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Abstract—The dynamic behavior of rigid free-standing blocks subjected to earthquake ground 
motions is highly non-linear and sensitive to small perturbations of various parameters. Many difficulties 
arise in defining reliable response spectra for such systems and these are well known in the literature. 

This paper deals with the resonance conditions in order to highlight to what extent the ground motion 
details and the system parameters can influence the rocking response. The first step is the construction of 
an artificial input implying amplitude resonance for the motion, which is analyzed by means of a 
simplified equation of motion introduced by Housner (1963). The coefficient of restitution is assumed to 
be a variable of the problem to account also for other damping effects (e.g. local plastic deformations). A 
stabilized phase of the motion is identified for which an upper-bound of the maximum rotation angle of 
the block can be defined in closed form. The results are plotted in resonance spectra which point out the 
influence of the coefficient of restitution and the size and slenderness of the block. An interesting 
comparison with the response of an elastic damped SDOF oscillator in analogous resonance conditions is 
also presented. 
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I. INTRODUCTION 

Historically, the rocking response of rigid blocks subjected to earthquake ground motion has been a field of 
interest to researchers for over a century. Nevertheless, it was Housner [1] who first gave the problem a modern 
treatment. He showed that despite the apparent simplicity of a single rocking block dynamics, a non-trivial 
behavior was present and a number of unexpected results emerged. Basically, the stability of a block subjected 
to a particular ground motion does not necessarily increase monotonically with the increasing size or decreasing 
slenderness ratio. Nor does the overturning of a block by a ground motion with particular intensity imply that 
the block will necessarily overturn under the action of more intense ground motion. 

Thus, in order to simplify the analysis, Housner [1] described the base acceleration as a rectangular or a half-
sine pulse and expressions were derived for the minimum acceleration required to overturn the block, as a 
function of the duration of the pulse. Experimental and numerical analyses were later developed by Yim et al. [2] 
showing that, in contrast with the response to a single pulse, the response to more irregular but simplified 
accelerograms is very sensitive to the geometrical parameters of the block, as well as to the details of ground 
motions and the coefficient of restitution. Therefore, they used a probabilistic approach to identify certain 
statistically recurrent properties of the response. Aslam et al. [3] also analyzed, both numerically and 
experimentally, the dynamic behavior of the block under harmonic excitations and simulated accelerograms, 
confirming the difficulty in providing prediction criteria for the response. 

Priestley et al. [4] presented early experimental studies on a model slender structure and developed a practical 
methodology to compute displacements of the centre of gravity of the structure due to rocking motion by using 
standard displacement and acceleration response spectra. This was then adopted by the FEMA 356 document [5]. 
Makris and Konstantinidis [6] demonstrated that this methodology is oversimplified and does not take into 
account the fundamental differences in the dynamical structure of the two SDOF systems. They showed that the 
rocking spectrum is a distinct and valuable intensity measure of earthquakes and offers information on the 
earthquake shaking that is not identifiable by the response spectrum of an SDOF oscillator. As a consequence, 
rocking structures cannot be replaced by ‘equivalent’ SDOF oscillators. 

However, from all of these works, see also [7-12], there emerges the fact that the problem of the stability 
against overturning of rigid blocks is still far from finding a general settlement and standard response spectra, 
generally used for elastic systems, are not suitable for such structures. Further, the specific source of rocking 
amplification remains largely unexplained. The main difficulties are still related to the description of the seismic 
input and the great sensitivity of the response to small variations in both system parameters and ground motion 
details. Moreover, when the rigid block model is taken as a basic reference for the seismic analysis of the out-of-
plane mechanisms of masonry walls, further uncertainties related to specific aspects of the structural behavior of 
masonry need to be accounted for [13, 14]. 

