate that this algorithm could provide the best solutions, 
independent of the number of repetitions conducted. Other algorithms such as the BA and HS found good 
results for most cases with a slight increase. The PSO provided some good solutions, especially for the smaller 
distribution network, but some solutions were high, especially for the larger distribution network.  
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