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Abstract—A novel construction of Mixed Parity Code for secret message communication is presented 
in this paper. Mixed Parity Code is a tool for secured data transmission with bit error control 
mechanism. The construction procedure of this code is provided based on the choices of existing error 
control codes and existing message character sets. Crypto-code words are prepared by the combinations 
of message bits and parity bits of Mixed Parity Code. Properties of proposed code are described by the 
functions of randomized parity bits positions and intentional bits inversions of crypto-code words. 
Comparative analysis for selecting one of the existing codes is done to construct Mixed Parity Code. 
Statistical analysis of two different Mixed Parity codes are prepared for showing the computational 
hardness of crypto-code words against Brute Force Attack. These results reveal the relationship between 
number of ASCII characters ‘N’ in input block size ‘k’ and number of combinations of ASCII characters 
Nc in the output block size ‘n’ of (n, k, q) MP code. This paper concludes that the security hardness of the 
proposed code depends on number of iterations required for retrieving the correct message without an 
original key. 

Keyword-Data Communication, Error Correcting code, Block Code, Hamming code, Mixed Parity Code, 
Crypto-coding, Brute Force Attack 

I. INTRODUCTION 

The conventional way of transferring the secret message from one end to other end is composed of error 
correction [1], [2] and encryption [3] techniques. But, the properties and behavior of these two methods are 
entirely different. Secured message transmission over wireless communication channel is done by forward error 
correcting codes and cryptography techniques. A good encryption algorithm will penetrate more number of 
errors on retrieving the original message due to channel error. It leads to the need of most efficient error control 
algorithm to transfer the secret data over wireless communication channel. In the past few decades, many 
theoretical links between coding theory and cryptography have been expressed [4]. The present digital scenario 
of “System on Chip” drives the need for combining the functions of coding and cryptography into a single 
algorithm without sacrificing required security and error control. This will reduce the considerable amount of 
delay and power consumptions in digital devices. Coding and Cryptography functions have distinct scopes to 
achieve their reliability higher. Hence, very few reliable methods have been identified to merge coding and 
cryptography functions into one function as crypto-coding. The employability of cryptography and error 
correction functions is at different purpose to each other. A cipher needs the property of avalanche effect on bit 
inversion of original message with false key and channel coder posses the property of bit error control on 
original message. The reliability of avalanche effect of chipper and error control of channel coder depends on 
amount of creation of bit inversion due to wrong usage of keys and amount of correction of bit inversion due to 
channel noise respectively.  

Although, these two functions exhibit differences in their inherent properties, researchers have done much 
work to combine them to form a single function. This is achieved by looking into few of their common 
properties such as bit length modulation, non-linearity propagation, uniqueness in the set of output etc. This 
paper describes one such method of crypto coding. 

As per the coding theory, error correction capability can be improved by adding redundancy bits. This leads 
to the higher computational complexity of forward error control algorithms. In the past few years, diffusion 
properties of certain error correcting codes have been used to create ciphers [5], [6]. For example, the Mix 
Column operation of the Advanced Encryption Standard (AES) cipher is generated using Maximum Distance 
Separable (MDS) codes [5]. Mathematically derived channel codes are bounded by systematic characteristics. 
So, they do not possess the adequate amount of diffusion required by ciphers. However, researchers are still 
working on to find an efficient single algorithm for error control and cryptography. 

In this paper, we demonstrate a novel crypto-code as a common tool for cryptographically secured block 
cipher with good error control property. Behavior of this proposed MP code is investigated for achieving good 
error control capacity along with high security strength. For the above mentioned investigation, we analyze three 
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major factors as (1) similarity between bit symbols of message input ‘k’ and bit symbols of codeword output ‘n’ 
of (n, k, q) MP Code (2) occurrence of non-linearity in data recovery between input block size ‘k’ and output 
block of size ‘n’ of MP code (3) hamming distance between the set of output blocks ‘nj’ (where j є {1,2,3,…., 
(1-2n)}) of MP code. 

The rest of the paper has been organized as follows. Section II provides preliminary concepts of MP codes; 
Section III provides the construction and properties of Mixed Parity codes (MP codes); Section IV provides the 
analysis of MP codes for different block size over the Galois Field GF (q) and Section V provides the 
conclusion based on the results gathered from the statistical analysis of MP codes for using it as crypto-coding. 

II. PRELIMINARY CONCEPTS FOR PROPOSED MIXED PARITY CODES 

A. Introduction to Coding Theory 

Block Codes:  A block code is a set of words that has a well-defined mathematical property or structure, and 
where each word is a sequence of a fixed number of bits. The words belonging to a block code are called code 
words. Examples of simple block code with 4-bit code words are BCD codes, Gray Codes. A word with ‘n’ bits 
is referred to as n-bit word. 

Code word:  The idea is to add redundancy to the message or information in order to be able to detect and 
correct the errors. We use an encoding algorithm to add this redundancy and a decoding algorithm to reconstruct 
the initial message. A message of length ‘k’ is transformed into a codeword ‘c’ of length ‘n’ with n > k and n= k 
+ r where ‘r’ is number of redundancy bits in a codeword. 

A code, whose code words have ‘k’ information bits or message bits, ‘r’ parity bits and n-bit code words 
where n= k + r, is referred as an (n, k) block code where n and k  are the block length and information length of 
the code respectively. The position of the parity bits ‘r’ within a code word is quite arbitrary. They can be 
dispersed within the information bits or kept together and placed on either side of the information bits. A code 
word, whose information bits are kept together, is said to be systematic code. A code word, whose parity bits are 
dispersed within the information bits, is referred to as non-systematic code.  

Hamming Weight and Hamming Distance:  The hamming weight or weight of a word ‘v' is defined as the 
number of nonzero components of ‘v’ and is denoted by w(v). The Hamming distance or distance between two 
words ‘v1’ and ‘v2’, having the same number of bits, is defined as the number of places in which they differ and 
is denoted by d(v1,v2). 

For example the words v1= (011010) and v2= (101000) have weights of 3 and 2 respectively and are separated 
by a distance of 3.  

The minimum distance dmin of a block code is the smallest distance between code words. Hence code words 
differ by dmin or more bits. The minimum distance is found by taking pair of code words, determining the 
distance between them and then repeating this for all pairs of different code words. The smallest value obtained 
is the minimum distance of the code. 

