
Proactive Exploratory Testing Methodology
During Enterprise Application

Modernization
Ravikumar Ramadoss#1, N.M.Elango#2

#1 Research Scholar, Sathyabama University, Jeppiar Nagar, 600119, India,
ravikumar_rrk@hotmail.com

#2 Dept. Of Computer Applications, R.M.K Engineering College, Kavaraipettai, 601206, India,
hod.mca@rmkec.ac.in

Abstract— Traditional web applications are getting modernized to meet the expectations of customer
demands. Various features like channels, infrastructure enhancements, cloud and big data adoptions,
business analytics are getting implemented. This leads to complexity of the target application and also
leads to difficulty in meeting the desired SLA. A tester can proactively identify issues by performing
exploratory testing. This will act as proactive approach to simulate the performance testing during coding
stage itself. In this paper, we use such an exploratory testing approach to test the enterprise modernized
web application. We find out that the proposed approach is effective in bringing out major potential
bottlenecks and predict how the SLA will get impacted during the simulation process.

Keyword-Enterprise Modernization, Dynamic Spike, Exploratory Testing, Proactive Performance
Engineering

I. INTRODUCTION

Enterprise modernized application has a stringent SLA definitions. As the complexities in terms of the
characteristics are extended to meet the expectations of the customer, meeting the desired SLA is must for
enterprise. In this paper we propose a framework for exploratory testing by following a dynamic spike injection
pattern. This approach has various advantages:

Traditionally application will get functional verification and if any performance issues are getting reported,
then those transactions will undergo reactive engineering to tune it well or proactive performance engineering
gets followed to verify the transaction performance, but even the proactive approach also done after the coding
and functional verification. On the other hand, the proposed approach validates the performance of the
application even during the development mode to pin-point any major performance issues. In this paper

We are discussing a testing strategy where proactive benchmark analysis on the functionally verified code to
report any transaction analysis.

We discuss the proposed exploratory testing approach to proactively validate the performance of the
transaction during the coding life cycle itself.

We also perform dynamic spike injection approach to identify the issues which impacts the performance SLA.
To conclude, we discuss the simulation experiments we have conducted to test the sample enterprise
modernized web application to proactively discover issues. The rest of the paper is organized as follows:

Concepts involved in exploratory testing strategy are introduced in section II. Section III discuss the related
work happened in this area. In section IV we discuss about the proposed exploratory testing approach, its
architecture models along with challenges and technology stack used to implement the modernized application.
In section V we discuss about the experiments and how we identified the issues happening inside the
transactions which are not meeting the desired SLA. Section VI discuss about the performance testing we
conducted to validate the approach. Finally we discuss about the conclusion and future work.

II. CONCEPTS INOVLVED IN PROACTIVE EXPLORATION TESTING STRATEGY

In order to successfully modernize enterprise applications, it is necessary to test and validate the performance
aspect of the target application. Before discussing about the proposed approach lets discuss first the important
aspects which are used in this paper.
A. Exploratory Testing

Tester applies innovative approach by applying his creativity to generate test cases. It is part of the black box
testing approach. These testing approaches can be applied in any stage of the development process. The key is to
explore non captured test cases to enhance the quality of the solution getting implemented.

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 673

B. Dynamic Spike Injection

Code can be non-intrusively appended into the existing functionally stabilized code to test the dynamic
behaviour of the application. Spikes can be created which are virtual in nature, which also has an impact on
major necessary attributes contributes to the performance SLA.In traditional approach if there is an issue the
performance tuning of the application can be done via reactive approach, or proactively conduct performance
test and tune the code which impacts the transaction functionality [9]. In proposed exploratory approach testers
can simulate the performance behaviour of the application by doing the following dynamic spike injections
which will cause major impact on the session, memory, and heap and thread locks and response time delay. The
key thing to observe here is the performance tuning will happen parallel along with the actual code generation.
C. Session Spike

Enterprise web application keep navigation and user even information in multiple data structures and get
pushed to the HTTP session. Session spike intrudes into the existing code and increase the session size as per
the session scope defined in the code flow. This will substantially increase the memory foot print per page.
D. Memory Spike

To introduce force memory leaks into the code which impacts the SLA of the transaction and also to impact
the garbage collection process of the well performing JVM.
E. Heap and Thread Locks

