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Abstract----The steady flow in an incompressible, magnetohydrodynamic (MHD) Oldroyd 8-constant 
fluid in a porous medium with the motion of an infinite plate is investigated. Using modified Darcy’s law 
of an Oldroyd 8-constant fluid, the equations governing the flow are modelled. The resulting nonlinear 
boundary value problem is solved using the homotopy analysis method (HAM). The obtained 
approximate analytical solutions clearly satisfy the governing nonlinear equations and all the imposed 
initial and boundary conditions. The convergence of the HAM solutions for different orders of 
approximation is demonstrated. For the Newtonian case, the approximate analytical solution via HAM is 
shown to be in close agreement with the exact solution. Finally, the variations of velocity field with respect 
to the magnetic field, porosity and non-Newtonian fluid parameters are graphically shown and discussed. 
Keywords-Oldroyd 8-constant fluid, Homotopy analysis method, Porous medium, Magnetohydrodynamics 
(MHD) 

I. INTRODUCTION 
Several fluids including butter, cosmetics and toiletries, paints, lubricants, certain oils, blood, mud, jams, jellies, 
shampoo, soaps, soups, marmalades and etc have rheological characteristics and are referred to as non-
Newtonian fluids. The rheological properties of all these fluids cannot be explained by using a single 
constitutive relation between stress and shear rate which is quite different from those viscous fluids [1] and [2]. 
Such an understanding about non-Newtonian fluids forced researchers to propose more models of non-
Newtonian fluids. In general, the classification of non-Newtonian fluid models is given under three categories 
which are called the differential, the rate and the integral types [3]. In recent years there have been many 
analytical and numerical studies devoted to the flows of Oldroyd-B (3-constant) fluids which is a subclass of the 
rate type fluids, see [1-5]. Recently, Hayat et al. [6-7] carried out studies of the flow of an Oldroyd 6-constant 
fluid in different configurations using the homotopy analysis method (HAM). More recently, Wang and Ellahi 
[8], Ellahi et al. [9] and [10], Hayat et al. [11], Khan et al. [12] and Sajid et al. [13] investigated the steady state 
flow of an Oldroyd 8-constant fluid in different configurations using homotopy analysis method (HAM) and 
some other methods. The Oldroyd 3-constant fluid for a unidirectional steady flow does not exhibit the non-
Newtonian property. For this reason some steady flows may be well described by the Oldroyd 8-constant fluid, 
and thus with this in mind, the chosen model in the present article is of the Oldroyd 8-constant type. The 
ensuing governing differential equation is non-linear. We solve the non-linear boundary value problems using 
the homotopy analysis method [14]. This method has already been successfully applied to problems related to 
non-Newtonian fluids [6, 7, 8, 9, 15 and 16]. To the best of our knowledge, no investigation has been reported 
so far which discusses the moving flat plate MHD flow of an Oldroyd 8-constant fluid in a porous medium, and 
thus the objective of the present study is to examine this problem. Constitutive equations of the Oldroyd 8-
constant fluid are used and the modified Darcy law is being utilized. The solution to the resulting problem is 
generated by HAM. Tables show the convergence of the HAM solutions for different orders of approximation 
and for the Newtonian case the approximate analytical solution via HAM is in close agreement with the exact 
solution. Graphs are plotted in order to illustrate the variation of the velocity profile with respect to the 
embedded flow parameters.  
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II. MATHEMATICAL FORMULATION 
A Cartesian coordinate system is chosen by considering an infinite plate at 0y  . An incompressible fluid 

occupying the porous space conducts electrically by exerting a uniform magnetic field B  , and is applied 
normal to the plate. The electric field is not taken into consideration and the magnetic Reynolds number is 
assumed to be small so that the induced magnetic field does not need to be accounted for. The Lorentz force 

BJ under these conditions is equal to 2B  V  . Here J  is the current density, V  is the velocity field, 
is the electrical conductivity of fluid.  
The governing equations are 

0div V  ,           (1) 

2( . )  p div B
t

  

 
        

V
V V S V R ,      (2) 

in which   is the fluid density, p is the pressure, and R  is Darcy’s resistance. 