This paper addresses the response of rocking structures to horizontal ground motion from the rigid body 
dynamics perspective. The primary goal is to explore the features of ground motions which would cause 
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increasing amplification of rocking motion and to investigate the general trends of the rocking resonance. To 
achieve this, the attention is focused on the rocking response of a rigid free-standing rectangular block to an 
artificial sequence of instantaneous impulses, here called “resonance input”, which can continuously add energy 
to the system and cause rocking resonance. 

In the following sections, the mathematical formulation for the rocking block is first presented, followed by 
an investigation of the optimized ground motion which can cause maximum energy input. The response to the 
single pulse before impacting the ground is analyzed by means of the simplified equation of natural motion first 
given by Housner [1] and suitable for relatively slender blocks. The expressions obtained in closed form, in 
terms of maximum rotation angle and duration of the half-cycle, are easily extended to the response to the pulse 
sequence. It will be shown that the response of the block to an unlimited resonance input tends towards a 
stabilized phase characterized by a periodic motion, provided that overturning is excluded. Numerical and 
parametric analyses are carried out with reference to the stabilized phase, together with the construction of 
resonance spectra showing the influence of the mean parameters (coefficient of restitution, slenderness and size 
of the block). 

Similar optimization of the ground motion which can cause resonance conditions were also recently achieved 
by means of an energy approach by DeJong [15]. Multiple sinusoidal pulses with continuously decreasing 
frequency to represent resonance conditions were obtained numerically at each time step and relationships 
between the pulse period and the instantaneous rocking period was investigated. Despite some remarkable 
differences mainly due to the fact that the present analysis leads to expressions in closed form together with 
possible stabilized phases of response, the two analytical approaches reiterate that rocking structures do not have 
a fixed natural frequency and therefore cannot be forced at a single frequency which causes resonance. 

Lastly, a useful comparison between the rocking response and the oscillatory response of an elastic damped 
single degree of freedom (SDOF) oscillator in resonance conditions is herein presented to highlight to what 
extent the amplitude resonance for the block is more intense with respect to that for the elastic damped SDOF 
oscillator. 

II. THE MOTION OF THE RIGID ROCKING BLOCK AND THE RESONANCE INPUT 

By neglecting the vertical components of the accelerations, the equation of rocking motion for a rigid free-
standing rectangular block before the first impact, with positive signs of forces and angles indicated in Fig. 1, is 
obtained from D’Alembert’s Principle:  
 ( ) ( )θ+α=α+θ+α sincos O RyMIMgR   (1) 

where g is the acceleration of gravity, M is the mass, IO = 4 M(a2+b2)/3 is the corresponding moment of 
inertia (with respect to O), 22 baR += is the half-diameter of the block, y  is the ground acceleration and α 
and α  are the angular acceleration and displacement of the block, respectively. 

 
Fig. 1.  Rigid rocking block system 

The coefficient of friction is assumed to be sufficiently large as to prevent sliding between the block and the 
supporting base, while the dissipation of the energy due to impact of the block on the ground is represented by 
the coefficient of restitution. Within the classical rocking motion dynamics, the latter coefficient is commonly 
determined from the conservation of angular momentum and only depends upon the slenderness ratio, but 
independent of both the angular velocity before impact and the size of the block. This result could be easily 
recognized for the idealized conditions of rigid block and rigid base but, actually, the kinetic energy loss strictly 
depends on the materials of the block and the base, too. Therefore, in the following analysis the coefficient of 
restitution is assumed to be a variable of the problem to account also for other damping effects (e.g. local plastic 
deformations). 
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The optimization of the ground motion to maximize the rocking response can be represented by a particular 
sequence of instantaneous pulses which continuously add energy input to the system. The scheme in Fig. 2, 
proposed by Casapulla et al. [16], is adopted in this paper. 

The first pulse is applied to the supporting base to start the motion. The subsequent pulses are applied right 
after each impact of the block on the ground ( 0=α ), when the angular velocities are damped by the coefficient 
of restitution. The direction both of the pulses and the motion of the block are alternating, so as to input constant 
additional energy at each half-cycle. The interval time Ti between two subsequent pulses is progressively 
increasing as the durations of the half-cycles increase. The pulse sequence is assumed to be unlimited and the 
intensity of the pulses is tyI Δ=  , where y  is the ground acceleration and tΔ  is its duration. 