Increase the heap memory by introducing the force cache to disturb the heap settings. Programmatically hold
the thread lock and cause thread dead locks to forcefully impact the execution of the transaction.
F. Response Time Delay

Based on the above spike injections and also the thread contention issues which makes the execution of the
transaction to sleep state and later get recovered based on the defined timelines to cause impact on the SLA of
the performing transaction.
G. Aspect Oriented

Non-Intrusive code changes get applied into the existing code base via aspect oriented programming (AOP).
Using AOP we will dynamically define the point cut expressions (aop: pointcut) for the respective aop: aspect.
The aop aspects get injected into the code base on aop: before and aop: after entries.

III. RELATED WORK

During enterprise web application modernization, proactive performance engineering along with functional
testing is the generic practices for studying the performance SLA of the target application. Traditional testing
methodologies leverage white box code analysis tools such as CAST [17] which scan through the entire code
base and provide detailed report on various metrics. The performance testing tools like IBM Rational
Performance Tester or Web Performance Suite or Apache JMeter [18] perform different load tests and also help
in getting the benchmark analysis report.

 Software fault injection uses different techniques to inject faults into the system. For instance Xception
[7] uses registers on the hardware and enable debugging. Ferrari [5] uses dynamic injection capabilities and
corrupt messages to inject faults were also done [6]. Both these techniques can be combined together. The other
injection techniques such as NFTAPE [4] allows inversion causes, delays, and other spike related techniques to
demonstrate the injection capabilities. Orchestra [11] has the probing technique along with software
implemented fault injector (SWIFI) has more complex models for session, memory and process crashes as
explained in the image application.

 We want to achieve the exploratory testing as non-intrusive without impacting the enterprise
modernization characteristics along with validating the SLA of the modernized application [8]. We also avoided
having any dependency with third party libraries and hence made it license friendly to test it on all different
applications. Aspect oriented programming as a concept is generic in nature and the same can be applied to any
format of application. It can be plugged into any existing application without changing the code base.

IV. PROPOSED EXPLORATORY TESTING APPROACH

In order to efficiently validate the approach on the enterprise modernized application, it requires unique and
efficient strategy in phased manner. The application taken for the proposed approach plays a very crucial role in
performing the exploratory testing. The following section will discuss about the modernized application, and the
phase wise approach.

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 674

A. Architecture Models in Enterprise Modernized Application

The enterprise web application is based on J2EE tech stacks, which has the logical layers as action,
application, data access, web service consumption respectively [1], [10]. In our approach we have chosen three
models as defined in Fig. 1. This model has the flexibility to test the strategy on with in network, end point calls
which are outside of the network and also high availability testing during the process crashes.

Fig. 1. Enterprise Modernized Application Architecture Models

SOA mode: Here the application is implemented in logical layers but with external and internal interfaces
integration via rest/SOAP based API calls. This model is needed to simulate the external interfaces integration.

P2P Mode: Here the application is implemented in logical layers and the interactions are within the network
and also the database interactions are happening within the same network. It is purposely made as one instance
based application.

High availability mode: Here the application is deployed in cluster environment to simulate the session,
memory heap and thread related spikes. This environment is also needed to simulate different workload
configurations.
B. Challenges and Major Enterprise Modernization Characteristics

Here we are discussing about the major modernization characteristics of the enterprise modernized web
application. These aspects are crucial in making the application to meet the expected customer demands.

1) Channels: Traditionally modernized application gets accessed from web browsers, and after the
modernized characteristics it needs to be accessed from multiple sources like channels, ivr, sms, text, mobile
and other smart devices [14].

2) Context aware filtering: As the characteristics are getting extended, the application generates huge volume
and variety of data. Hence only the relevance data have to be filtered out to get persisted in to the NOSQL
database.

3) Preservation of existing business knowledge: Preservation of existing business knowledge: SME team
who aware of the traditional application business as well as technical knowledge is limited and hence preserving
the existing functional knowledge via various log analysis, SME interviews have to happen.

4) Hybrid cloud adoption: Traditional applications are getting deployed as in house data center and on
premise and the scalability are mostly by doing horizontal or vertical capacity related scaling. On-demand
scalability needs to be added to the target application by keeping the privacy and security concerns intact. The
hybrid cloud adoption provides those capabilities to application [3], [6], [12].

