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Abstract— Most applications in different fields (automotive, robotics, medical…) take advantage of the 
proven performance by artificial neural networks to solve their most complex problems. The architecture 
chosen for implementation is the multilayer perceptron that uses retro propagation as a learning 
algorithm. This article presents modular hardware implementation of multilayer perceptron architecture 
of artificial neuron network ‘ANN’, in the FPGA platform according to two models (parallel and mixed 
hardware implementation), and the comparison between these two implementations in terms of hardware 
resources and execution time. The two implementations are based on the proposed module of a formal 
neuron with the sigmoid activation function. 

Keyword-ANN, hardware resource, execution time, FPGA, module of a formal neuron. 
I. INTRODUCTION 

The neurons are nerve cells that have the ability to process information in the human brain. They are 
interconnected and they operate in parallel in order to realize, with great speed, tasks of perception that are not 
within the reach of powerful modern computers. 

These properties have contributed to the appearance of artificial neural networks, which are currently used in 
a wide variety of applications in science and engineering, such as classification and pattern recognition [1][2]. 
The ANN is consisting of layers of neurons that are responsible for the classification of data or learning. 
Compared to other popular machine learning algorithms, such as Bayesian network and ″ support vector 
machine″ (SVM),the ANN presents numerous advantages, such as simplicity of structure, the parallelism of 
calculation, amelioration of  classification performance  and the adaptive learning parameters[3] [4]. 

The most used architecture of artificial neuron network is the multilayer perceptron (MLP) proposed by 
Gibson and al. [5]. The MLP is a complete connection structure, which uses sigmoidal functions such as 
activation of neurons. Its features are based on the ability to learn and solve complex problems, as optimization, 
classification and pattern recognition [6]. There are several learning algorithms; the most used with this type of 
architecture is the algorithm of retro propagation of errors (Back pro) which simulates the learning phenomenon 
by the error in the presence of a supervisor. This is an optimization algorithm which aims to determine the best 
weight possible connection. 

However, the properties of artificial neuron network require an efficient hardware implementation circuit [7], 
hence the use of a platform capable of implementing these ANNs and use the   parallelism in processing and 
reconfiguration [8]. 

Recently, the field-programmable gate array (FPGA)have been used in many applications requiring the 
implementation of ANNs, because the programmable logic offers more flexibility, speed and space to the 
implementation of logical elements[9]. It also enables the design of hardware architectures which synthesize the 
great neural networks consisting of hundreds of neuron units [10]. Thus, several attempts are reported in the 
literature that deals with the design of application--Specific Integrated Circuit (ASIC) comprising a plurality of 
processing units in parallel. However, related to principles` design of ASICs, the networks obtained were 
limited by the size and type of algorithm implemented [1]. 

Currently, the field-programmable gate arrays (FPGA) are the preferred reconfigurable hardware platform. 
The current FPGAs offering performance and integration density of logic elements similar to ASICs with, too, 

Flexibility of design cycles / test faster. Also we find them frequently used in the fields of research and in 
industrial applications [1]. 

This article discusses in detail the hardware implementation of the Multilayer Perceptron including all 
neurons that have a sigmoid activation function, in the FPGA platform.  
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The article also discusses two types of implementations: The first is a parallel implementation and the second 
is considered as a mixed implementation because it contains a series and parallel implementation at the same 
time. These two implementations use megafunctions designed by the builders of the FPGA platform, 
manipulating real data in a floating point format with 32 bits (norm IEEE-754). 

The article is structured as follows: After an introduction we begin Section II by defining some notion on 
artificial neural networks; Section III presents the implementation details of the two architectures (parallel and 
mixed), Section IV shows the results of tests performed during the implementation, and finally a conclusion of 
this article. 

II. THEORY OF NEURAL NETWORKS 

The artificial neural networks are mathematical models used to model two performances of the human brain: 
learning from a database of examples and generalization on examples not seen in the learning phase. 

The artificial neuron network is a set of formal neurons (W.MCCulocch etW.Pitts) interconnected to achieve 
a well-defined task; each formal neuron is considered an elementary processor which receives at its input a 
number of parameters coming either upstream neurons or from the sensor component of the application device 
realized. These inputs are connected to the neuron by weights representing the strength of the connection called 
synaptic weight. This elementary processor has a single output, which in its turn, powers downstream neurons. 
Indeed the neuron performs a number of mathematical operations on its inputs: Multiplying each entry by its 
synaptic weight, summing the weighted inputs, and transfer this sum to the output through a function called an 
activation function or transfer function (e.g. Fig. 1). 