The extra stress tensor S for an Oldroyd 8-constant fluid satisfies 
p  T I S , 
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whereT  is the Cauchy stress tensor, S  the extra stress tensor, I  the identity tensor, L  the velocity gradient, 

A L+ LT  the first Rivlin – Eriksen tensor,  the dynamic viscosity of  fluid and 
D
Dt

 is defined by

TD d
Dt dt

  
S S

LS SL , in which 
d
dt

indicates the material derivative.  

For steady unidirectional flow, the extra stress tensor and the velocity are denoted respectively, as  
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Here ( )u y is the velocity in the x direction. 

 According to M. Khan et al. [12], the Darcy resistance in Oldroyd 8-constant fluid satisfies the following 
expression 
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where 
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  is the porosity and k  is the permeability of the porous medium. With the help of Eq. (4), the continuity 
equation (1) is satisfied identically and the x-component of the momentum equation (2) along with Eqs. (3) and 
(5) for steady flow in the absence of the pressure gradient, and the non-linear model equation is obtained as  
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where 

N B


 . 

The last fifth, non-linear, term in equation (6) represents the porous effects in the model equation. In order to 
solve this equation, the proficient method HAM is resorted, the corresponding results with the porous effects are 
taken into consideration, and the influence of pertinent parameters on the fluid motion is graphically underlined.  

III. FLOW ANALYSIS 
The steady flow of an incompressible, electrically conducting Oldroyd 8-constant fluid occupying the space

0y   is considered. The fluid is bounded by an infinite non conducting rigid plate at 0y  . A uniform 

magnetic field B is applied normal to the plate. The flow is maintained due to the sudden motion of the plate, 
and there is no flow far away from the plate. The governing nonlinear differential equation is ODE (6) and the 
boundary conditions are 

0  for  0,
0 as ,

u U y
u y
 

 
          (7) 

where 0U is the constant plate velocity. 

Introducing the following dimensionless variables  
4 4

0 1 0 2 0

0 0 0

1,  ,  ,  , ,  U U Uu Ny f M
U U K kU

  
  

  
          (8) 

where  





   is the kinematic viscosity. 

The problem (6) with conditions (7) now become 
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   (9) 

with    0 1  and 0.f f            (10) 

IV. ESSENTIAL IDEAS OF HAM 
Consider 

 , 0u r t    ,                    (11) 

which is a nonlinear equation in a general form, where  indicates a nonlinear operator,  ,u r t implies a 
unknown function. By using homotopy analysis method, the zeroth-order deformation equation is constructed as  

         01 , ; , , , ;r t u r t ћ r t r t               ,     (12) 
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where  0u r,t  denotes an initial guess of the exact solution  ,u r t  ,  r, t 0  an auxiliary function,    

an auxiliary linear operator, 0ћ   an auxiliary parameter, and  0,1 is an embedding parameter. 

It should be noted, that the auxiliary parameter ћ  which is being featured in HAM can be chosen freely. 
Obviously, when 0,1  Eq. (12) holds for 

   0, ;0 ,r t u r t  ,    , ;1  ,r t u r t   

respectively. Then as long as   increases from 0 to1 , the solution  , ;r t  varies from the initial guess 

 0u r,t  to the exact solution  ,u r t . 

By using Taylor theorem, Liao [17] has expanded  , ;r t  in a power series of   as follows 

     
1

              , ; , ;0 ,m
m

mr t r t u r t 



           (13) 

where 

 
 , ;1, 0!

m

m m
r t

u r t
m









│                  .       (14) 

The convergence of the series (13) depends upon the auxiliary function  ,r t , auxiliary parameter ћ , 

auxiliary linear operator  and initial guess  0 ,u r t . If these are selected properly, the series (13) is 

convergence at   1 , and one has 

     0
1

, , ,               
m

mu r t u r t u r t




  
                                                                                     

(15) 

Based on Eq. (14), the governing equation can be derived from the zeroth-order deformation equation (12) and 
we can define the vector    

    0 1( , ) , , , , , ( , )n nu r t u r t u r t u r t 


. 

