
Parallel and Mixed Hardware
Implementation of Artificial Neuron

Network on the FPGA Platform
ATIBI Mohamed #1, ATOUF Issam#2, BOUSSAA Mohamed #3, BENNIS Abdellatif #4

Laboratory of information processing, Hassan II – Mohammedia –Casablanca University
Cdt Driss El Harti, BP 7955 Sidi Othman Casablanca, 20702, Maroc

1 atibi.simo@gmail.com
2 issamatouf@yahoo.fr

3 md.boussaa@gmail.com
4 al_bennis@yahoo.fr

Abstract— Most applications in different fields (automotive, robotics, medical…) take advantage of the
proven performance by artificial neural networks to solve their most complex problems. The architecture
chosen for implementation is the multilayer perceptron that uses retro propagation as a learning
algorithm. This article presents modular hardware implementation of multilayer perceptron architecture
of artificial neuron network ‘ANN’, in the FPGA platform according to two models (parallel and mixed
hardware implementation), and the comparison between these two implementations in terms of hardware
resources and execution time. The two implementations are based on the proposed module of a formal
neuron with the sigmoid activation function.

Keyword-ANN, hardware resource, execution time, FPGA, module of a formal neuron.
I. INTRODUCTION

The neurons are nerve cells that have the ability to process information in the human brain. They are
interconnected and they operate in parallel in order to realize, with great speed, tasks of perception that are not
within the reach of powerful modern computers.

These properties have contributed to the appearance of artificial neural networks, which are currently used in
a wide variety of applications in science and engineering, such as classification and pattern recognition [1][2].
The ANN is consisting of layers of neurons that are responsible for the classification of data or learning.
Compared to other popular machine learning algorithms, such as Bayesian network and ″ support vector
machine″ (SVM),the ANN presents numerous advantages, such as simplicity of structure, the parallelism of
calculation, amelioration of classification performance and the adaptive learning parameters[3] [4].

The most used architecture of artificial neuron network is the multilayer perceptron (MLP) proposed by
Gibson and al. [5]. The MLP is a complete connection structure, which uses sigmoidal functions such as
activation of neurons. Its features are based on the ability to learn and solve complex problems, as optimization,
classification and pattern recognition [6]. There are several learning algorithms; the most used with this type of
architecture is the algorithm of retro propagation of errors (Back pro) which simulates the learning phenomenon
by the error in the presence of a supervisor. This is an optimization algorithm which aims to determine the best
weight possible connection.

However, the properties of artificial neuron network require an efficient hardware implementation circuit [7],
hence the use of a platform capable of implementing these ANNs and use the parallelism in processing and
reconfiguration [8].

Recently, the field-programmable gate array (FPGA)have been used in many applications requiring the
implementation of ANNs, because the programmable logic offers more flexibility, speed and space to the
implementation of logical elements[9]. It also enables the design of hardware architectures which synthesize the
great neural networks consisting of hundreds of neuron units [10]. Thus, several attempts are reported in the
literature that deals with the design of application--Specific Integrated Circuit (ASIC) comprising a plurality of
processing units in parallel. However, related to principles` design of ASICs, the networks obtained were
limited by the size and type of algorithm implemented [1].

Currently, the field-programmable gate arrays (FPGA) are the preferred reconfigurable hardware platform.
The current FPGAs offering performance and integration density of logic elements similar to ASICs with, too,

Flexibility of design cycles / test faster. Also we find them frequently used in the fields of research and in
industrial applications [1].

This article discusses in detail the hardware implementation of the Multilayer Perceptron including all
neurons that have a sigmoid activation function, in the FPGA platform.

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2008

The article also discusses two types of implementations: The first is a parallel implementation and the second
is considered as a mixed implementation because it contains a series and parallel implementation at the same
time. These two implementations use megafunctions designed by the builders of the FPGA platform,
manipulating real data in a floating point format with 32 bits (norm IEEE-754).

The article is structured as follows: After an introduction we begin Section II by defining some notion on
artificial neural networks; Section III presents the implementation details of the two architectures (parallel and
mixed), Section IV shows the results of tests performed during the implementation, and finally a conclusion of
this article.

II. THEORY OF NEURAL NETWORKS

The artificial neural networks are mathematical models used to model two performances of the human brain:
learning from a database of examples and generalization on examples not seen in the learning phase.