Application of Hamming Distance:  Hamming distance is used to assess the error control ability of a code. 
The error correction limits ‘n’ and error detection limits ‘l’ are bounded by hamming distance or minimum 
distance dmin  of a code. Codes with error correction limit ‘t’ and error detection limit ‘l’ are referred to as t-error 
correcting codes and l- error detecting codes respectively. Mathematically, l = dmin  - 1 and t = ½ (dmin  - 1). 

Application of block code as error control code:  A word with n- bits can be represented by a vector with n-
components. For example, 4-bit word can be (1010), (1110), (0010) and so on. A set of words is called code. 
For an (n, k) block code the input to the encoder is the information word i= (i1,i2,i3,……,ik) where ij= 0 or 1 and 
j is an integer 1≤ j ≤ k. The encoder determines r = n-k parity check bits p1,p2,…….,pr according to the encoding 
rule of the code and appends them to the information bits or disperse them among the information bits so giving 
the code word c= (i1,i2,i3,……,ik, p1,p2,…….,pr). The encoding rule of a code is such that the combination of the 
parity bits and the information bits (i.e. the code word) has the mathematical property required by the code. It is 
usual to represent code word as c = (c1,c2,…..,cn) where cj = ij    for 1 ≤ j ≤  k and cj =  pj-k for  k < j ≤ n. 

                                                                                    
                                                                      Bit Errors ‘e’ 
 
 
 
 
 
 
 
                                                    Code word ‘c’                Code vector ‘v’ 

Fig. 1.  Generic settings for Error Control Code 
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When this code word is transmitted over wireless communication channel, there may be the bit inversion on 
the code word due to channel noise. These errors can be represented by the vectors. An n-bit codeword is liable 
to a maximum of n errors which can be represented by the error vector or error pattern as e = (e1,e2,……,en) 
where ej = 1 if there is an error in the jth position or ej = 0 if the jth position is error free. 

A code word c that incurs an error e results in the word as v = c + e where the components of v are given by 
the components of c and e added pair wise as 

     v = (c1,c2,…..,cn) + (e1,e2,……,en) 
        = (c1+e1, c2+e2,……..,cn+en) 
        = (v1,v2,……,vn)  
where vj = cj + ej for 1≤ j ≤ n and where modulo-2 addition is used when adding cj and ej together. 
The word v represents the code word after it has been subjected to the error e. If all the components of e are 

zero, then v1 = c1, v2 = c2,.…..,vn = cn and therefore v = c. The equation v = c +e is central to the decoding 
process. A decoder has no prior knowledge of c, the only information that it has is the word v that it receives. It 
is referred to as the received word or decoder input. For an error detecting code the task of the decoder is to 
establish whether v is a code word. This can be achieved by checking v against a table of code words or by 
checking whether v has the mathematical property required by the code.  

For an error correcting code the decoder has to estimate or guess the code word from v. If the decoder’s 
estimate of the error pattern is ê then, from the equation v = c + e, its estimate of the code word is ĉ = v - ê, and 
given that modulo-2 addition is used then ĉ = v + ê is the decoder’s estimate of c. However, whether a decoder 
can determine the correct code word from v depends upon the code, the errors incurred and the decoding 
algorithm. 

 Galois Fields (GF):  Finite fields are referred to as Galois Fields after the mathematician Evariste Galois 
(1811-1832). It is used to identify the set of components within the field to perform the addition and 
multiplication operation of a code. The fields are usually expressed as GF(pm) where p is the number of 
elements in the base field, which is referred to as the field’s characteristics and m is the degree of the 
polynomial whose root is used to construct the fields. The order of the field is given by q = pm. In the digital 
communication, where binary digits are only employed, p is always 2 and m = 1, 2, 3, … so on. In normal 
course, block codes are usually represented with GF fields as (n, k, q) block code. For example, if q = 21, then 
the block code is bounded by 0s and 1s only as field components. Otherwise, if q=23, the field components are 0, 
1, α, α2, α3, α4, α5 and α6 where α is the root lies within a finite field GF (23). 

Binary Symmetric Channel (BSC):  Figure 2 shows the concept of Binary Symmetric Channel (BSC). It is a 
channel that transports 1’s and 0’s from the transmitter (Tx) to the receiver (Rx). It makes an error occasionally, 
with probability p. A BSC flips a 1 to 0 and vice-versa with equal probability.  

Let X and Y be binary random variables that represent the input and output of this BSC respectively. Let the 
input symbol be equally likely and the output symbols depend upon the input according to the channel transition 
probabilities as P (Y=0|X=0) = 1-p ; P (Y=0|X=1) = p ; P (Y=1|X=1) = 1-p ; P (Y=1|X=0) = p. These equations 
implies that the probability of a bit getting flipped (i.e. in error) when transmitted over this BSC is p. 

 0                  1- p                        0 
 
 p  
 Tx                                           Rx 
 p 
 
                             1                                                 1 
 1-p 

Fig. 2. A Binary Symmetric Channel 

B. ASCII character set 
The American Standard Code for Information Interchange (ASCII) assigns values between 0 and 255 for 

upper case letters, numeric digits, punctuation marks and other symbols. ASCII characters can be split into the 
following sections: 

• 0 – 31       for Control codes;  
      Examples are 000 – NUL, 002 – SOH, 027 – ESC 

• 32 – 127   for Standard, implementation – independent characters; 
      Examples are 032 – Space, 049 – 1, 065 – A, 097 – a, 127 - delete 
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• 128 – 255 for Special symbols, international character sets, non-standard characters;  
      Examples are 131 - ƒ, 137 – ‰, 251 - © 
Among the above whole ASCII characters, 32 – 127 are the standard, independent alphanumeric characters 

being used by the common people for every day. 
C. Error Probability after coding 

Definition 1: Let C be an (n, k) code over GF (q) and ‘a’ be any vector of length n. Then the set  
 a + C = {a+x | x є C}is called a coset of C. ‘a’ and ‘b’ are said to be in the same coset if (a-b) є C. 

Definition 2: The vector having the minimum weight in a coset is called the coset leader. If there are more 
than one vector with the minimum weight, one of them is chosen at random and is declared the coset leader. 

Definition 3: A standard array for an (n, k) code C is a qn-k x qk array of all vectors in GF (q)n in which the 
first row consists of code C  with 0 on the extreme left and the other rows are the cosets ai + C, each arranged in 
corresponding order, with the coset leader on the left. 