This sequence applied to the block does imply a kind of amplitude resonance which can represent a threshold 
for its spectral response, as described in the following sections. 

 
Fig. 2.  Artificial seismic input as “resonance input” [16] 

A. The Response to the Single Pulse 

The simple case of a single pulse applied to the block is here analyzed and interesting observations can be 
derived regarding the most influencing parameters. The initial pulse I of the resonance input in Fig. 2 is assumed 
to be instantaneously applied at the base of the block (Fig. 1), so that it causes the velocity 1α  which is defined 
by the law of conservation of the angular momentum as: 

 
g

I

I

aIM gαλ
==α




O
1  (2) 

where λ = a/b is the slenderness of the block and gα  is given by:  
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From Eqs. (2) and (3) it is evident that the initial angular velocity is directly proportional to I, while it 
decreases for increasing values of block’s size b and slenderness λ. 

For slender blocks with λ ≥ 3, the natural motion of the block after the pulse can be derived by Eq. (1) and 
expressed by the well known approximated equation [1]: 

 ( ) 02 =α−α+α cp  (4) 

in which )4/(3 Rgp =  is the frequency parameter and ( )λ=α − /1tan 1
c  is the maximum rotation angle of 

the block, whereas the half-diameter of the block can also be expressed as 222 1 λ+=+= bbaR . The larger 
and the slender the block is (larger b and λ), the smaller p is. 

With the conditions 0=α  and 1α=α   at time t = 0, the solution of Eq. (4), in terms of angular displacement 
and velocity, is given by the following expressions in closed form: 
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which depend on parameters b, λ, and I, as well. 
The maximum rotation angle is reached when 0=α , i.e.: 
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while the time at which the block completes an half-cycle and impacts the ground is: 
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In order to analyze the influence of the slenderness and the dimension of the block on its response to the 
single pulse of a given amplitude and duration, numerical results for Eqs. (6) and (7) are shown in Tables I and 
II, respectively. It is evident that the maximum rotation angle decreases for increasing values of the block’s size 
and slightly increases with λ, while the duration of the half-cycle increases for increasing values of λ and is 
quite independent of b. The percentage difference between T1/2 for a block with b = 0.2 m and that with b = 0.6 
m increases with λ, although it remains relatively small (maximum 1.97%). 

TABLE I 
Values of α1max (Eq. (6)) in function of λ and b (I = 0.15m/s) 

 λ = 3 λ = 5 λ = 8 λ = 10 

2b = 0.4 m 
3.83e-3 

rad 
4.15e-3 

rad 
4.30e-3 

rad 
4.35e-3 

rad 

2b = 0.6 m 
2.55e-3 

rad 
2.76e-3 

rad 
2.85e-3 

rad 
2.88e-3 

rad 

2b = 0.8 m 
1.91e-3 

rad 
2.06e-3 

rad 
2.13e-3 

rad 
2.15e-3 

rad 

2b = 1.0 m 
1.53e-3 

rad 
1.65e-3 

rad 
1.70e-3 

rad 
1.72e-3 

rad 

2b = 1.2 m 
1.27e-3 

rad 
1.37e-3 

rad 
1.42e-3 

rad 
1.43e-3 

rad 

TABLE II 
Values of Τ1/2 (Eq. (7)) in function of λ and b (I = 0.15m/s) 

 λ = 3 λ = 5 λ = 8 λ = 10 

2b = 0.4 m 0.0909 sec 0.1541 sec 0.2498 sec 0.3145sec 
2b = 0.6 m 0.0906 sec 0.1533 sec 0.2478 sec 0.3113 sec 
2b = 0.8 m 0.0905 sec 0.1530 sec 0.2468 sec 0.3098 sec 
2b = 1.0 m 0.0905 sec 0.1528 sec 0.2463 sec 0.3088 sec 
2b = 1.2 m 0.0904 sec 0.1526 sec 0.2459 sec 0.3082 sec 

Diff: 
T1/2(bmin) vs. 
T1/2(bmax) 

0.53% 0.94% 1.56% 1.97% 

If the intensity of the initial pulse does not overturn the block, these results can easily be extended to the case 
of the pulse sequence and the same trends can be recognized, as described in the following section. 