 
Fig 1. Schema of a formal neuron 

The construction of RNA is firstly opting for the choice of architecture, namely, the manner in which these 
neurons are to be interconnected. Among the most architecture used in the literature, we find multilayer 
perceptron (MLP); this architecture is composed of an input layer, one or more hidden layers and an output layer 
(e.g. Fig. 2 [1]). 

The input layer receives the input parameters for the task to accomplish. The hidden layers are used to 
determine the nonlinear frontiers and the output layer produces the result of calculation [11]. 

 
Fig 2. Schema of a multilayer perceptron 
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Secondly, using an adequate algorithm to adjust the synaptic weights of different connections. There are 
several learning algorithms; the most used with MLP is the algorithm of error back propagation (Back pro) 
which simulates the learning phenomenon by the error. 

The use of this algorithm is to provide initially random values to synaptic weight, then present successively 
the elements of the training set to the network input and be evaluated for each element to the basis example the 
observed error in the output of each neuron; thereafter, exploit the value of this error to adjust the synaptic 
weights, the objective is to minimize the overall error using the method of gradient descent. 

The application of this algorithm requires a number of steps: 
• Calculation of the observed output: 

After choosing architecture as example (e.g. Fig. 2), synaptic weight of the entire network is initialized with 
random values, and then the neuron of the input layer receives the parameter values of each element of the 
example base and transmits them to the neurons of the first hidden layer. In this layer each neuron calculates its 
own output according to equation (1): 
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The jY   outputs will be used later as inputs to the next layer and this process will continue until the output 
layer whose neurons will calculate their observed outputs according to equation (2): 

1

( . )
n

k kj j
j

Y f W Y
=

=                    (2) 

 
Fig 3. Example of the architecture of a MLP network 

• Calculating global error: 
The interest of this step is to calculate the global error observed (3) to the output network, which will be 

minimized to find the best possible correction for each synaptic weight. 
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With: 
( )E n  = the global error. 

( )jd n  = desired output. 

( )jY n  = observed output. 
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C   = output layer of the network. 
To minimize this error, we must provide to each synaptic weight Wji   the correction ∆Wji according to the 

equation (4): 

( )
( )ji

ji

n
W

w n
η ∂ΕΔ = −

∂
           (4) 

The calculation of the equation (4) requires an activation function. Several activation functions exist in the 
literature, among them the Gaussian and the sigmoid functions (e.g. Fig. 4). 

 
Fig 4. Sigmoid and Gaussian function 

The transfer function most used in multilayer perceptron is the sigmoid function because it is an infinitely 
differentiable function, and the equation (5) shows the sigmoidal activation function and (6) its derivative: 
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The difficulty in applying this rule is in the calculation of the partial derivative
( )

ji

n

W

∂Ε
∂

  which is not evident 

that only for the neurons of the output layer. To alleviate this difficulty, the calculation of this derivative is 
performed in the output layer to the input layer, where the name back- propagation comes. The synaptic weights 
of each neuron in the output and hidden layer are discounted using the delta rule: For the output layer (7) and for 
the hidden layer (8): 

( ) ( 1) ( ) ( )ji ji j iW n W n n y nηδ= − +                 (7) 

With: i = the last hidden layer. 

          jδ  = local gradient ( ( ) ( )(1 ( )))j j je n y n y n= −  

( ) ( 1) ( ) ( )ji ji j iW n W n n y nηδ= − +  (8) 

With: i = previous layer. 

      ( ) ( )(1 ( ))j j jn y n y n kδ = −   hidden layer ( ) ( )kjk n w nδ   

In summary, the application of the algorithm on a multilayer perceptron requires two essential steps for 
calculating each element of learning base (e.g. Fig. 5): 

• The first is the propagation of the input data of the first layer to the last (propagation). 
• The second is the propagation of error signals of the last layer to the first (back-propagation). 
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Fig 5. Propagation and back-propagation path 

III. DETAILED DESIGN AND IMPLEMENTATION 

This section describes in detail the various modules required for parallel and mixed implementation (serial 
and parallel) of MLP. 

The multilayer perceptron in the learning and generalization phase manipulates data in the form of real 
numbers, which requires to be encoded according to a synthesizable format by the FPGA platform. There exist 
two possible representations: the fixed-point representation (FXP) and floating point (FLP). 

• The FLP representation: 

 
Fig 6. FLP representation 

Generally, a FLP number is represented as: 127( 1) 2 1,S EX M−= − × × with 0 255E< < , which is a 
representation of coding of real numbers (norm IEEE-754). This coding provides a standardized representation 
of real numbers, either in 32 bits (e.g. Fig. 6 [1]) (single precision), 64 bits (double precision) or 80 bits 
(extended). 

