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Abstract— A new neural network with a single neuron for solving both a linear programming problem 
and its dual is presented in this paper. Based on the duality gap problem, the network and its energy 
function are defined. The proposed neural network based on a nonlinear dynamical system uses only 
simple hardware in which no analog multipliers are required and is proved to be globally asymptotically 
stable to the exact solution. Some simulation results are presented for showing the efficiency and 
simplicity of the proposed neural network. 
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I. INTRODUCTION 

An optimization of a linear function that satisfies a set of linear equality and/or inequality constraints is 
known as a linear programming (LP) problem. LP problem has many applications in Management Science, 
Science, Engineering, Medical Science and Technology. In real life situations, LP models with a large size is 
considered to be one of the basic problems widely encountered.  Solving such LP problems within a time of the 
order of 100 ns, using the traditional algorithms of digital computer such as the Simplex method [1] and 
Karmarkar's algorithm [2] cannot do this point, or its use is very expensive. The employing neural networks is 
one possible approach to solve such problems.  Neural networks or Artificial neural networks are dynamic 
systems that consist of highly interconnected and parallel nonlinear processing elements called artificial neurons 
that show extreme efficiency in computation.  The neural network algorithms have many computational 
advantages over the traditional algorithms. The most important advantages of the neural networks are massively 
parallel processing and fast convergence. 
         In the literature, many researchers have applied various types of artificial neural networks to solve several 
classes of constrained optimization problems efficiently. Solving the LP problem using neural network was first 
proposed by Hopfield and Tank [3]. They used a LP circuit in their net.  Followed by them many researchers 
have worked on neural network implementation for LP problems which transform the given problem into 
dynamical systems.  Kennedy and Chua [4] proposed an improved neural network model of Hopfield and 
Tank’s model which is always guaranteed convergence, but it converges to only an approximation of the 
optimal solution.  Maa and Shanblatt [5] introduced a two-phase neural network model which converges to the 
exact solution, but it is relatively complex and still requires some parameter tuning. Xia [6] proposed a network 
for solving LP problems in which the energy function requires no parameter tuning. Xia’s network solves both 
primal and dual problems simultaneously with the help of two layers of neurons which was known by two 
system of ordinary differential equations. Nguyen [7] used a recurrent neural network based on a nonlinear 
dynamical system having interconnected two layers of neurons for solving LP problems which is simple and 
more intuitive.  

Malek and Yari [8] proposed a neural network for solving LP problems and its dual which has its 
energy function as Lyapunov function.  Malek and Alipour [9] constructed a recurrent neural network with no 
parameter setting to solve LP problems and quadratic programming problems. Ghasabi-Oskoei et al. [10] 
developed a new neural network model based on a nonlinear dynamical system, using arbitrary initial 
conditions. It converges very fast to the exact primal and dual solutions simultaneously. Gao and Liao [11] 
constructed a new neural network for solving linear and quadratic programming problems in real time by 
introducing some new vectors.  Cichocki et al. [12] proposed a  neural network model without  duality concepts  
for solving an LP problem which is transformed  into a system of differential equations whose equilibrium point 
is  the solution of the LP problem. 

In this paper, we present a new neural network based on duality gap concept and on a nonlinear 
dynamic system for solving both primal and dual LP problems. It is presented in which only one neuron is used 
for computation, that is, only one set of ordinary differential equations are used. First we construct the duality 
gap problem for the given LP problem. Then, using the proposed neural network, we transform the duality gap 
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problem into a system of differential equations in such a way that the equilibrium point of the dynamic system is 
the solution to the given LP problem and its dual. In the proposed network, only simple hardware without 
analog multipliers is used. We derive that the network is globally asymptotically stable to the exact solution and 
show the efficiency and simplicity of the proposed neural networks with the help of some simulation results. 
The proposed network model can help decision makers to come across a situation in real life to analyze the 
solutions of both primal and dual LP models. 

II.PRELIMINARIES 

In this section, some definitions and results in linear programming [1] and neural network [13]   are given 
which will useful for the developing the proposed neural network model. 