Definition 4: The probability of error or word error rate Perr for any decoding scheme is the probability that 
the decoder output is a wrong codeword. It is also called as residual error rate. Suppose there are M code words 
of length ‘n’ which are used with equal probability. Let the number of coset leaders with weight ‘i' be denoted 
by αi. Here BSC channel is assumed with symbol error probability p. A decoding error occurs if the error vector 
e is not a coset leader. Therefore, the probability of correct decoding will be  

                   n 
                  Pcor = ∑     αi pi (1-p)n-i 
                 i= 0 
Hence, the probability of error will be 
                         n 
                  Perr = 1 -  ∑     αi pi (1-p)n-i 
                        i= 0 

D. Cryptography 

The term cryptography (or cryptology derived from Greek kryptós “hidden” and gráfo “write”) is the study of 
message secrecy. The opposite is cryptanalysis which is the study of methods of how to reverse the encrypted 
message. This chapter aims to give some background on the encryption techniques and application areas 
considered during the design process of the system. 
1) Basics of Cryptography: Figure 3 shows the tradition within the area of cryptography of using the names 
Alice, Bob and Eve to represent the different roles played by the communicating devices on a communication 
channel. By definition Alice sends messages to Bob and Eve is assumed to be eavesdropping on all messages 
sent on the communication channel. 

 
 
 
 
                                                     c   c 
 
 
 

Fig. 3. Generic settings for cryptography 

2) Encryption and Decryption Technique: Encryption is used to communicate securely over an insecure 
communication channel. Consider Alice communicating with Bob. As in the Figure 3, any message from Alice 
to Bob is also received by Eve. To prevent Eve from understanding the message an encryption function E (Kenc, 
m) is used to transform the so called Plaintext ‘m’, into the unreadable Cipher text ‘c’, where Kenc represents the 
encryption key which is to be known only by the authorized communicants and not by Eve. In order for Bob to 
be able to read the message, a decryption function D (Kenc, c) is used to make the reverse transformation from 
Cipher text into Plaintext.. Both these transformations require a cipher which is an algorithm used for 
performing encryption and decryption. The key is as mentioned to be kept secret although the algorithm can and 
should be public. 
3) Cryptanalysis: It is the science of science of recovering the plaintext of a message from the cipher text 
without access to the original key. In cryptanalysis, it is always assumed that the cryptanalyst has full access to 
the algorithm. An attempted cryptanalysis is known as an attack, of which there are five major types. They are (i) 

Alice 
m, c = E (Kenc, m) 

Bob 
c, m = D (Kenc, c) 

Eve 
c 
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Brute force attack, (ii) Cipher text –only attack, (iii) Known-plain text attack, (iv) Chosen - plain text attack, (v) 
Chosen-cipher text attack. Brute force attack is the technique that requires a large amount of computing power 
and a large amount of time to run on a computer. It consists of trying all possibilities in a logical manner until 
the correct one is found. Rests of the cryptanalysis are beyond the scope of this paper. 

E. Construction of Error control codes as crypto-coding 

Crypto-coding is the art of combing coding theory and cryptography into a single function. Some of the 
related terminology used for both coding theory and cryptography are shown below. 

TABLE I 
Related terminology between coding theory, cryptography and crypto-coding 

Sl. 
No. 

Description Coding Theory Cryptography Crypto –Coding 
using MP codes 

1 Input  Information Bits Message Text Message Bits 
2 Output Code word Cipher Text Crypto-Code Word 

3 Input block size 
Multiple number of equal 
length of information bits 

Multiple number of equal 
length of Message text 

Multiple number of 
equal length of Message 
Bits 

4 Output block size 
Multiple number of equal 
length of code words 

Multiple number of equal 
length of Cipher text 

Multiple number of 
equal length of Crypto-
Code Words 

5 

Realization of 
group of bits for 
Input and Output 
character set  

Binary Coded Decimal 
(BCD) 

American Standard Code 
for Information 
Interchange (ASCII) 

American Standard 
Code for Information 
Interchange (ASCII) 

6 Encryption 

Process of converting 
Information bits to code 
word by adding 
redundancy bits 

Process of converting 
Message text to cipher text 
by S-box, rotation of bits, 
addition of bits with key 

Crypto-encryption that 
does combined 
encryption processes of 
coding theory and 
cryptography   

7 Decryption  

Process of converting 
code word to Information 
bits by removing 
redundancy bits 

Process of converting 
cipher text to Message text 
by S-box, rotation of bits, 
addition of bits with key 

Crypto-decryption that 
does combined 
decryption processes of 
coding theory and 
cryptography   

8 Error message Bit inversion on code 
word due to channel noise 

Bit inversion on Cipher 
Text due to wrong key 

Bit inversion on Crypto-
Code Word 

9 Mode of 
communication 

Transmitter and Receiver Sender and Receiver Sender and Receiver 

  10 Communication 
Channel 

Wireless or wired 
communication 

Compact Disc, Internet, 
Intranet 

Compact Disc, Internet, 
Intranet over Wireless 
or wired communication 

  11 Recovery of 
original input 

Error Control Algorithm 
with code lookup table 

Cryptography Algorithm 
with binary keys 

Combined functions of 
both Error Control 
Algorithm and 
Cryptography 
Algorithm 

  12 
Method of 
arithmetic 
operations 

Modulo-2 arithmetic 
operations 

Modulo-2 arithmetic 
operations 

Modulo-2 arithmetic 
operations 

  13 
Method of 
scrambling the 
input data 

Adding or Dispersing 
parity bits with 
information bits 

Performing Substitution of 
bits, rotation of bits, 
addition of bits with 
Message text  

Adding or Dispersing 
parity bits with message 
bits and Performing 
Substitution of bits, 
rotation of bits, addition 
of bits on Crypto-Code 
Word 
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The table I illustrates that there are some common processes in both Error control and Cryptographic 
functions such as input, output, encryption, and decryption. The Error control function adds the extra bits to the 
length of input as redundant bits. But, the cryptography function may not add or reduce the length of input. 

 
 
 
 
 
 

 

Fig. 4.a. Generic settings for Crypto-Encoding 

 
 
 
 
 
 
 

 

Fig. 4.b.Generic settings for Crypto-Decoding 

Figures 4.a and 4.b depict the essential blocks of crypto-coding using Mixed Parity Codes. Crypto-encoding 
converts the input message block size of ‘k’ bits into output crypto-code word block size of ‘n’ bits. Crypto-
decoding converts the input crypto-code word block size of ‘n’ bits into output message block size of ‘k’ bits. 
F. Introduction to Mixed Parity Code  

Definition 5: For any vector ‘u’ in GF (q)n and any integer r ≥ 0, the sphere of radius r and centre u, denoted 
by S (u,r), is the set {v є GF (q)n | d(u,v) ≤ r}. 