Basically, once a block starts rocking under a single pulse, it may or may not overturn depending on the 
magnitude of y  and the duration Δt. The intensity of the critical pulse required to overturn the block is 
generally given by the condition that the maximum rotation angle achieves the critical one, i.e. 

( )λ=α=α − /1tan 1
max1 c . Incidentally, this is strictly true only when the block is under static loadings but not 

necessarily under dynamic conditions, especially when vertical accelerations are considered [2], [17]. The 
boundary between overturning and stable regions for a given geometry could easily be drawn, according to 
others [1], [2], [18]. Generally, larger accelerations or longer durations of the pulse are required to overturn 
larger blocks, and smaller accelerations or shorter durations are required to overturn relatively slender blocks. 

However, what is most interesting to investigate herein is that a succession of smaller pulses can be more 
damaging than one larger pulse [1]. In fact, once a block starts rocking under an earthquake there is an energy 
build-up in the system as the block is subjected to successive pulses and seemingly small differences in the 
details of subsequent ground motion could greatly affect the response of the block. If the subsequent motion 
provides additional energy, although small, at the right time it could be sufficient to overturn the block, and this 
can also occur at much smaller peak accelerations than those predicted by a single pulse of given duration. Thus, 
the single pulse solution is of limited value when considering the rocking and overturning response of the block 
to arbitrary ground motions. 
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The “resonance input” herein proposed does follow this trend, since it is characterized by a sequence of 
instantaneous pulses which input constant additional energy at each half-cycle. This sequence can be recognized 
as an upper-bound of the possible dynamical loadings. 
B. The Response to the “Resonance Input” 

The results of the block response to the single pulse can easily be extended to the case of the pulse sequence. 
With the assumption of instantaneous pulse, the motion of the block between two impacts is of natural type and 
is characterized by a given initial velocity (the previous one damped by the coefficient of restitution during 
impact plus the new one due to the subsequent pulse). 

Immediately after the first impact, the subsequent pulse of amplitude I (Fig. 2) acts on the block, increasing 
the initial velocity of the natural motion for the new half-cycle. The dissipation of energy due to impact on the 
ground is represented by the coefficient of restitution C, assumed as a variable of the problem. Thus, the 
absolute value of the angular velocity at the beginning of half-cycle i (i = 2, 3,.....n) is: 
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Generalizing Eq. (7), the duration of half-cycle i is: 
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T

c
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α
α=
-1tanh2

2
 (9) 

It is easy to verify from Eqs. (8) and (9) that the duration of the generic half-cycle i is quite independent of 
the block dimension, as was already the case for a single pulse. In fact, keeping fixed C and I, its value is 
basically affected by the slenderness ratio and the number of the cycles which occurred before. Moreover, 
iterating Eq. (8) for i →∞, the angular velocity does not increase indefinitely but converges to the limit value 

*α  given by: 

 
Cii −

α=α=α ∞→ 1
lim 1*   (10) 

This case implies that, when overturning does not occur before, also the duration of the half-cycles tends to 
stabilize to the value expressed by: 
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while the maximum rotation angle will be limited to the value: 
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 (12) 

These results mean that the motion of the block becomes of periodic type, with period T* which is now 
independent of the number of cycles because of constant angular velocity at each half-cycle, according to Eq. 
(10). Also, as observed for the response to the single pulse, it is still easy to verify that the size of the block 
strictly affects the stabilized angular velocity and displacement, but not the stabilized period, while the 
slenderness shows its influence on all motion parameters. As an example, in Fig. 3, which reports the stabilized 
periods vs. slenderness for I = 0.15 and C = 0.6, the curves for different block dimensions are very close each 
other with a small percentage difference increasing with λ, while the stabilized period sharply increases with λ. 
This trend confirms what already highlighted for the response to the single pulse in Table II. 