Consider the following linear programming problem 
(P) Maximize TC X   
      subject to ,AX B≤ 0.X ≥  

where 1 2( , ,..., )T n
nC c c c R= ∈ , 1 2( , ,..., )T n

nX x x x R= ∈ , 1 2( , ,..., )T m
mB b b b R= ∈  and A  is an  mxn  matrix 

over R, a field of real numbers.  
Now, the dual to the problem (P), (D) is given below 
(D) Minimize TB Y   

       subject to ,TA Y C≥ 0.Y ≥  

where the vector 1 2( , ,..., )T m
mY y y y R= ∈  is called the dual vector. 

Remark 2.1:  (a) The problem (P) contains ‘ ≥ ’ type constraints, convert the constraints into ‘ ≤ ’ type 
constraints and then find its dual. 

                        (b) The problem (P) contains ‘ = ’ type constraints, add unrestricted conditions to their dual 
variables in the problem (D). 

                         (c) The problem (P) contains ‘ ≥ ’ and ‘ = ’ type constraints, use both Remark 2.1 and 2.2 for 
finding the dual problem (D). 

Result 2.1:   (a) Suppose that X  and Y  are feasible solutions to (P) and (D) respectively. Then, 
T TC X B Y≤ . 

                         (b) Suppose that 0X  and 0Y  are feasible solutions to (P) and (D) respectively. If  
0 0T TC X B Y= , then 0X  and 0Y  are optimal solutions to their respective problems. 

                         (c) If the problem (P) has an optimal solution, then so does the dual, and the optimal values of 
their respective objective functions are equal. 

Definition 2.1: A function : nP R R→  is called a penalty function for the constrained optimization problem 
(P) if it satisfies the following conditions: 

(i) P  is continuous and positive  and   
(ii) P(X) = 0  if and only if  X  is feasible for (P). 

Theorem 2.1: (Lyapunov function method) Let 
*x be an equilibrium point for the system ( ) ( ( ))dx t

f x t
dt

= . 

Let : nV R R→  be a continuously differentiable function such that 

           * *( ) 0 and  ( ) 0,V x V x x x= > ∀ ≠  ; 

          ( )V x when x→ ∞ → ∞    and 

         *( ) 0dV x
for all x x

dt
< ≠ . 

Then, *x x=  globally asymptotically stable. 
Definition 2.2:  Any scalar function ( )V x  that satisfies the requirements of the Theorem 2.1 is called a 

Lyapunov function for the equilibrium state *x x= . 
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III. DUALITY GAP PROBLEM  

                      Consider the following LP problem related to (P), called the duality gap problem for the problem 
(P), (G):  
      (G) Minimize  T TB Y C X−  
                subject to  
         AX B≤ , TA Y C≥ , 0X ≥ , 0.Y ≥  
         Now, we derive the following theorems which help us to understand the relation between the problems (P) 
and (D) and the problem (G) and also, used in the proposed method. 
Theorem 3.1: If X and Y are optimal solutions to (P) and (D) respectively, then {X, Y} is an optimal solution to 
the problem (G). 
Proof: From the Result 2.1(b) & (c), it follows. 
Theorem 3.2: If {X, Y} is an optimal solution to the problem (G), then X and Y are optimal solutions to the 
problems (P) and (D) respectively. 
Proof: Clearly, X and Y are feasible solutions to (P) and (D) respectively. 
 Suppose that X is not optimal solution of (P). 
Then, there exists a feasible solution, U to the problem (P) such that .T TC U C X>   
Now, since {U, Y} is a feasible solution to the problem (G), we have 
                        T T T TB Y C X B Y C U− ≤ − . 

This implies that T TC U C X≤  which contradicts the result .T TC U C X>  
Therefore, X is an optimal solution of (P). 
 Suppose that Y is not optimal solution of (D). 
Then, there exists a feasible solution, V to the problem (D) such that T TB V B Y< .  
Now, since {X, V} is a feasible solution to the problem (G), we have 
                        T T T TB Y C X B V C X− ≤ − . 

This implies that T TB V B Y≥  which contradicts the result T TB V B Y< . 
Therefore, Y is an optimal solution of (D). 
Hence the theorem is proved. 
Remark 3.1: If (P) is minimization type, then the objective function of (G) becomes T TC X B Y− . 