                                                                                                   n            n                 n                         n 
Theorem 1: A sphere of radius r (0 ≤ r ≤ n) contains exactly            +        (q-1) +        (q-1)2 + …+        (q-1)r      
                                                                                                                                                                    vectors. 
                                                                                                   0            1                  2                         r 

Theorem 2: A q-ary (n, k) code with M code words and minimum distance (2t +1) satisfies, 
 
                        n         n                    n                             n 
         M                +        (q-1) +             (q-1)2 + …. +        (q-1)t        ≤  qn 
                                0         1                    2                             t 
 

Definition 6: For binary codes, the Hamming bound will be 
  
                       n          n         n                   n 
            M             +        +         + ….+               ≤  2n 
                      0          1         2                   t 
 

Definition 7: A perfect code is one which achieves the Hamming bound as, 
 
  
                        n         n                     n                            n 
            M             +        (q-1) +           (q-1)2 + …. +         (q-1)t        =  qn 
                       0         1                     2                            t 
  

1). Binary Hamming Codes: The binary hamming codes have the property that (n, k) = (2m – 1, 2m – 1 – m) 
where ‘m’ is any positive integer. For example, for m=3, (7,4) code is the hamming code. The parity check 
matrix of an (n, k) code has n-k rows and n columns. For the binary (n, k) hamming code, the n = 2m – 1 
columns consist of all possible binary vectors with n-k = m elements, expect the all zero vector. The minimum 
hamming distance dmin of a (7, 4) hamming code is equal to 3, which implies that it is a single – error correcting 
code.  Hamming codes are called as perfect codes.  

Message 
Bits (k) 

Parity Bits 
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Mixing for error 
control coding 
functions 
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Inversion 

Bits Permutation, Bits 
Rotation, Round key based 
Boolean functions for 
cryptographic encoding  

Crypto-code 
word (n) 

Crypto-code 
word (n) 
 

Reversed Round key based 
Boolean functions, Bits 
reversal Rotation, Bits 
reversal Permutation for 
cryptographic decoding  
 

Bit error 
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2) Modified Binary Hamming Codes:  By adding overall parity bit, an (n, k) hamming code can be modified to 
yield an (n+1, k) code with dmin = 4. Also, an (n, k) hamming code can be shortened to an (n- l, k – l) code by 
removing l columns of its parity check matrix H. 
       Definition 8:  The formal definition of hamming code is given as below.  
Let n = (qk – 1) / (q -1), Then the (n, k) hamming code over GF (q) is a code for which the parity check matrix 
has columns that are pair wise linearity independent over GF (q).  
3) Limitations on code word block length ‘n’:  According to shannon’s theorem, if C (p) represents the capacity 
of a BSC with probability of bit error equal to ‘p’, then for arbitrarily low probability of symbol error, code rate 
R must be less than C (p). Even though the channel capacity provides an upper bound on the achievable code 
rate as R = k/n, evaluating a code exclusively against channel capacity may be misleading. The block length of 
the code, which translates directly into delay, is also an important parameter.  

It has been observed that, if block length of the code is increased, the bounds on code rate are closer to 
channel capacity. However, longer block lengths imply longer delays in decoding. This is because decoding of a 
code word cannot begin until the receiving of entire code word. The maximum delay allowable is limited by 
practical constraints. For example, codeword with very large block lengths cannot be used in mobile radio 
communications where the packets of data are restricted to fewer bits. 
4) Mixed Parity Codes:  The (n, k) Mixed parity codes (MP Codes) are the resemblance of (n, k) binary 
hamming codes where the parity bits are dispersed among the information bits unlike the traditional method of 
appending the parity bits to the left most or right most sides of information bits. The purpose of deliberately 
dispersing the parity bit among the information bits is to scramble the originality of the information bits for 
crypto-encoding function without diluting the error control capability of the MP codes. It is the responsibility of 
the decoder to identify the position of parity bits to control over the error correction on received word vector ‘v’ 
after performing crypto-decoding. 

This MP codes use the common character set, such as ASCII character set, for performing crypto-coding. 
This MP code will be a tool to design the crypto-coding system. In this paper, ASCII character set is considered 
for analysis. Because any character in ASCII character set can be segregated as BCD format as required for 
error correction technique. For example, the symbol ‘A’ is represented as 65 and 01000001 in decimal and 
binary formats respectively. Suppose, 01000001 are grouped in terms of 4 bit BCD code, there will be two 4 bit 
BCD codes as 0100 and 0001. Also, we may have more different set of two 4 bit BCD combinations out of this 
ASCII code such as 0000 : 1000, 1000 : 0010 and so on. This process can be called as BCD Coded ASCII 
(BCA). 

In common, if any character in ASCII set is represented by A = a7a6a5a4a3a2a1a0, then the possible set of 4 bit 
BCD combinations are a7a6a5a4 : a3a2a1a0, a4a5a6a7 : a3a2a1a0, a7a6a5a4 : a0a1a2a3 and so on. 

If (7, 4) hamming code is used to add the parity bits with each 4 bit BCA, a 4 bit BCA can be stretched to 7 
bit longer by appending or dispersing 3 parity bits for error correction. An even or add parity is added for this 
whole 7 bits at the LSB and then there will be a new 8 bit code. This way, a two 8 bit code words can be 
generated for each ASCII character. 

For example, if an ASCII code 01000001 is converted BCA as 0100: 0001, then applying (7, 4) hamming 
code technique, 0100 is converted as 0100111 and 0001 is converted as 0001011. Further, even parity is chosen 
to be placed at the MSB of resultant codes, then 0100111 becomes A1 = 00100111 and 0001011 becomes A2 = 
10001011. 

If A1 and A2 are interpreted as ASCII Coded BCD (ACB), 39 is the decimal value of ASCII character set for 
A1 and its equivalent message is ‘’’ (single quote). Similarly for A2, after removing even parity bit at MSB, 11 is 
the decimal value of ASCII character set and its equivalent message is ‘VT’ (Vertical Tab \v). 

For the same ASCII character ‘A’, if some other combination of two four bit BCD is interpreted, we will 
have two different ACB codes. Similarly, if parity bits are dispersed among the information bits, again there will 
be new sets of ACB codes. Further, some bits are intentionally inverted with the limits bounded by type of code 
chosen for adding parity bits. For example, (7, 4) hamming code can allow one bit inversion among a 7 bit code 
word that can be identified and corrected during crypto-decryption.  These operations can be selectively 
performed by crypto-encoder based on the selective keys to ensure the security of transmission of information 
from one end to another. 