Differentiating m-times of zeroth-order deformation equation (12) with respect to   and dividing them by !m    
and also setting 0 , the result will be so-called mth-order deformation equation 

       1 1, , , , ,m m m m mu r t u r t ћ r t u r t  
            (16) 

where 

0  , 1
1  , 1m

m
m
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

 
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(17) 

 
 

 
1

1 1
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1, , , 01 !

m
m

m m mm
m
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m

 

 


   
        

    │      (18) 

THEOREM 3.1 (Liao [17]): 
The series (15) is convergent to the exact solution of (11) as long as the series is convergent. 

V. SOLUTION OF THE PROBLEM 
Now to solve the non-linear ordinary differential equation (9) subject to boundary conditions (10), the method 
HAM is applied to give an approximate, uniformly valid and analytic solution. For the HAM solution, the initial 
guess function is chosen to be in the form  

 0f e              (19) 

and 
f f             (20) 
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as the auxiliary linear operator satisfying 

 1 2 0,C e C e             (21) 

where 1C  and 2C  are arbitrary constants. 

It is very significant that one has great freedom to choose auxiliary objects in HAM in accordance to the rule of 
its solution expression. Moreover, any value of the initial operator may be selected which yields rapid 
convergence in the given domain. In the present problem, the flow domain is semi-infinite and therefore having 
the boundary condition at infinity, an initial operator of the form (20) which satisfies Eq. (21) is chosen. If 

 0,1q is the embedding parameter and ћ  is the auxiliary nonzero parameter then we have: 

Zeroth-order deformation 

       01 , ,q f q f qћ f q            ,      (22) 

   0, 1,   , 0,f q f q            (23) 
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d
q q
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 
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          
                          

  

   



 (24) 

Mth-order deformation problem 

     1 ,mm m mf f ћ   
             (25) 

   0 0,      0,m mf f            (26) 
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0,    1,     
1,    1.m

m
m




 


          (28) 

MATHEMATICA is used to solve the set of linear equations (25) with conditions (26). It is found that the series 
solution form is given by 

  5 4 2 4 4 2 41 12 9 9 12 3 3 ...
24

f e e e e e K e Ke Ke                          

              4 2 9 6 8 416 6 720 720 240
5760

Me Me ћ e Kћe Kћe Kћ e                   

            8240 .....K ћe             (29) 

The approximate analytical solution given by (29) contains the auxiliary parameter ћ , which influences the 

convergence region and rate of approximation for the HAM solution. In Fig.1 the ћ - curve is plotted for  f   

when 5, 1M K       at 3th-order approximation.  

Table 1 shows the convergence of the HAM solutions for different orders of approximation. This implies that 
the 3rd order is the appropriate order of approximation to be chosen. 
Table1 
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 Convergence of the HAM solutions for different orders of approximation when 3M  and 1K      
Table 1 

Order of 
approximation 

(0)f  '(0)f  ''(0)f  

1 1 1 1 
2 1 1.245 1.84 
3 1 1.48351 2.8564 
5 1 1.48351 2.8564 
8 1 1.48351 2.8564 

Fig. 1 clearly elucidates that the range for the admissible values of ћ  is 0.5 0.0ћ   . These calculations 
indicate that the series solution as given in Eq. (29) converges in the whole region of   when 0.2ћ    . 

 

Fig.1. ћ -curve 

 

Fig.2.  Velocity profile for MHD parameter .M  
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Fig.3. Velocity profile for porous parameter when .K  

 
Fig.4. Velocity profile for parameter  . 