The artificial neuron network is a set of formal neurons (W.MCCulocch etW.Pitts) interconnected to achieve
a well-defined task; each formal neuron is considered an elementary processor which receives at its input a
number of parameters coming either upstream neurons or from the sensor component of the application device
realized. These inputs are connected to the neuron by weights representing the strength of the connection called
synaptic weight. This elementary processor has a single output, which in its turn, powers downstream neurons.
Indeed the neuron performs a number of mathematical operations on its inputs: Multiplying each entry by its
synaptic weight, summing the weighted inputs, and transfer this sum to the output through a function called an
activation function or transfer function (e.g. Fig. 1).

Fig 1. Schema of a formal neuron

The construction of RNA is firstly opting for the choice of architecture, namely, the manner in which these
neurons are to be interconnected. Among the most architecture used in the literature, we find multilayer
perceptron (MLP); this architecture is composed of an input layer, one or more hidden layers and an output layer
(e.g. Fig. 2 [1]).

The input layer receives the input parameters for the task to accomplish. The hidden layers are used to
determine the nonlinear frontiers and the output layer produces the result of calculation [11].

Fig 2. Schema of a multilayer perceptron

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2009

Secondly, using an adequate algorithm to adjust the synaptic weights of different connections. There are
several learning algorithms; the most used with MLP is the algorithm of error back propagation (Back pro)
which simulates the learning phenomenon by the error.

The use of this algorithm is to provide initially random values to synaptic weight, then present successively
the elements of the training set to the network input and be evaluated for each element to the basis example the
observed error in the output of each neuron; thereafter, exploit the value of this error to adjust the synaptic
weights, the objective is to minimize the overall error using the method of gradient descent.

The application of this algorithm requires a number of steps:
• Calculation of the observed output:

After choosing architecture as example (e.g. Fig. 2), synaptic weight of the entire network is initialized with
random values, and then the neuron of the input layer receives the parameter values of each element of the
example base and transmits them to the neurons of the first hidden layer. In this layer each neuron calculates its
own output according to equation (1):

1
(.)

n

j ji i
i

Y f W X
=

=  (1)

The jY outputs will be used later as inputs to the next layer and this process will continue until the output
layer whose neurons will calculate their observed outputs according to equation (2):

1

(.)
n

k kj j
j

Y f W Y
=

=  (2)

Fig 3. Example of the architecture of a MLP network

• Calculating global error:
The interest of this step is to calculate the global error observed (3) to the output network, which will be

minimized to find the best possible correction for each synaptic weight.

2

1

1() (() ())
2

c

j j
j

E n d n y n
=

= − (3)

With:
()E n = the global error.

()jd n = desired output.

()jY n = observed output.

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2010

C = output layer of the network.
To minimize this error, we must provide to each synaptic weight Wji the correction ∆Wji according to the

equation (4):

()
()ji

ji

n
W

w n
η ∂ΕΔ = −

∂
 (4)

The calculation of the equation (4) requires an activation function. Several activation functions exist in the
literature, among them the Gaussian and the sigmoid functions (e.g. Fig. 4).

Fig 4. Sigmoid and Gaussian function

The transfer function most used in multilayer perceptron is the sigmoid function because it is an infinitely
differentiable function, and the equation (5) shows the sigmoidal activation function and (6) its derivative:

1()
1 x

f x
e−=

+
 (5)

'() ()(1 ())f x f x f x= − (6)

The difficulty in applying this rule is in the calculation of the partial derivative
()

ji

n

W

∂Ε
∂

 which is not evident

that only for the neurons of the output layer. To alleviate this difficulty, the calculation of this derivative is
performed in the output layer to the input layer, where the name back- propagation comes. The synaptic weights
of each neuron in the output and hidden layer are discounted using the delta rule: For the output layer (7) and for
the hidden layer (8):

() (1) () ()ji ji j iW n W n n y nηδ= − + (7)

With: i = the last hidden layer.

 jδ = local gradient (() ()(1 ()))j j je n y n y n= −

() (1) () ()ji ji j iW n W n n y nηδ= − + (8)

With: i = previous layer.

 () ()(1 ())j j jn y n y n kδ = −  hidden layer () ()kjk n w nδ

In summary, the application of the algorithm on a multilayer perceptron requires two essential steps for
calculating each element of learning base (e.g. Fig. 5):

• The first is the propagation of the input data of the first layer to the last (propagation).
• The second is the propagation of error signals of the last layer to the first (back-propagation).