5) Insight modelling: Traditional application does only ad-hoc business reporting, this needs to be extended
to have dynamic unstructured business insight modelling to yield desired results from the volume and variety of
data getting generated [2].

6) Technology adoptions: Traditional application has Service oriented architecture (SOA) but it’s not enough
to withstand the external interfaces and other integration needs. It has to be modernized with SOA suites to
enhance the capability [13].

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 675

C. Phase Wise Approach

In order to efficiently validate our approach the testing process has to be defined in multiple phases. The
major purpose of dividing the approach into multiple phases is to:

• Identify the complexity of various transactions involved with in the application.
• Filter out which transaction is more critical to analysis.
• Identify the enterprise modernization characteristics to simulate the dynamic spike injections.
• Identify different ways to cause error or halt in the code execution flows.

The various phases in exploratory testing are:
Phase 1: Collection of existing transaction characteristics along with SME defined SLA numbers.
Phase 2: Perform functional testing.
Phase 3: Perform benchmark analysis by simulating the stabilized functional tested application whether it is

performing it needs.
Phase 4: If the benchmark analysis SLA numbers for any of the transaction is not meeting the desired SLA,

perform proactive performance engineering [15] based code analysis to fix the issue. Then proceed to phase 5.
Phase 5: In order to validate the system during spike load in presence of various faults [11], the following is

the approach:
• Perform the same benchmark analysis by applying same workload patterns.
• During transaction execution, inject various faults which can cause dynamic spike into the system.
• Monitor various metrics like memory, session, JVM process, heap and threads and also analyze

system logs for any major severity issues getting reported.
• Perform functional testing to check the system behaviour.
• Identify the issues where functionality is broken and also perform performance engineering steps.

V. EXPLORATORY TESTING EXPERIMENTS

In this section, we are exploring various exploratory test cases and scenarios. For each scenarios we will
present the existing scenario, exploratory scenario, non-intrusive changes to the codebase, outcome observation,
the impact on the performance and also the code changes for before and after exploratory changes.
A. Test Scenario 1 : Session Spike

The strategy is to increase the session usage for the particular scenario and observe the impact the session
creates. The session might have the impact on the other navigations as the scope of the session varies between
the flows. The observation has to be extended to all the previous and next flows.

 The various test exploratory testing scenarios are explained in Table I.
TABLE I

Session Spike Scenario

Session Spike Description

Existing Scenario Moderate amount of Session storage
Exploratory Scenario Increase the session storage with change in the session

identifier per scope of the page
Non-intrusive change The session identifier api is non-intrusively plugged in to

store the same session object with different dynamically
generated identifiers in incremental pattern

Observation The subsequent navigational flows get disturbed as the
session parameters are getting retrieved in that flow

Performance impact The page response time is increased from the benchmark
data. The resources getting loaded on to the page was also
got delayed

The dynamic expressions gets executed at runtime and the aop listeners gets triggered to apply the required
logic based on the test configurations. The implementation gets executed only when the classpath expressions
are getting matched with the aop: pointcut expressions. The original state of the code and the aop expressions of
session spike simulation and the actual implementation of the same are shown in Table II.

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 676

TABLE II
Non-Intrusive Code for Session Spike Simulation

Existing Code Non-Intrusive aop definition Generic Session Spike
Code

Public void
getInvoiceData()
{
 If(null!=session
){

 InvoiceSearchV
O searchVO =
buildInvoiceSearchVO();
InvoiceDataVO
invoiceDataVO =
service.getInvoiceData(i
nvoiceSearchVO);

 session.put(“inv
oiceData”,
invoiceDataVO);
 }
}

<aop: pointcut
id="servicePointcut"
expression="execution (*
com.webmod.sessionsimulation..
.(..))"/>

<aop:aspect
id="sessionServiceAspect"
ref="sessionSimulation">
 <aop:before
method="sessionEntry" pointcut-
ref="servicePointcut"/>
 <aop:after-returning
method="sessionExit"
returning="result" pointcut-
ref="servicePointcut"/>
 <aop:after-throwing
pointcut-ref="servicePointcut"
throwing="exception"
method="sessionAfterThrowing"/
>
 </aop:aspect>