• The FXP representation: 

 
Fig 7. FXP representation 

The FXP format is illustrated in (e.g. Fig. 7 [1]); it contains 2 parts, the integer part 1wB −   to 4B  and the 

fractional part 3B to 0B . The point is located at a definite site. It is a representation less used because it has a 
low precision because of lost digits to the right of the decimal point [1]. 

In this article, the data representation of the MLP in the form of real numbers concentrated on floating point 
representation at 32 bits, for an efficient MLP network in terms of accuracy. 
A. Implementation of a formal neuron 

The basic element of design of the MLP network with the VHDL hardware description language is the design 
of the neuron for transforming its inputs to the output according to the following steps: 

1)  Multiplication of inputs by its synaptic weight. 

2)  Summation of multiplication result. 

3)  Transfer the summation with a sigmoid activation function. 

The design of formal neuron with the VHDL hardware description language can perform very complicated 
and difficult mathematical functions to implement in FPGA platform, as division and exponential which are 
used in the sigmoid function. The solution proposed in this paper allows implementing blocks megafunctions 
that have given the perfect solution while designing. The megafunctions are specific blocks that use effective 
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methods of designs to create complex applications. These are blocks offered by the constructors of software 
simulation QUARTUS which is ALTERA software for the analysis and synthesis of the HDL designs. It also 
allows compiling designs and simulating design results in terms of resources used and execution time. These 
blocks named IP (Intellectual Properties) enable the synthesis complex functions as (memory, multiplier, 
comparator, etc.  ...). 

The megafunctions include complex functions useful for the design of formal neuron and artificial neuron 
network; they offer an appreciable gain in design time compared to coding a new block and provide access to 
the functionality of the internal architecture of megafuctions; registers and other simple functions, and the 
choice of representation of data in 32 bits or 64 bits. 

The design of the formal neuron requires the use of several megafunctions blocks, among these blocks [12] 
[13]: 

• Addition: block megafunction that implements the functions of addition and subtraction with a floating 
point representation of the IEEE-754 standard. 

• Multiplication: block megafunction that implements the functions of multiplication. 
• Exponential: it is an interesting megafunction block when designing because it implements the 

functionality of the complex exponential function. 
• Division: block megafunctions also interesting because it implements the functions of division and 

inversion. 
The combination of these blocks has helped design the formal neuron with sigmoid activation function 

according to the following scheme (e.g. Fig. 8 [12][13]): 

 
Fig 8.design of the formal neuron 

In the rest of article, the formal neuron used in the design of artificial neuron network will be modular as 
shown in the following scheme (e.g. Fig. 9): 

 
Fig 9. Schema of the modular formal neuron 

B. Parallel implementation 

The first implementation of artificial neuron network is a parallel implementation; artificial neuron network is 
a network that interconnects several neurons to achieve a well-defined task. This implementation requires a 
formal neuron with sigmoid function, which manipulates data in 32 bit floating point FLP, and then connects 
these neurons according to desired architecture. Each ANN architecture requires an input layer, one or more 
hidden layers (a single hidden layer is recommended [11]), and an output layer. In the implementation of ANN, 
the outputs of the neurons of a layer represent the inputs of the neurons of the next layer. 

Example (e.g. Fig. 10): Implementing an architecture containing 3 neurons in the hidden layer and 2 in the 
output layer. 
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Fig 10. Design of the parallel implementation of the MLP 

The specific constraints of this method in FPGA platform is the consummation of the memory area, we must 
take into consideration that the use of megafunctions blocks consumes a lot of space in the FPGA platform. 
C. Mixed implementation 

 
Fig 11.design of the mixed implementation of the MLP 

The second implementation is a mixed implementation (serial and parallel), which all the layers (hidden and 
output) contain a single neuron which deals with the complete calculation of the layer, to build an artificial 
neurons network capable of performing a specified task. The interconnection of these neurons (layers) requires a 
number of blocks to guarantee both the timing and the proper functioning of the MLP (e.g. Fig. 11). 

1)  Block 1 

 
Fig 12. Schema of the Block 1 

This block has two functions: the first is to generate the synaptic weights memorized in the memory of all the 
neurons in the hidden layer ( iW ) at times well defined and the second is to choose the right moment to activate 
the block 2. This requires working with a block that is both a counter and a memory. As soon as the neuron, 
which represents the hidden layer, Receives the vector iX at its input from the input layer, this block, generates 
the memorized synaptic weights corresponding to the first neuron, then successively generates the synaptic 
weights of the other neurons of this layer based on clock edges. With regard to the activation signal of the 
second block, block 1 counts the number of clock cycle required for calculating the output iY  to enable the 
block 2. 
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2)  Block 2 

 
Fig 13.schema of the Block 2 

The functioning of this block is similar to block 1. As soon as this block receives the activation signal from 
the block 1, meaning that the outputs of the hidden layer are available, the block 2 controls demux 1 which will 
look after to routing the output iY arriving in series to the inputs of the second neuron representing  the output 
layer. Block 2 then generates, in the same manner as the block 1, the synaptic weights memorized. When the 
calculation is completed for this neuron, this block controls demux 2 which can display output to C1 and C2. 