III. CONSTRUCTION AND PROPERTIES OF MIXED PARITY CODES 

    Definition 9: If an intruder assumes the different combinations of meaningful message block as a correct 
message without having original key, that is known as message misinterpretation. For example, if the original 
message is “CODING DONE”, the intruder gets the message as “THEORY BORN” by brute force attack and 
will end with that message due to message misinterpretation. 
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Definition 10: If there is an interconnection between one ASCII characters to another in the crypto-decoding 
process, the correct message cannot be retrieved without identifying the correct ASCII characters one by one. 
Hence, if an intruder finds the wrong ASCII character at one point of time, whole output block will be altered to 
have different combinations. This is known as message dissemination. For example, if the intruder gets the 
wrong character at the 3rd ASCII character in “CODING DONE” during brute force attack as “COP”, he will not 
get the rests of correct combinations as “ING DONE” due to message dissemination effect. 

Definition 11: Bit error penetration is the similar effect of dissemination effect where the realization of error 
is done between groups of bits of same length instead of ASCII character. 
A. Criterions of Mixed Parity Code (MP code) 

The main purpose of our work is to construct a code that possesses combined error correction and 
cryptographic properties. This code should not compromise the required error control and security strength. 
Hence three measures are developed to satisfy these requirements. They are (1) Criterion for security, (2) 
Criterion for error control and (3) Criterion for crypto-coding. A good crypto-coding must satisfy all these three 
measures. 

1) Criterion for security: The proposed code will be mainly used for providing bit error penetration and 
message misinterpretation effects on huge section of the output block for an intruder without having correct key. 
Block number ‘Ь’ is introduced to measure the message dissemination and bit error penetration rates. The block 
number of a crypto-encoding function Ø, with the input vector x and the output vector Ø(x) is defined as  

      Ь= length of Ø(xi) / length of xi ,         (1) 
      where  i  є {1,2,3,….,(1-2k)} and ‘k’ is the total number of bits per input message bits 
                                                                                                                                       
2) Criterion for error control: The error control rate of the proposed code is determined by   the   pair wise 

hamming distance between the set of crypto-code words. If the Hamming distance is high value, it guarantees 
the large amount of error control rates for both error detection and error correction. The MP code must satisfy 
the following condition for reliable error correction capability.  

If Ø(xi) is the crypto-code word generated by MP code of length n= Ь.k,    (2) 
min Hd {ƒ(xi) ,ƒ(xj)} = min Hd {ƒ(Ø(xi)),ƒ(Ø(xj))}, where i ≠ j, i, j є {1,2,3,…., (1-2k)} and Hd is the Hamming 
distance 

In equation 2, ƒ(xi)  is the function that selects the number of bits equal to one character bits of ASCII code 
among the input xi and ƒ(Ø(xi)) is the function that selects the number of bits equal to one character bits of  
ASCII code among the output Ø(xi). In general, number of bits equal to one character bits of ASCII code is 7. 

3) Criterion for crypto-coding: It is described through increasing the maximum number of probabilities for 
retrieving message bits without correct key and high value of hamming distance for crypto-code words with 
good error control capability. It can be accomplished by (i) wrapping the crypto-code word length by dispersing 
parity bits among message bits, (ii) intentional bit inversion over crypto-code words based on hamming distance, 
(iii) increasing the security reliability of crypto-coding by doing the bitwise Boolean XOR operation, bit rotation 
and bit permutation functions over the crypto-code words. 
B.  Mixed Parity Codes 

Let us consider an [n, k,q] block code on the binary Galois field GF(q) of order 2, where n = r + k and n is 
number of bits in output crypto-code word, k is number of input message bits and r is number of parity bits Then 
the MP Codes are defined as follows. 

Definition 12: An [Ь.k, k, q] code С where block  number Ь = [(r/k) +1)] is said to be a Mixed Parity code 
with the encoding operation Ø , if it satisfies the following two conditions for all i and j with  i ≠ j, i, j є 
{1,2,3,…., (1-2k)}; 

1) From equation 1, Ь = n/k  ≥   2                                                                                                                    (3) 
2) From equation 2, min Hd (ƒ(mi) , ƒ(mj)) = min Hd (ƒ (Сi), ƒ (Сj)) where ‘m’ is the input message and ‘C’ is 

the Crypto-code word generated by the function ƒ(Ø(m)) 
Equation 3 shows that block number ‘Ь’ of Ø is lower bound by 2 for the existence of MP codes. Because 

minimum output length of a crypto-code word is to be double the length of input message bits for efficient 
crypto-coding of MP codes. For the construction of mixed parity code, this output block length (n) is achieved 
by mixing the parity bits with the input block length (k) such that the minimum bound of Ь is 2. 

Block number Ь must be high value for good security of the PM Code. Also, it should be a real number to 
avoid concatenation of extra redundancy bits at crypto-codeword output for message interpretation. 
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C. Properties of MP Codes 

In this section, we illustrate that the MP Codes posses the maximum possible message dissemination and 
error correction capability as desired in the design requirement. 

1) Strength of code word dissemination:  As per the definition of MP Codes, it has the block number Ь equal 
to n/k. Also, the crypto-coding operation Ø from ‘k’ bits into ‘n’ bits is done by the following consecutive 
operations: (1) performing error control functions such as parity bits generation of MP codes, (2) outputting the 
crypto-code word of length ‘n’ by random parity bits mixing with input message bits and (3) performing key 
based cryptographic functions such as bits permutations, bits rotations and Modulo-2 arithmetic functions over 
crypto-code words. Randomness in all these functions is the vital part of disseminating operation of proposed 
code. The strength of this disseminating power is proportional to the block number Ь. For example, if the input 
message bits length k is 63, there are 9 ASCII characters bits in k as each character having 7 binary bits. Then 
the output block length n is 126 where the block number is 2. If these bits are separated by 7 binary bits each, 
then there are 18 ASCII characters in the output block length ‘n’. 

2)  Strength of error correction: The optimal error correction capability of MP Codes depends on the 
selection of existing channel code for construction of MP Codes.  

Theorem 3: An [n,k,q] MP Code ‘С’ with encoding operation Ø is a Maximum Disseminating Code with 
number of correctable error ‘t’ is directly proportional to  Ь(Ø). 