<bean id="sessionSpike"
class="com.webmod.sessionsimul
ation.SessionSpike"/>

public void
sessionEntry(JoinPoint
joinPoint) {
 Object[] args =
joinPoint.getArgs();
 String name =
joinPoint.getSignature().to
LongString();
 StringBuffer sb = new
StringBuffer(name + "
called with: [");
 log.debug("Inside
Method entry");
 InoviceData invoiceData
= args[0];
 for(int
simulationSize=0;simulatio
nSize<=100;simulationSiz
e++){
 String uniqueSessionId
= getUniqueId();

session.put(uniqueSessionI
d,inoviceData);

}

 }

B. Test Scenario 2 : Heap and Thread Locks

The strategy is to increase the heap size usage when the transaction is in execution and parallel apply forceful
thread lock to cause un-expected delay into the system. The observed expectation needs well placed monitoring
strategy cut-across application container, its internal JVM processes [15], [16]. The various test exploratory
testing scenarios are explained in Table III.

TABLE III
Heap and Thread Locks Scenario

Heap and Thread Lock Description

Existing Scenario Moderate amount of heap usage and no
thread lock reported

Exploratory Scenario To increase in amount of heap usage and
introduce thread locks dynamically

Non-intrusive change Memory leak and thread lock api are
dynamically introduced during the
execution of the transaction.

Observation Sudden spike in the memory foot print
and hung threads getting reported and also
severity warning in the system

Performance impact Concurrent requests to the transaction
have to wait for the current hanging thread
to finish and also the heap memory
extends the garbage cycle process.

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 677

The original state of the code before heap and thread locks and the aop expressions for lock and thread
simulations and the actual implementation of the aop expression are shown in Table IV.

TABLE IV
Non-Intrusive Code for Heap and Thread Locks Simulation

Existing Code Non-Intrusive AOP definition Generic Heap and Thread lock
AOP Code

Public void
rateCalculation()
 {

 RateVO
rateVO =
service.performRateC
alculation();

 applyRateRu
les(rateVO);
}

<aop: pointcut
id="servicePointcut"
expression="execution (*
com.webmod.heapThreadsimulati
on..*.*(..))"/>

<aop:aspect
id="sessionServiceAspect"
ref="heapThreadSimulation">
 <aop:before
method="heapThreadEntry"
pointcut-ref="servicePointcut"/>
 <aop:after-returning
method="heapThreadExit"
returning="result" pointcut-
ref="servicePointcut"/>
 <aop:after-throwing
pointcut-ref="servicePointcut"
throwing="exception"
method="heapThreadAfterThrowi
ng"/>
 </aop:aspect>

<bean id="heapThreadLock"
class="com.webmod.sessionsimul
ation.HeapThreadLock"/>

public void sessionEntry(JoinPoint
joinPoint) {
 Object[] args =
joinPoint.getArgs();
 String name =
joinPoint.getSignature().toLongStrin
g();
 StringBuffer sb = new
StringBuffer(name + " called with:
[");
 log.debug("Inside Method entry");
 InoviceData invoiceData =
args[0];

Thread t = getCurrentThread();
t.lock();
performHeapOperation();
if(threadLockReleased(t))
{
RateVO rateVO =
service.performRateCalculation();
applyRateRules(rateVO);
}
}

C. Test Scenario 3 : Enterprise Application Characteristics Crash Testing

The strategy is to dynamically crash the database instances by leveraging the process signals. The observation
is done at the application container level and also the data integrity check conducted at the database level. The
observation predicts the data integrity issue to be taken care by the application team in their implementation
scenarios. The various test exploratory testing scenarios are explained in Table V.

TABLE V
Enterprise Application Characteristics Crash Simulation

Enterprise Application
Characteristics Crash

Description

Existing Scenario All database instances are up and running properly.
Exploratory Scenario Dynamically crash and kill the database instance to record

the impact
Non-intrusive change Dynamically crash and kill the database from the operating

system process.
Observation The application stability was not implemented properly and

also the data integrity related issues are also recorded.
Performance impact The application was not able to respond immediately as

there is a down in most of the enterprise modernization
characteristics

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 678

Identification of the database instance process id and send the dynamic crash signal by issuing the following
command. Identify the appropriate process id from the environment where the instance gets deployed and issue
the following command to crash the instance without sending any notification signals to the applications where
it is connected to. Triggers are also placed in the database environment to capture the data integrity related data
swaps happened at the table space.