Thus, the rocking response of the block to the proposed “resonance input” is influenced by both the system 
parameters and the ground motion properties, according to a systematic trend expressed by formulations in 
closed form. The different weights of each parameter will be examined in Section III. 

Lastly, the amplification of the maximum rotation angle due to the pulse sequence with respect to the single 
pulse ground acceleration is derived from Eqs. (12) and (6). It can be demonstrated that this amplification, 
named max1

*
max / αα=ζ , strongly depends on the coefficient of restitution and, in particular, it increases sharply 

with the increasing of C. In fact, comparing the curves in Figs. 4a) and 4b), corresponding to block dimensions 
of 2b = 0.4 m and 2b = 1.2 m, respectively, it can be observed that the amplification is strictly affected by C, but 
it is quite independent of λ and slightly dependent on b for larger values of C. 

In order to investigate the nature of such an amplification, in the last section this result is compared with the 
response of an equivalent elastic damped system to an analogous artificial input which implies a resonance 
condition. 
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Fig. 3.  Relation between the slenderness λ and the stabilized period T*, for I = 0.15, C = 0.6 and different values of b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
Fig. 4.  Amplification ratio ζ vs. λ, for I = 0.15, different values of C and a) 2b = 0.4 m and b) 2b = 1.2 m 

III.  PARAMETRIC ANALYSIS OF THE RESULTS 

In this section a parametric analysis of the response of a masonry rigid free-standing block to a “resonance” 
pulse sequence of unlimited duration is presented. The attention is focused on the stabilized phase of the 
response, when the duration of the cycles of the motion becomes constant and the block exhibits a periodic 
motion, with period T*. The attainment of this phase is possible only for the blocks which features of 
slenderness, size and coefficient of restitution allow to exclude the overturning. 

The reference to the stabilized phase allows to define a kind of resonance spectra for masonry rigid blocks in 
terms of the ratio cαα /*  where cα  is the limit condition of the block assumed to be ( )λ=α − /1tan 1

c . This kind 
of spectra is characterized by the fact that the period T* of the stabilized cycles depends only upon the 
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slenderness ratio and the coefficient of restitution C, and is independent of the size, as already observed within 
Eq. (11) and on Fig. 3. 

All the results herein refer to a sequence of pulses with intensity I = 0.15 m/sec and to limited ranges of λ and 
2b, i.e. 3 ≤ λ ≤10 and 0.4 m ≤ 2b ≤1.2 m. 
A. Characterization of the Stabilized Period 

Fig. 5 shows the relation between the slenderness λ and the stabilized period T*, for the given value of I, a 
medium size of block (2b = 0.8 m) and different values of C. Obviously, as this relation is representative of the 
stabilized period, it is meaningful only if the overturning does not occur and this depends on the size of the 
block for each given C, as will be shown later within the resonance spectra. So, from Fig. 5 it is firstly evident 
that, for a fixed C, T* increases for increasing values of λ, suggesting that ground motions with large dominant 
periods are more threatening to slender blocks than to thick ones. This is an important aspect to be investigated, 
as the literature only indicates that long-period earthquakes may raise the risk of overturning a generic block 
[17]. 

In general, results indicate that energy amplification due to multiple distinct impulses can be important. 
Basically, earthquake ground motions do not tend to resemble such an artificial resonance input, so the 
possibility of true rocking resonance over a long period is unlikely. However, ground motions could contain a 
decreasing dominant frequency over a short time span, which would temporarily cause resonance effects on 
slender or thick blocks. 