IV. THE PROPOSED NEURAL NETWORK MODEL 

          Now, the LP problem (G) after converting all inequality constraints into equality constrains by adding 
slack variables or surplus variables can be written as follows: 

     (G)  Minimize   TD Z                            
             subject to  
                           HZ F= , 0Z ≥                    

 where ( )T
Z X Y S= , mI0

0 T
n

A
H

IA

 
=  − 

,
B

F
C

 
=  
 

, ( )0T T T
sD C B= −  

 and 1 2 1 2( , ,..., , , ,..., )T
m nS s s s t t t= ,  , 1,2,...,is i m= , are slack variables and , 1,2,...,jt j n= , are surplus  

variables. 
         Now, the energy function represents the behavior of the networks and supports the direction to search 

out solutions for real-time optimization. For solving the LP problem, the energy function can be defined in any 
one of the three different methods [14] namely, Penalty method, Lagrange multipliers method and Primal dual 
method such that the energy function has its minimum at the solution of the given LP problem.  Here, we 
construct an energy function, ( )E z  for the proposed neural network for solving the problem (G) with the help 
of penalty function as follows:  

                    21( ) ( )
2

TE Z D Z kP e= +                                                                                      

where 21( )
2

P e e= , e HZ F= − , 0k >  is the penalty parameter.  
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Note that from the properties of convex functions [15], we can conclude that ( )E Z is convex. 

         We now, develop a neural network model for solving the duality gap problem (G) for the given LP 
problem (P) using the newly defined energy function ( )E Z . 

Now, since the energy function ( )E Z  attains its minimum at an optimal solution to (G) and ( )E Z is convex 
[14], we have to find the local minimum of the energy function. For finding local minimum of the energy 
function by the gradient search approach, we get the neural network model as given below. 

 ( )dZ
E Z

dt
= −∇   

That is, 

[ ( ) '( )]TdZ
D D Z kP e

dt
= − +  

Since '( ) . TP dP e
P e H e

Z de z

∂ ∂= = =
∂ ∂

 ( )TH HZ F= − , it follows that 

[ ( ) ( )]T Tdz
D D Z kH HZ F

dt
= − + −                                                                                                                          (1) 

Now, the neural network representation of (1) is shown below 

 
Fig.1 Network representation 

For solving the system (1) of the differential equations, we can obtain the values of z which give the solutions 
of the problems (P) and (D). 

Now, we derive the stability of the proposed neural network. 
Theorem 4.1: ( )E Z  is a Lyapunov function for the dynamic system (1) and the dynamic system (1) is globally 
asymptotically stable at the equilibrium point.  
Proof: Let *Z Z=  be an equilibrium point of the system (1). 

Now, since 2 *0 ( ) 0 ,TD Z and P Z Z Z> > ∀ ≠ , we have 

           2* * *1( ) ( ) 0
2

TE Z D Z kP Z= + =    and *( ) 0E Z > . 

Now, ( ( )) ( )dE Z t E Z dZ

dt Z dt

∂= ⋅
∂

 

                  [ ( ) ( )] ( [ ( ) ( )])T T T TD D Z kH HZ F D D Z kH HZ F= + − ⋅ − + −   since by (1) 

                        2[ ( ) ( )]T TD D Z kH HZ F= − + −  

                        *0 Z Z< ∀ ≠  

Therefore, ( )E Z  is a Lyapunov function for the system (1) and this yields the globally asymptotic stability at 
the equilibrium *Z Z=  in the sense of Lyapunov.  

Hence the theorem is proved. 
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Now, since ( )E Z is Lyapunov function at an optimal point of the problem (G), the dynamic system (1) 
governed by the energy function ( )E z  converges to the optimal solution to the LP problem (G). This implies 
that, the dynamic system converges to the optimal solutions of the problems (P) and (D).   

Remark 4.1: For solving both the problems (P) and (D) by a network, we are enough to solve the problem (G) 
by the proposed neural network. 

V. SIMULATION EXAMPLES  

         In order to show the efficiency and simplicity of the proposed neural network, we present some simulation 
results. All the computer simulation results presented here have been obtained by using built-in function ode45 
(which is equivalent to Runge-Kutta method) in MATLAB program. 
Example 5.1:  Consider the following LP problem  
               Minimize  2 6x− +  

               subject to  
                             1 32 5x x− = −  
                  2 4 5x x+ =  
   0, 1, 2, 3, 4ix i≥ =  

Now, using zero as initial state for all decision variables, we obtain following results by the proposed neural 
network model:  

1 2 3 4( , , , )X x x x x= = (0.00000 , 4.99979 , 2.50000 , 0.00020);  

1 2( , )Y y y= = (0.00001, -0.999997) and Dual gap, G =  0.000245. 