kill -9 $(ps aux | grep EnterpriseWebMod | grep -v grep | awk ‘{print} ‘)
VI. PERFORMANCE VALIDATION OF THE PROPOSED APPROACH

The goal is to validate the proposed exploratory testing approach. In order to validate the same, we have
considered the same transaction characteristics which we have identified for tester based model for the
performance simulation. As the proposed approach is non-intrusive in nature, we were able to apply the
exploratory methodology without impacting the execution cycle of the transaction. The major objective is to
validate how the SLA numbers are turning about based on page rendering time between both the approaches.
We have carefully considered the workload model of the transaction so that the results obtained are not having
network latency or choke which can impact the final SLA numbers.
A. Performance Testing Strategy Definition

The strategy is to validate the SLA by performing a load testing on the modernized application. For this
purpose, we deployed the application on clustered environment. The clustered environment provides flexibility
to withstand the spike injected on to the application. The session spikes, heap and thread locks and enterprise
modernization crash were considered even in the performance test of the application. The toggle features via
AOP has the flexibility in applying the dynamic spikes into the application on every simulation of performance
tests. The code base in which the exploratory testing code was dynamically injected along with transaction
characteristics are shown in Table VI.
B. Exploratory SLA vs Performance Testing SLA

The exploratory testing SLA was captured using the browser rendering time end to end. The average
transaction time of the identified transactions with the defined workloads are shown in Fig. 2. The graphical
representation by comparing the SLA numbers derived from exploratory SLA and performance SLA as shown
in Fig. 3. From the experimental results it shows that the SLA numbers derived from performance testing are
almost 95 percentile matching to the proposed approach as shown in Table VII.

TABLE VI
Transaction and its Characteristics

 Characteristics
Non-Intrusive code applied
during performance test

Session
Spikes

Heap
and
Thread
Locks

Enterprise
Modernizatio
n crash

Transaction
Name

Databas
e Calls

Business
Rules

External
Interfac
e calls

Modernizatio
n component
calls

Role-based
Authorization
(T1)

3 2 0 2 Y N N

Reporting and
Analytics (T2)

3 1 3 1 N Y N

Rate calculation
via channels
(T3)

6 9 3 3 Y Y Y

Payment
interface
integration (T4)

5 3 0 5 N Y Y

Invoice
processing (T5)

9 5 4 7 Y Y Y

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 679

TABLE VII
SLA validation with the Proposed Approach

Fig. 2. Transaction Time

Fig. 3. Exploratory SLA vs Performance Test SLA

Transaction Name Complexity
SME Defined

SLA

Exploratory
Testing Derived

SLA

Performance Test
Derived SLA

Role based Authorization (T1) Medium 2.5 3.5 3.8
Reporting and Analytics (T2) Simple 3.4 4.6 4.7
Rate calculation via channels (T3) Complex 4.2 6.9 7.3
Payment interface integration (T4) Complex 5.5 10.1 10.2
Invoice processing (T5) Very Complex 8.5 12.5 13.7

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 680

VII. CONCLUSION

We want to conduct detailed complexity analysis on the modernized application and build some more unique
exploratory test cases. This requires more data points by taking some more real time results into consideration.
We want to apply the same pattern to hybrid cloud adoptions and also apply the approach on the public and
private cloud deployment. As the modernized application is having huge data generation capabilities and we
want to apply the exploratory testing approach to capture the efficiency on business insight modeling.

Thus we have proven that how an exploratory proactive model can help the enterprise modernized team to
test and predict the SLA by not impacting the execution cycle or the business functionalities. As the enterprises
are very keen on investment and more importantly more efficient in doing the modernization journey, the
proposed approach will enable enterprise and the development team to efficiently modernize the applications.
Hence the proactive exploratory testing approach is very important to achieve the desired results.

REFERENCES
[1] B. Rochwerger, "The reservoir model and architecture for open federated cloud computing," IBM Journal of Research and

Development, vol. 53, pp. 1-11, 2009.
[2] B. Urgaonkar, G. Paci_ci, P. Shenoy, M. Spreitzer, and A. Tantawi, "An analytical model for multi-tier internet services and its

applications," Proceedings of the International Conference on Measurement and Modeling of Computer Systems ACM SIGMETRICS,
Alberta, Canada, pp. 291-302, 2005.