 
Fig. 5.  Relation between the slenderness λ and the stabilized period T*, for 2b = 0.8 m and different values of C 

Moreover, T* corresponding to a fixed value of λ increases as C increases. An increasing value of C implies 
that the damping effect on the velocity due to the impact on the ground decreases and therefore the initial 
velocity of the cycles within the stabilized phase and their duration increases, as evident from Eqs. (10) and (11). 
This means that the stabilized period increases as the damping effects decrease and this is the exact opposite of 
what happens for elastic systems if T* is assumed as the fundamental damped period. This is another aspect to 
be investigated in further developments. 
B. Influence of System Parameters 

Apart from the features of the resonance pulse sequence herein taken as fixed, the meaningful parameters that 
influence the stabilized response are the coefficient of restitution, the size and the slenderness ratio of the blocks. 
These three parameters should reflect the various trends identified in the course of the analysis and in this 
section a kind of resonance spectra are proposed to summarize the results.  

These are represented in Figs. 6, 7 and 8 in terms of cαα /*
max  with reference to the same range of λ 

(3 ≤ λ ≤10) as used in Fig. 5, for fixed values of C and different sizes of the base (size effect). 
The curves in Fig. 6 firstly show that for C = 0.6 all the considered blocks reach the stabilized phase without 

overturning. However, the ratio cαα /*
max , which describes the stabilized response, is strictly influenced by the 

size of the base and the slenderness ratio. Specifically, the ratio cαα /*
max  displays a definite tendency to 

increase both for decreasing size of the base and almost proportionally with the slenderness ratio. These trends 
occur for any value of C, as shown in all the plotted results (Figs. 6, 7 and 8). 

On the other hand, when C increases the size effect not only implies a higher ratio cαα /*
max  for a given λ, but 

also has a determining role on the possibility of attainment of the stabilized phase. As an example, for C = 0.8 
the blocks with base 2b = 0.6 m reach the stabilized phase only if λ ≤ 7, while overturning in the other cases. 
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Fig. 6.  Resonance spectra in terms of the ratio α*max/αc, for C = 0.6 and different sizes of the base 

 
Fig. 7.  Resonance spectra in terms of the ratio α*max/αc, for C = 0.7 and different sizes of the base 

 
Fig. 8.  Resonance spectra in terms of the ratio α*max/αc, for C = 0.8 and different sizes of the base 

For C = 0.8 the size effect on the stability is accentuated: in fact, only the blocks with 2b > 0.8 m are safe 
from overturning for any value of the slenderness ratio up to 10. The smaller blocks (2b < 0.8 m) reach the 
stabilized phase only for values of slenderness decreasing with the decreasing of the base. 

IV.  A COMPARISON WITH THE ELASTIC DAMPED SYSTEM 

The comparison between the oscillatory response of a single degree of freedom (SDOF) oscillator (regular 
pendulum) and the rocking response of a slender rigid block (inverted pendulum) was examined in depth by 
Makris and Konstantinidis [6]. They concluded that the elastic SDOF oscillator and the rocking block are two 
fundamentally different dynamical systems and the response of one should not be used to draw conclusion on 
the response of the other. 

In particular, two orders of matter should be taken into account: 
• the difficulty in defining the natural period of oscillation for the masonry rigid system; 
• the difficulty in quantifying the damping level by means of the coefficient of restitution. 

Claudia Casapulla / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 2 Apr-May 2015 767



As for the first question, the proposed analysis of the response of the block to the sequence of pulses indicates 
that, in the presence of damping (C < 1), the possibility of recognizing a periodic motion is connected to the 
attainment of the stabilized phase, when the resonance effects are mitigated by the coefficient of restitution. In 
all other cases, the instantaneous rocking frequency is amplitude dependent. 