The convergence to the optimum solution to the problem is shown below ( Fig.-2.) 

 
Fig-2. Convergence of solutions  

The following table gives the comparative study of the proposed method with other methods: 
TABLE I 

Comparison with other methods 

Method Primal Dual 
Our proposed network (0.00000 , 4.99979 , 2.50000 , 0.00020) (0.00001, -0.999997) 

Xia’s network (0, 5.00081, 2.50001, 0) - 

Ngyuen’s network (1.84255, 4.77529666, 8.7760854233, 0), (0.03212, -1.56997) 
Simplex method  (0, 5, 2.5, 0) (0, -1) 
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Example 5.2: Consider the following LP problem  
  Maximize  1 2 39x x x+ +  

  subject to  
                 

1 2 32 3 9x x x+ + ≤   
               1 2 33 2 2 15x x x+ + ≤  
     0, 1, 2, 3ix i≥ ∀ =  

Now, using zero as the initial state for all decision variables, we obtain the following solutions by the proposed 
neural network model : 

( )1 2 3( , , )  0,  4.5,  0X x x x= = , ( )1 2( , )  4.5,  0Y y y= =   and  Dual gap, G= 0. 

The convergence of the solution of the problem is shown below (Fig-3.): 

 
Fig-3. Convergence of solutions 

The following table gives the comparative study of the proposed method with other methods: 
TABLE II 

Comparison with other methods 

Method Primal Dual 
Our proposed networks (0, 4.5, 0) (4.5, 0)   
Ngyuen’s Network (0, 4.4388035,  0) (4.622766,  0) 
Simplex method  (0, 4.5, 0) (4.5, 0) 

        For solving non-co-operative two-person zero-sum game problems by LP technique, we have to find 
optimal solutions to both primal and dual problems. So, the proposed network is very much helpful to solve 
such problems which is illustrated by the following example. 
Example 5.3:  Consider the following non-cooperative (competitive) two-person zero-sum game  

                                                   
180 156 90
90 180 156

180 156 177
A

 
 =  
 
 

 

Now,   let the optimal strategies for the players A and B   be 

            1 2 3

1 2 3
A

A A A
S

p p p

 
=  
 

    and  1 2 3

1 2 3
B

B B B
S

q q q

 
=  
 

  

and the optimal  value of the game be v . 
Now, the duality gap problem corresponding to the Player A, (G) is given below: 
           Minimize G = 1 2 3( )x x x+ + 1 2 3( )y y y− + +  

           subject to 
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               1 2 3180 90 180 1x x x+ + ≥ ;        1 2 3156 180 156 1x x x+ + ≥ ; 

               1 2 390 156 177 1x x x+ + ≥ ;        1 2 3180 156 90 1y y y+ + ≤ ;         

               1 2 390 180 156 1y y y+ + ≤ ;  1 2 3180 156 177 1y y y+ + ≤ ;    

                 0,i 1,2,3ix ≥ =   and      0,j 1,2,3jy ≥ =  

where  , i 1,2,3i
i

p
x

v
= =  and  , j 1,2,3j

j

q
y

v
= = . 

Now, the optimal solution to the duality gap problem by the proposed neural network model are given below: 
X= (0.00088302, 0.00136406, 0.00399778) , Y=( 0.00126079, 0.00473017, 0.00019947)  
Duality gap, G = 0.00005443 rounding off for up to 4 decimals we have 0 as the dual gap and the optimum be 
0.0062 
Now,   the optimal strategies for the players A and B   are   

                 1 2 3

0.1424 0.22 0.6448A

A A A
S

 
=  
 

 , 1 2 3

0.20335 0.7629 0.03217B

B B B
S

 
=  
 

  

and the optimal  value of the game  is 161.29v =  
The convergence to the optimum solution to the problem is shown below (Fig.-4.): 

 
Fig-4.Convergence of solutions 

The following table gives the comparative study with other networks: 
TABLE III 

Comparison with other methods 

Method Primal Dual 
Our proposed 
network 

(0.00088302,0.00136406,0.00399778) (0.00126079,0.00473017,0.00019947) 

Ngyuen’s 
network 

(0,0,0) ( 2.6711, 2.6555, 3.6244) 