[3] D. Petcu, "Multi-cloud: Expectations and current approaches," Proceedings of the international workshop on Multi-cloud applications
and federated clouds (MultiCloud '13), NY, US, pp. 1-6, 2013.

[4] D. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. Iyer, “Nftape: A framework for assessing dependability in distributed systems
with lightweight fault injectors,” in Proc. IPDS. IEEE, 2000, pp. 91–100.

[5] G. Kanawati, A. Kanawati, and J. Abraham, “Ferrari: A flexible software-based fault and error injection system,” IEEE Transactions
on

[6] Computers, vol. 44, no. 2, pp. 248–260, 1995.
[7] J. Bi, Z. Zhu, R. Tian, and Q. Want, "Dynamic provisioning modeling for virtualized multitier applications in cloud data center,"

Proceedings of the 3rd International Conference on Cloud Computing, Miami, Florida, US, pp. 370-377, 2010.
[8] J. Carreira, H. Madeira, and J. Silva, “Xception: Software fault injection and monitoring in processor functional units,” Dependable

Computing and Fault Tolerant Systems, vol. 10, pp. 245–266, 1998.
[9] K. Gao, Q. Wang, L. Xi, "Reduct algorithm based execution times prediction in knowledge discovery cloud computing environment,"

International Arab Journal of Information Technology (IAJIT), vol. 11, no.3, 2014.
[10] M.C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.
[11] N. Grozev, and R. Buyya, "Multi-cloud provisioning and load distribution for three-tier applications," ACM Transactions on

Autonomous and Adaptive Systems (TAAS), 2014.
[12] S. Dawson, F. F Jahanian, and T. Mitton, “Orchestra: A probing and fault injection environment for testing protocol implementations,”

in Proc. IPDS. IEEE, 1996, p. 56. http://www.armored-computing.com/nftapeoverview.html.
[13] S. Ijaz, E. Munir, W. Anwar, and W.Nasir, "Efficient scheduling strategy for task graphs in heterogeneous computing environment",

International Arab Journal of Information Technology (IAJIT), vol. 10, no. 5, 2013.
[14] Q. Zhang, L. Cherkasova, and E. Smirni, "A regression-based analytic model for dynamic resource provisioning of multi-tier

applications," Proceedings of the 4th International Conference on Autonomic Computing (ICAC 2007), Florida, US, 2007.
[15] http://www.infosys.com/engineering-services/serviceofferings/Pages/software-cloud-mobile-enablement.aspx.
[16] http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html.
[17] http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.html.
[18] http://www.castsoftware.com/products/application-intelligenceplatform.
[19] http://jmeter.apache.org/.

AUTHOR PROFILE

Ravikumar Ramadoss received his B.Sc., and MCA from Bharathidasan university, Trichy. He is doing Ph.D.
(Computer Applications) in Sathyabama University, Chennai. He has over 14 years of software industry
experience. He is working as Senior Technology Architect (STA) with Infosys, Bangalore. His areas of interest
are Enterprise Modernization, Cloud ecosystems, Big Data adoptions and Proactive Performance Engineering.
He holds various technology certifications in the field of J2EE and Cloud administrations.

Dr.N.M.Elango holds Ph.D in Computer Applications from SASTRA university, Thanjavur. He has over 28
years of experience in research and teaching. His areas of interest are image processing, enterprise
modernization and machine learning. Having published papers in many international conferences and refereed
journals of repute, he is the director of computer applications department with R.M.K engineering college and
mentors research students in various fields of IT. He is a well-known academician and researcher in the
academic and software industry.

Ravikumar Ramadoss et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 681

	Proactive Exploratory Testing MethodologyDuring Enterprise ApplicationModernization
	Abstract
	Keyword
	I. INTRODUCTION
	II. CONCEPTS INOVLVED IN PROACTIVE EXPLORATION TESTING STRATEGY
	III.RELATEDWORK
	IV.PROPOSED EXPLORATORY TESTING APPROACH
	V. EXPLORATORY TESTING EXPERIMENTS
	VI.PERFORMANCE VALIDATION OF THE PROPOSED APPROACH
	VII. CONCLUSION
	REFERENCES
	AUTHOR PROFILE