As far as the second matter is concerned, Priestely et al. [4] proposed a simple formulation of viscous 
damping ratio for the rocking block equivalent to that for the elastic system by deriving it from the similarity 
between the two systems in the logarithmic decrement of the amplitude during a free vibration regime. Makris 
and Konstantinidis [6] later proposed the following empirical equation for the equivalent viscous damping ratio 
to approximate the formulation given in [4]: 
 )ln(34.0 C−=β  (13) 

which is independent of the initial conditions and the number of cycles. 
Indeed, interesting comments about this issue can be derived from the comparison between the oscillatory 

response and the rocking response to the “resonance input”, as discussed in the next section. 
A. Response of the SDOF Oscillator to the Resonance Pulse Sequence 

The formulations obtained by the application of the resonance pulse sequence to rigid blocks are now 
compared with the response of elastic systems to the same input. To this end, let us consider the damped linear 
elastic SDOF oscillator subjected to the pulse sequence presented and discussed above. Each pulse is still 
applied just after the system takes the configuration with null displacement. 

The first pulse I of the artificial input in Fig. 2 instantaneously causes the velocity of the elastic system: 
 Ix =1  (14) 

and the motion, which becomes of natural type, is governed by the classical differential equation: 

 02 2 =ω+ξω+ xxx   (15) 

Starting from the initial configuration with null displacement and velocity given by Eq. (14), the solution of 
Eq. (15), in terms of displacement and velocity, is given by: 
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Thus, at the time 
Ω
π=1t , which identifies the half-cycle, it will be: 
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where: 

 
21 ξ−

πξ−

= eB  (18) 
is the absolute ratio between the velocity at the end of the half-cycle and that at the beginning of the 

subsequent one; it has therefore the same meaning of the coefficient of restitution C, with the difference that for 
the elastic system the damping effect occurs along the whole duration of the cycle. 

It is noteworthy that for lightly damped systems Eq. (18) furnishes the viscous damping ratio in function of B: 

 )ln(1
B

π
−=ξ  (19) 

after approximating 21 ξ− with one. 

By comparing Eqs. (13) and (19) it results that the equivalent viscous damping ratio proposed by [6] is very 
close to the viscous damping ratio derived for the elastic system if it is assumed that B = C. Actually, although 
this would appear as a further validation of the empirical expression of the equivalent viscous damping ratio, the 
coefficient B and C cannot be used with the same practice, as discussed in the next section.  

On the other hand, it is evident that, also for elastic systems, the proposed sequence of pulses, applied with 
alternative sign every time that x = 0 (every half-cycle), is a resonant sequence. Thus, by analogy with rigid 
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block analysis, the absolute value of the displacement velocity at the beginning of the half-cycle i (i = 2, 3,.....n) 
is: 
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and its limit value will be: 

 
B

x
xx ii −

== ∞→ 1
lim 1*   (21) 

which is similar to Eq. (10). 

As a consequence, the maximum displacement will not increase indefinitely but is limited to the value *
maxx  

corresponding to the velocity *x  and coming from the first of Eqs. (16). 
Then, as the maximum displacement during the first half-cycle under a pulse of intensity I is: 
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ex 212
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it is easy to verify that the ratio between the two displacements will be: 
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−
==ψ

1
1

max1

*
max  (23) 

B. Comparison between Rocking and Oscillatory Responses 

The comparison of the amplification factor for elastic system expressed by Eq. (23) with that for rocking 
response ζ is indicated in Table III, considering a block with slenderness λ = 4 and block dimension 2b = 1.2 m. 
As already shown in Fig. 4, the amplification for rocking block is quite independent of the slenderness and 
block dimensions. 