Proof:  Generally, if Hd (Ci, Cj) = h, where ‘h’ is the hamming distance and i ≠ j, i, j є {1,2,3,…., (1-2n)}; 
Then,   error correction limit of (7, 4) Hamming code is t = [(h-1)/2]=1 since h=3.                                             (4) 

Equation 4 shows that 1 bit error correction is possible for every 7 bit codeword. 
If the (56,28) MP code ‘C’ with Ь(Ø)= 2 is constructed using (7, 4) Hamming code as a base code, each 

codeword has 56 bits out of which 8 ASCII characters can be realized for every 7 bits. Therefore, 8 error 
corrections can be achieved among the 56 bits at the rate of 1 error correction for every 7 bits.  
Then, error correction capacity of MP codes derived from (7, 4) hamming code is given as, 
[(n/7).t] where n = (Ь(Ø).k)                                                                                                                                  (5) 

This will lead to the probability of altering all the bits but limited to one bit per 7 symbols which is bound by 
chosen hamming code for construction of MP Codes. However, if error correcting capability ‘t’ of chosen codes 
is further increased, then the probability of inverting the bits per set of symbols can be greatly increased. 

3)  Strength of crypto-coding: The potential in good crypto-coding based on MP Code depends on proper 
selection of existing channel code. Since the priority of our design is cryptography through error penetration and 
correction capabilities by mixed parity bits, the chosen code must posses the good message misinterpretation 
phenomenon on the crypto-code words of MP code. For example, if the input block is collection of ASCII 
values, hamming code will exhibit all the required properties of crypto-coding. Further, the strength of crypto-
coding through MP Code can be increased by key based randomization in parity bit addition and bit inversion 
on the output bits of MP code. Also, if any crypto-coding operation on output block produces the meaningful 
message that will lead to the data misinterpretation to the intruder. This is an added advantage to the strength of 
crypto-coding. The strength of good MP codes depends on the process of resemblances of original message bits 
from the codeword of MP codes.  

4)  Existence of (n, k, q) MP code for the finite Galois Field of order q: The basic requirement for existence 
of MP Code is n = [Ь.k] where Ь is block number, ‘n’ is length of codeword and ‘k’ is length of message over 
Galois field of order ‘q’ [GF (q)]. The following considerations are valid for GF (q) for all MP code. 

Definition 13:  qx ≥ q+1 is valid for any q > 1 and x ≥ 1, Then, there exist an (n, k, qx) MP code with the 
condition n >k >x for finite Galois field. 

Definition 14:  All the 2k messages can always be assigned a codeword of length (Ь.k) such that all the 
codeword are in the domain of all the possible input messages of 2k. This is one of the major requirements of 
crypto-coding for the purpose of message misinterpretation towards the cryptanalysis by the intruder.  

If  (8, 4, 21) MP code is used where 2k=24=16 and Ь = 8 / 4 = 2 , all the 16 crypto-code words will assume 16 
ASCII characters  where each crypto-code word is one among the 128 combinations between 0-127 decimal 
values  of ASCII character set.  

Proof: we show that [Ь.(1- (r/n))] = 1 where the factor (1- (r/n)) is the probability of existence of original 
message symbols among the total length of the output symbol ‘n’. The probability factor (1- r/n) multiplied with 
block number Ь always yields the result 1 such that the function Ø produces a multiple number of message 
blocks in the output of MP Code. Again this will lead to the required data misinterpretation towards the 
cryptanalysis by the intruder. 
By substituting k = n – r  in equation (3) which gives, 
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n = [Ь (n-r)] where ‘r’ is number of redundancy bits among ‘n’.                                                                        (6) 
If equation (6) is rearranged ,  we will get   {Ь. [1-(r/n)]} =1                                   (7) 

Theorem 4:  For a given [n,k,q] MP Code over GF(2) where n is one output block size and k is one input 
block size, if X is the total number of output block sizes of MP Code generated by the crypto-encoding function 
Ø where  (n /Ь) = k, then Xj / k always produces ‘m’ number of input block size in the finite set of x є { x1 , x2 , 
x3,….,xp} where p= (1-2k)and j є {1,2,3,…., (1-2n)}. Also, ‘m’ is always divisible by the block number Ь. 
Therefore, ƒ(Ø(xi)= Xj= {xi1 || xi2 || xi3 || …. xi m}                                                                                                 (8) 
where m= Xj / k and i є {1,2,3,…., (1-2k)}.  
For example, if two output blocks of length (Xj ) 112 is generated by the (56, 28, 21) MP code,  
then, m=112 /28=4 and m/ Ь =2. 
D. Construction of MP codes 

The major consideration for construction of MP Code mainly depends on it usage for crypto-coding. Since 
the MP Code will undergo traditional cryptographic processes such as bit permutation, bit rotation, bit wise 
Boolean XOR operation, it will show the security strength against well-known attacks such as plain text attack, 
cipher text attack, brute force attack. Also, the error correction capability of the MP code must play the dual role. 
If redundancy bits are not flipped purposefully at the sender side, the whole error correction capacity of MP 
code will be retained for receiver side to correct the errors occurred during the transmission of crypto-code 
words over noisy channel. But, if part of the redundancy bits is flipped purposefully so as to increase the 
message dissemination capacity at the sender side using key based functions, then the receiver side will have the 
reverse key functions to retrieve the original redundancy bits. Then the error correction technique is applied to 
restore the original message. 

1) Choice of existing codes: Since the common message input format to computers is based on ASCII values 
whose binary symbol length is 7 for each character, the (7, 4) hamming code is chosen here to construct the MP 
Code.  

TABLE III 
Comparison of various codes for their error correction features 

Type of code 
 
 
 
 
 
 

           (1) 

Block 
size   
(n ,k) 
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Galois 
field 
GF(q) 
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Number 
of output 
bits in a 
codeword 
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bits (k) 
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Number 
of Parity 
bits (n-k) 

 
 
 
 

    (6) 

Number of 
error 
correction 
bits of block 
size in 
column (2) 

 
 
    (7) 

Error 
correction 
efficiency 
w.r.t     
           ‘n’ 
{[(7) / (4)] x 
100]} % 
 
             (8) 

Hamming 
code 
(Single error 
correction) 

(7,4) GF(21)  7   4   3     1 14.28571 

BCH Code 
(Single error 
correction) 

(15,11) GF(24) 60 44 16    4 6.66667 

BCH Code 
(Double error 
correction) 

(15,7) GF(24) 60 28 32    8 13.33333 

Reed-
Solomon 
Code (Single 
error 
correction) 

(7,5) GF(23) 21 15 6    3 14.28571 

Reed-
Solomon 
Code (Double 
error 
correction) 

(15,11) GF(23) 45 33 12    6 13.33333 
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The MP Codes can be constructed by using any one of the existing channel codes. However, the choice of 
selection depends on number of symbols in the input block, number of symbols in the output block, possession 
of cyclic and nonlinearity properties after adding redundancy bits, maximum number of bit penetration with 
minimum number of bit inversion. As for as MP code is concerned, the importance is given to plaintext 
dissemination and misinterpretation with parity bits mixing by key based function rather than simply the length 
of the output with parity bits during the outcome of encryption process. 