IV. TESTS AND RESULTS 

The two VHDL implementations of artificial neuron network are synthesized on a FPGA platform of the 
family Altera Cyclone II Version EP2C70F896C6. To test the design, we have performed several tests on this 
network; these tests provide to the network all the necessary values (Synaptic weights and the inputs of the 
network). The test has been performed on a simple example that provides the network a vector of 4 parameters 
and 2 outputs. The topology chosen for this network is (4, 3, 2), 4 inputs, 3 neurons in the hidden layer and two 
neurons in the output layer, and this is valid for two implementations (parallel and mixed). The two ANN 
architectures are capable of test one or more examples not seen in the learning phase of the ANN; this requires 
one or more test vector for the example tested and final synaptic weights as shown in Table 1. These synaptic 
weights are determined during the learning phase, which provides the best synaptic weights to simulate this 
application. This phase was performed in the same network in C + + on Linux and has allowed to obtain the 
synaptic weights that will be exploited in the VHDL network. The simulation of the synthesized networks is 
performed using the option VECTOR WAVEFORM of Quartus II 9.1 software. 

TABLE I. 
The example tested and final synaptic weights 

  
Value 

Floating point 
representation in 32 bits 

(hexadécimal) 
Neuron 1 of the hidden 
layer 

Wi11 -0.893062 BF649FA4 
Wi12 2.894112 40393921 
Wi13 -1.056650 BF87404E 
Wi14 3.849348 3F765AEE 

Neuron 2 of the hidden 
layer 

Wi21 -3.279809 BF51DB22 
Wi22 6.124747 40C3F7CE 
Wi23 -3.293418 C052C083 
Wi24 9.450170 41173333 

Neuron 3 of the hidden 
layer 

Wi31 -3.157932 C04A0C49 
Wi32 2.302409 401353F7 
Wi33 -3.287087 C0522F1A 
Wi34 2.299887 401322D0 

Neuron 1 of the output 
layer 

Wj11 0.827811 3F53B6C8 
Wj12 6.815142 40DA154C 
Wj13 -5.542226 C0B159B3 

Neuron 2 of the output 
layer 

Wj21 -0.822810 3F52A305 
Wj22 -6.821629 C0DA4A8C 
Wj23 5.468048 40AEF9DB 

Output 1 of the two 
networks 

C1 0.846 3F589374 

Output 2 of the two 
networks 

C2 0.154 3E1DB22D 
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The synaptic weights in Table 1 are used in the two architectures of artificial neuron network, in the parallel 
architecture as input for each neuron, and in the second mixed architecture the synaptic weights are stored in the 
two blocks and in the second mixed architecture synaptic weights are stored in the two blocks, so that they are 
provided to the neurons which represent the hidden layer and the output layer. The table also shows 2 outputs 
C1 and C2 when testing two implementations. 

TABLE II. 
The result of comparison between the parallel and mixed implementation 

 Parallel architecture Mixed Architecture 
Execution time 1.78 us 1.9 us 
Surface in the FPGA 
platform 

Registre 25989 (38%) 9887 (14%) 
Combunational functions 34492 (50%) 13889 (20%) 
Logic element 39202 (57%) 15438 (23%) 

The result of two implementations allows comparing the two architectures in terms of hardware resources and 
execution time. The analysis of this comparison illustrated in Table 2 show the following two points: 

In terms of resources as shown in Table 2, parallel architecture requires a large space of the platform relative 
to the mixed architecture. By cons, in terms of execution time, the parallel architecture is relatively faster than 
the mixed architecture. However, this time difference is negligible because we are talking about a few 
nanoseconds. The mixed architecture that implements a multilayer perceptron remains an ideal architecture 
since it offers advantages of implementations in terms of resources unlike to the parallel architecture whose 
development is limited. 

V. CONCLUSION 

This paper has examined the technical of hardware implementation of an artificial neuron network (MLP type) 
in the FPGA platform, and the impact of the use of the data represented in floating-point on 32-bit on precision 
of calculations. The document also gave comparative results between two implementations (parallel and mixed), 
which allowed to highlight the performance of the mixed hardware implementation of the MLP network. 
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