TABLE III 
Comparison between the two amplification factors of response ψ (elastic oscillator) and ζ (rocking rigid block) 

Elastic oscillator Rocking rigid block 

B ξ (19) ψ (23) C β (13) ζ (Fig. 4) 

1 0 ∞ 1 0 Overturning 

0.97 0.01 32.33 0.95 0.017 Overturning 

0.91 0.03 11.11 0.9 0.036 182.37 

0.85 0.05 6.87 0.85 0.055 51.60 

0.80 0.07 5.05 0.8 0.076 26.91 

0.75 0.09 4.05 0.75 0.098 16.72 

0.71 0.11 3.41 0.7 0.121 11.44 

0.66 0.13 2.96 0.65 0.146 8.33 

0.62 0.15 2.64 0.6 0.174 6.34 

0.58 0.17 2.39 0.55 0.203 4.99 

The most interesting aspect emerging from the comparison in Table III is that, for commonly used values of 
the coefficient of restitution and of the viscous damping ratio, the amplitude resonance for the block is much 
more intense than that for the SDOF oscillator. As an example, considering the viscous damping ratio ξ = 5% 
commonly used for elastic systems, the amplification for the oscillator would be ψ = 6.87, while considering the 
equivalent damping ratio for rocking rigid block β = 5% corresponding to the coefficient of restitution C ≈ 0.85, 
the amplification would be ζ ≈ 52, which is nearly eight times greater. This observation leads to confirm that 
also for the equivalent viscous damping ratio the responses of the two systems are incomparable. 

This conclusion reinforces the necessity of defining an alternative to the response spectra such as those used 
for elastic systems. 
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V. DISCUSSION AND CONCLUSIONS 

The dynamic behavior of rigid free-standing blocks subjected to earthquake ground motions is highly non-
linear and sensitive to small perturbations of various parameters. Many difficulties arise in defining reliable 
response spectra for such systems and these are well known in the literature. 

Despite these difficulties, a kind of resonance spectra are derived and presented in this paper in order to 
highlight to what extent the ground motion details and the system parameters can influence the rocking response. 

The first step is focused on the construction of an artificial input aimed at defining such an amplitude 
resonance as to represent the most likely disadvantageous conditions for the generic block. This is represented 
by a sequence of instantaneous pulses with interval durations calibrated so as to input constant additional energy 
at each half-cycle. The rocking response to such input loading is a sequence of natural motions between impacts 
characterized by a given initial velocity due to each pulse. The simplified equation first given by Housner [1] is 
used to describe the motion of the block between two subsequent impacts. 

The dissipation of the energy due to impact of the block on the ground is represented by the coefficient of 
restitution which is assumed to be a variable of the problem to account also for other damping effects (e.g. local 
plastic deformations). The adoption of coefficients of restitution lower than Housner’s coefficient has been 
discussed and interesting relations between this coefficient and the viscous damping ratio are formulated, by 
means of a comparison with the classical elastic damped model. 

Assuming unlimited duration of the pulse sequence and excluding overturning, the results of a parametric 
analysis are referred to the stabilized phase of motion, for which a threshold for the maximum rotation angle of 
the block has been defined. The meaningful parameters that influence the stabilized response are the size and the 
slenderness of the block, the coefficient of restitution and the features of the acceleration pulses representing the 
resonance input. Each parameter follows a systematic trend as is evident from simple formulations in closed 
form and each effect on the rocking response has been shown and discussed in this paper. 

The results are plotted in proper diagrams that represent resonance spectra, characterized by the fact that the 
stabilized period strictly depends upon the slenderness ratio and the coefficient of restitution and is quite 
independent of the size of the block. It means that, for a given coefficient of restitution, the block in condition of 
resonance can be represented whether by the slenderness or the stabilized period. The latter, therefore, can be 
considered as the fundamental period, in analogy with elastic systems. 

The parametric analysis, herein developed for given intensity and duration of the pulses, highlights that the 
stability of the block always decreases for: 1) decreasing size of the base; 2) proportional increasing of the 
slenderness ratio; 3) increasing of the coefficient of restitution. This result is of great importance when 
considering that generally the stability of the block is extremely sensitive to slight changes in natural 
accelerograms and that the structural response cannot easily be generalized and parameterized. 

The analysis presented in this work may provide a significant step towards reliable response spectra for 
masonry rigid blocks and open new lines for further theoretical developments and computational applications. 
At least, it provides additional perspective by which rocking structures can be better understood and assessed. 
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