Also, Table II shows that the selection of (7, 4) is the better choice among some of the other existing codes as 
for as specified selection of input symbol block length is concerned. Also, it reveals that if the behavior of the 
communication channel is known, choice of hamming code is better than any other commonly used codes in 
terms of required number of reduced redundancy bits for crypto-coding with specified length. 

2) Method of making (56, 28) MP code from Hamming Code: The block size is so chosen that the output 
length of the block must be able to produce the meaningful ASCII characters by subdividing total length in 
terms of 7 symbols per characters. This is the required plaintext misinterpretation property at out crypto-coding 
technique. So, the total number of input bits must be divisible by both 4 and 7 as well as total number of output 
bits must be divisible by 7. Therefore, number of input binary symbols per encoding function Ø can be 28, 56, 
and 84… so on. The increase in input block size leads to the increase in probability of combinations of 
characters using output block size. If we choose, 4 ASCII characters for the encoding function Ø, then the input 
block size will be 28. Then, (7, 4) hamming code is used for generation of parity bits, there are 21 parity bits for 
each 4 bits of input bits. Now, the resultant bits are multiples of 7. That is, in our case, resultant bits are 49. 
Again another 7 redundancy bits can be generated such that one odd or even parity bit for every 7 symbols.  
This last 7 set of parity bits employs the vital role in bit inversion and rotation process in crypto-coding. 
Because, if we are able to retrieve the first generated 49 bits without any error at the decryption side, even 
though the whole 7 bits are inverted at encryption side, we will retrieve it using respective parity check 
algorithm. So, if this scrambled parity symbols block of 7 bits is effectively used for bit error penetration 
throughout the encryption process at crypto-coding, which will strengthen the overall security of the proposed 
MP code. Here we have generated 8 ASCII characters with code word size of 56 bits as the outcome of function 
Ø from the input of 4 ASCII characters with message size of 28 bits. So, the bit magnify number for the 
described example is 2. If the bit magnify number is further increased, the number of outcome of ASCII 
character also gets increased. This function will show the strength to the crypto-coding when the generated 
parity bits and ASCII characters are placed randomly among themselves to have message dissemination. 

3) Error correction mechanism of MP codes: As illustrated in the Table I, Hamming code possesses the 
maximum efficiency with specified number of bits. However, it has the limitations on bulk error correction in 
single code word. But, randomly placed parity bits along with the message bits may show bulk error correction 
probability up to some extent over the controllable noisy channel or known communication channel. In our 
example, with the aid of Table II, we can conclude that there is the possibility of correcting maximum of 7 bits 
but limited to one bit per 7 binary symbols of first 49 parity mixed message bits. Remaining 7 parity bits show 
the strength to the bulk error correction as that can be corrected with the knowledge of correctly recovered   first 
49 bits. 

Since the good crypto-coding requires the nonsystematic successive outputs, concatenation of parity bits to 
the message bits in MP codes need not be a systematic operation. So, these parity bits can be randomly placed in 
anywhere among the total length of output bits. But, only the knowledge of placement of parity bits is to be 
preserved such a way that it can be identified at the decoding process for retrieving original message from 
codeword or cipher text 
E.  Security of crypto-coding using MP codes 

The code word output of the MP codes is separable into distinct words in terms of specified input symbol size. 
It provides the greater plaintext permutation. Further, if error correction capability of the MP code is decisively 
used to perform the selective bit inversion process, it will provide higher degree of non-linearity in the output of 
crypto-coding.  

The procedure of parity bits mixing with message bits makes the MP code as one of most efficient tool for 
crypto-coding. For example, single codeword with 7 bits of (7, 4) hamming code will have 3 parity bits and 4 
message bits. If these 3 parity bits are placed in between the message bits with different combinations, the total 
number of combinations is 210. This number of combinations can be further increased by increasing input 
length size. Therefore, if key round is used to make these parity mixing combinations to preserve the reverse 
process at the decryption, this property of MP codes provides greater data misinterpretation for the cryptanalysis. 

As described in the section III.C, the in-built error correction technique of MP codes can be trickily used to 
strength the crypto-coding algorithm.  Although, if the length of the output block size is large enough, some of 
the mixed parity bits can be deliberately inverted to penetrate further data manipulation and rest of the mixed 
parity bits can be left out for overcoming the noisy communication channel. However, number of bits utilized 
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for these two purposes depends on choice of the base code for the construction of MP code, input message block 
size and output codeword block size of selected MP code.  

If the parity mixing, bit inversion, bit rotation and output block segregation in terms of input block size are 
efficiently performed with the help of key rounds as required by cryptography, the traditional method of 
substitution boxes for bit permutation can be removed. The alternative for the substitution boxes is one of the 
major criteria for the present cryptography algorithm, as this technique requires larger look up table for high 
through put and occupies large amount of memory size hardware implementation of traditional algorithms. 

Since the process of mixed parity bits provides the large number of combinations with minimum amount of 
bits, it shows the security strength against Known Plaintext Attack. Also, inclusion of bit inversion at encryption 
process and error correction at the decryption process with specified block size increases the probability of 
getting erroneous messages during Known cipher Attack. These two security properties collectively showing the 
strength to another well-known attack called Brute Force Attack which is mainly based on searching with all 
possible keys. Because, a single key can provide more number of combinations of message text for different 
crypto-coding functions of MP codes such as parity mixing, bit inversion, bit rotation and output block 
segregation for the specified set of block. This will lead to the computationally infeasible process with Brute 
Force Attack to retrieve the original message block with the stipulated time period as required by the present 
cryptography algorithm. 
F.  Factors influenced by MP codes for good crypto-coding 

The following factors are to be mainly considered for the design of cryptographically secured block cipher 
with high rate of error resilience using crypto-coding. 
(1) Choice of existing code based on maximum error correcting capability with fixed length of input and output 
block size, (2) Choice of input symbol based on character set of plaintext to be relevant to the output block size 
of chosen code (3) Proper positioning/mixing of the parity bits in the plaintext with key based preservation for 
achieving high error control reliability over noisy channel and (4) Round key based Boolean functions with bit 
rotations for penetrating non linearity in cipher text  

IV. ANALYSIS OF MP CODES FOR DIFFERENT BLOCK SIZES 

The strength of crypto-coding using proposed MP code depends on the probability of getting different 
messages of fixed length by (1) formulating the relationship between set of input messages and set of output 
messages, (2) mixing the maximum possible parity bits with message bits and (3) inverting some of the output 
bits limited to the error correction capabilities of chosen base code for making MP Code. 