 

Fig.5. Velocity profile for parameter  . 
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VI. RESULT AND DISCUSSION 
 In this section, the graphical illustrations of the velocity profiles as shown in Figures 2-5 are described. These 
graphs have been determined for the MHD flow of the Oldroyd–8 constant fluid in a porous medium over a 
moving flat plate. The emerging parameters here are  
 (1) M  is the magnetic field parameter,  

 (2) K  is the porous parameter, 

 (3)  & are the material constant parameters.   

In order to illustrate the role of these parameters on the velocity profile of ( )f  , the Figs. 2 - 5 have been 
displayed.  

Fig. 2 is prepared to see the effects of applied magnetic field (Hartman number) M on the velocity profile. 
Keeping , , ,K ћ  fixed and varying M , it is noted that the velocity profile decreases by increasing the 
magnetic field parameter M . Clearly, we observe that with increasing the values of M , the velocity profile of 

( )f   decreases, in fact this is because of the effects of the transverse magnetic field on the electrically 
conducting fluid which gives rise to a resistive type Lorentz force which tends to slow down the motion of the 
fluid.  

Very interesting situation is observed from the results in Fig. 3. By increasing the porous parameter K  
whiles the other parameters ,, ,M ћ   are fixed, would lead to a decrease in the velocity profile. This is 
physically due to the fact that by increasing the values of K  the medium would appear to be some less porous 
and thus this increases the friction forces, and would then reduce the flow of the fluid.   
        Fig. 4 shows the effects of the material constant parameter on the velocity profile when ,, ,M K ћ  are 
fixed. It is of interest to notice that by increasing the parameter , this would lead to an increase in the velocity 
profile (this is much related to decrease in the boundary layer thickness). This is in fact true since by increasing 
the values of   would then reduce the friction forces, and, thus, assists the flow of the fluid considerably; and 
hence the fluid moves with greater velocity.   
      Fig. 5 shows the effects of the other material constant parameter  on the velocity profile when ,, ,M K ћ  
are fixed. It is worth noticing that by increasing the parameter  would lead to a decrease in the velocity profile 
(this is much related to increase in the boundary layer thickness). This is because of the fact that increasing the 
values of   would increase the friction forces, and, thus, slow down the motion of the fluid. 
Table 2 shows that for the Newtonian case, the approximate analytical solution via HAM is in close agreement 
with the exact solution. Thus this verifies the form of the HAM solution for this problem.  
Table2 

Illustrating the variation of   0f   when .1, 1M K  and 0   i.e. Newtonian case using HAM and 
exact solution (Faisal et al. [5])  

Table 2 

 
z 

'( )f z  

HAM Exact [5] 

0 1.00675 1.04881 
.1 0.910332 0.944381 
.2 0.823149 0.85035 
.3 0.744316 0.765683 
.4 0.673032 0.689445 
.5 0.608575 0.620798 
.6 0.55029 0.558986 
.7 0.497588 0.503329 
.8 0.449933 0.453213 
.9 0.406842 0.408088 

1.00 0.367877 0.367455 
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VII. CONCLUDING REMARKS 
In this paper, we have modelled the governing equation for steady and magnetohydrodynamic flow of an 
Oldroyd 8-constant fluid over a plate in a porous medium and determined the corresponding velocity field. The 
HAM is used to solve the governing non-linear second-order differential equation. The obtained solution 
indicates the effects of material constant parameters, porous parameter and the magnetic field. It is shown that 
an increase in the applied magnetic field leads to a decrease in the velocity due to the resistive Lorentz force.  
From the presented analysis, the main observations are described as follows: 

i. The behaviours of  and  on the velocity  f   based on the graphs are   quantitatively opposite in 
nature. 

ii. The flow characteristics subject to M and K on the velocity components based on the graphs leads to 
the same effects. 

iii. The results corresponding to viscous fluid can be obtained by choosing 0   .    
iv. The convergence of the HAM solutions for different orders of approximation is demonstrated.  
v. For the Newtonian case, the approximate analytical solution via HAM is shown to be in close 

agreement with the exact solution. 
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