Simplex 
method  

(0.00082, 0.00131, 0.00408) (0.00131, 0.0049, 0) 

VI. CONCLUSION  

      In this paper, we present a new simple neural network for solving both an LP problem and its dual.  In the 
construction of new network, we use duality gap problem for the given LP problem and develop a new energy 
function such that its equilibrium point is an optimal solutions to both the LP problem and its dual. The dynamic 
behavior and performance of the proposed neural network have been illustrated through extensive computer 
simulations. An interesting and important feature of the proposed network is to obtain solutions for both LP 
problem and its dual by only one set of dynamic system. For solving real-time and large-scale LP problems with 
their duals simultaneously, the proposed neural network can serve as an effective computational model. In near 
future, we have a plan to extend the new neural network to fuzzy LP problems.  

P. Pandian et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 97



VII. REFERENCES 
[1] Edwin KP Chong, Stanislaw H. Zak.  An Introduction to Optimization, John Wiley & Sons Inc , New York, 2001. 
[2] N. Karmarkar,  “A new polynomial-time algorithm for linear programming”, Combinatorica, Vol. 4, pp. 373-395, 1984. 
[3] D. W. Tank, J.J. Hopfield, “Simple neural optimization networks: An A / D converter, signal decision circuit and a linear 

programming circuit”, IEEE Transactions on circuits and systems (CAS). Vol.33, pp. 533-541, 1986. 
[4] M. P. Kennedy, L. O. Chua, “Neural networks for nonlinear programming”, IEEE Transactions on Circuits and Systems. Vol.35, 

pp.554-562, 1988. 
[5] C. Maa, M. Shanbaltt, “A two-phase optimization neural network”, IEEE Trans. On Neural Networks, Vol 3, pp. 1003-1009, 1992. 
[6] Y. Xia, “A new neural network for solving linear programming problems and its application”, IEEE Transactions on Neural Networks, 

Vol. 7, pp. 525-529, 1996.  
[7] K. V. Nguyen, “A nonlinear neural network for solving linear programming problems”, in Proceedings of the 17th International 

Symposium on Mathematical Programming, Atlanta, Georgia, 2000. 
[8] A. Malek, A. Yari, “Primal–dual solution for the linear programming problems using neural networks”, Applied Mathematics and 

Computation, Vol. 167, pp. 198–211, 2005. 
[9] A. Malek, M. Alipour, “Numerical solution for linear and quadratic programming problems using a recurrent neural network”, Applied 

Mathematics and Computation, Vol. 192, pp. 27–39, 2007. 
[10] H. Ghasabi-Oskoei, A. Malek, A. Ahmadi, “Novel artificial neural network with simulation aspects for solving linear and quadratic 

programming problems”, Computers and Mathematics with Applications, Vol. 53, pp. 1439–1454, 2007. 
[11] X. Gao, L. Z. Liao, “A new one-layer neural network for linear and quadratic Programming”, IEEE Transactions on Neural Networks, 

Vol. 21, pp. 918-929, 2010. 
[12] A. Cichocki, R. Unbehauen, K. Weinzierl, R. Htlzel, “A new neural network for solving linear programming problems”, European 

Journal of Operational Research. Vol. 93, pp. 244-256, 1996. 
[13] Madan M Gupta, Liang Jin, Noriyasu Homa. Static and Dynamical Neural Networks: From Fundamentals to Advanced Theory, John 

Wiley & Sons Inc., New Jersey, 2003.  
[14] Ue-Pyng Wen, Kuen-Ming Lan, Hsu-Shih Shi., “A review of Hopfield neural networks for solving mathematical programming 

problems”, European Journal of Operation Research, Vol. 198, pp. 675-687, 2008.   
[15] Boyd S, Vandenberghe L. Convex Optimization, Cambridge University Press, New York, 2004. 

P. Pandian et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 7 No 1 Feb-Mar 2015 98


	A SINGLE NEURON MODEL FORSOLVING BOTH PRIMAL AND DUALLINEAR PROGRAMMING PROBLEMS
	Abstract
	Keyword
	I. INTRODUCTION
	II.PRELIMINARIES
	III. DUALITY GAP PROBLEM
	IV. THE PROPOSED NEURAL NETWORK MODEL
	V. SIMULATION EXAMPLES
	VI. CONCLUSION
	VII. REFERENCES