In our work, we have chosen ASCII code for inputting message to crypto-coding system. This code has 128 
characters set with each of 7 bit length. If the number of input binary symbols to each encoding functions Ø is 
chosen as 28, the block size of MP code is (56, 28). 

Further, (7, 4) Hamming code is chosen as the base code for construction of (56, 28) MP code. So, there are 4 
input characters and 8 output characters which are segregated in terms of input character length. As listed in the 
Table 1, if one bit is inverted for each 7 bit of single character size so as to retrieve the originality later using 
appropriate error control algorithm of chosen code, there are 8 different bits can be inverted among the total 
output of 56 bits in our chosen MP code. 

If 128 ASCII characters set is considered for making input message, then the probability of the cryptanalysis 
function for retrieving at least one of the original characters among the 8 different characters of output becomes 
1/128 (0.0078125<<1). Also, the probability of the cryptanalysis function for retrieving all the 8 original 
characters is equal to 1/1288 (1.38777x10-17) which shows the computational hardness to restore the 
combination of original characters even with the small block size of 56 bits. 

The Table III illustrates the Statistical analysis of two different MP codes for cryptanalysis. These MP codes 
are constructed using different base codes of different block size as illustrated in Table 1.These two codes are so 
chosen since they only provide the basic requirement for choice of base code to construct the MP codes. That is, 
chosen block size of the input message relevant to base code must be divisible by the length (total number of 
bits) of the single character in the input message set to have a block number ‘Ь’ as real number. 

As our desired message set is ASCII code of 7 bit characters, the input message block sizes (56,28) from (7,4) 
hamming code with 7 input characters  and (70,35) from (7,5) Reed-Solomon Code with 15 input characters  are 
chosen for comparative analysis. Both of these MP codes have the block number ‘Ь’ equal to 2. 

Figure 5 depicts the realistic analysis of computational hardness of two different MP codes against 
cryptanalysis by Brute Force Attack. It clearly shows that the minimum amount of characters in the message set 
with small input block size will have less computational complexity.  
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TABLE IIIII 
Statistical analysis of two different MP codes for crypto-coding 

Base Code 
with block 
size 

(n,k) MP Code 
 with ‘Ь’ = 2 No. of 

ASCII 
characters 
in      
       ‘n’ 

No. of 
ASCII 
characters 
in   
        ‘k’ 

Probability (p) of retrieving 
original message size of ‘k’ with 
fixed no. of characters ‘N’ for 
input message set. p=  (1/N)k No. of 

input 
bits 

(k) 

No. of 
output 
bits 

(n) 
N=26 
(Alphabets) 

N=36 
(Alphanumeric) 

        (7,4) 
Hamming 
code 
(Single error 
correction) 

28 56 4 8 4.78865E-12 3.5447E-13 
56 112 8 16 2.29312E-23 1.2565E-25 
84 168 12 24 1.09809E-34 4.4539E-38 
112 224 16 32 5.25839E-46 1.5788E-50 
140 280 20 40 2.51806E-57 5.5963E-63 
168 336 24 48 1.20581E-68 1.9837E-75 
196 392 28 56 5.77421E-80 7.0317E-88 
224 448 32 64 2.76507E-91 2.493E-100 
252 504 36 72 1.3241E-102 8.835E-113 
280 560 40 80 6.3406E-114 3.132E-125 

(7,5) 
Reed-
Solomon 
Code  
(Single error 
correction) 

35 70 5 10 7.0838E-15 2.7351E-16 
70 140 10 20 5.01803E-29 7.4808E-32 
105 210 15 30 3.55467E-43 2.0461E-47 
140 280 20 40 2.51806E-57 5.5963E-63 
175 350 25 50 1.78374E-71 1.5306E-78 
210 420 30 60 1.26357E-85 4.1865E-94 
245 490 35 70 8.9509E-100 1.145E-109 
280 560 40 80 6.3406E-114 3.132E-125 
315 630 45 90 4.4916E-128 8.566E-141 
350 700 50 100 3.1817E-142 2.343E-156 

 

 
Fig. 5.  Analysis of iteration based computational hardness of MP codes for crypto-coding 
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However, even with the less amount of increase in characters of message set provides high level of 
computational hardness in retrieving the original message by searching all possible combinations of characters 
of specified length ‘k’. Also, there can be some tradeoff between choices of total number of characters ‘N’ in 
input message set and total number of characters Nc of entire plaintext for crypto-coding to maintain the 
computational hardness against cryptanalysis. Hence, the input message set must be chosen such a way that ‘N’ 
is to be high for lower amount of Nc and vice versa. 

V. CONCLUSION 

 A newly developed Mixed Parity Code (MPC) with its properties and applications were described for crypto-
coding technique. The bit magnify number was introduced to deal with the adoptability of the proposed MP 
Code to be used as a tool for efficient implementation of crypto-coding algorithm. Plaintext dissemination 
measured by block number ‘Ь’ for data misinterpretation and error resilience measured by minimum distance 
between code words were described. It has been shown that the choice of existing code to construct the MP code 
depends on its error correcting capacity in terms of minimal block size. Properties and consideration for the MP 
code were described by the three different criteria. Further, the mechanism of using MP code for constructing 
efficient block cipher was expressed. The possibility of dual role, namely intentional bit error penetration at 
encryption and unknown bit error correction at decryption, of MP Code was explained to increase the security 
strength against some of the well-known attacks. Two different statistical analyses of MP codes, based on the 
probability and Iteration techniques, were provided for showing strength of MP code in crypto-coding against 
some cryptanalysis. Finally, a relationship between total number of characters ‘N’ in input message set and total 
number of characters Nc of whole plaintext for crypto-coding using MP codes was accomplished for 
maintaining the computational hardness against brute force attack cryptanalysis. 
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