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2011

Fig 5. Propagation and back-propagation path

III. DETAILED DESIGN AND IMPLEMENTATION

This section describes in detail the various modules required for parallel and mixed implementation (serial
and parallel) of MLP.

The multilayer perceptron in the learning and generalization phase manipulates data in the form of real
numbers, which requires to be encoded according to a synthesizable format by the FPGA platform. There exist
two possible representations: the fixed-point representation (FXP) and floating point (FLP).

• The FLP representation:

Fig 6. FLP representation

Generally, a FLP number is represented as: 127(1) 2 1,S EX M−= − × × with 0 255E< < , which is a
representation of coding of real numbers (norm IEEE-754). This coding provides a standardized representation
of real numbers, either in 32 bits (e.g. Fig. 6 [1]) (single precision), 64 bits (double precision) or 80 bits
(extended).

• The FXP representation:

Fig 7. FXP representation

The FXP format is illustrated in (e.g. Fig. 7 [1]); it contains 2 parts, the integer part 1wB − to 4B and the

fractional part 3B to 0B . The point is located at a definite site. It is a representation less used because it has a
low precision because of lost digits to the right of the decimal point [1].

In this article, the data representation of the MLP in the form of real numbers concentrated on floating point
representation at 32 bits, for an efficient MLP network in terms of accuracy.
A. Implementation of a formal neuron

The basic element of design of the MLP network with the VHDL hardware description language is the design
of the neuron for transforming its inputs to the output according to the following steps:

1) Multiplication of inputs by its synaptic weight.

2) Summation of multiplication result.

3) Transfer the summation with a sigmoid activation function.

The design of formal neuron with the VHDL hardware description language can perform very complicated
and difficult mathematical functions to implement in FPGA platform, as division and exponential which are
used in the sigmoid function. The solution proposed in this paper allows implementing blocks megafunctions
that have given the perfect solution while designing. The megafunctions are specific blocks that use effective

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2012

methods of designs to create complex applications. These are blocks offered by the constructors of software
simulation QUARTUS which is ALTERA software for the analysis and synthesis of the HDL designs. It also
allows compiling designs and simulating design results in terms of resources used and execution time. These
blocks named IP (Intellectual Properties) enable the synthesis complex functions as (memory, multiplier,
comparator, etc. ...).

The megafunctions include complex functions useful for the design of formal neuron and artificial neuron
network; they offer an appreciable gain in design time compared to coding a new block and provide access to
the functionality of the internal architecture of megafuctions; registers and other simple functions, and the
choice of representation of data in 32 bits or 64 bits.

The design of the formal neuron requires the use of several megafunctions blocks, among these blocks [12]
[13]:

• Addition: block megafunction that implements the functions of addition and subtraction with a floating
point representation of the IEEE-754 standard.

• Multiplication: block megafunction that implements the functions of multiplication.
• Exponential: it is an interesting megafunction block when designing because it implements the

functionality of the complex exponential function.
• Division: block megafunctions also interesting because it implements the functions of division and

inversion.
The combination of these blocks has helped design the formal neuron with sigmoid activation function

according to the following scheme (e.g. Fig. 8 [12][13]):

Fig 8.design of the formal neuron

In the rest of article, the formal neuron used in the design of artificial neuron network will be modular as
shown in the following scheme (e.g. Fig. 9):

Fig 9. Schema of the modular formal neuron

B. Parallel implementation

The first implementation of artificial neuron network is a parallel implementation; artificial neuron network is
a network that interconnects several neurons to achieve a well-defined task. This implementation requires a
formal neuron with sigmoid function, which manipulates data in 32 bit floating point FLP, and then connects
these neurons according to desired architecture. Each ANN architecture requires an input layer, one or more
hidden layers (a single hidden layer is recommended [11]), and an output layer. In the implementation of ANN,
the outputs of the neurons of a layer represent the inputs of the neurons of the next layer.

Example (e.g. Fig. 10): Implementing an architecture containing 3 neurons in the hidden layer and 2 in the
output layer.

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2013

Fig 10. Design of the parallel implementation of the MLP

The specific constraints of this method in FPGA platform is the consummation of the memory area, we must
take into consideration that the use of megafunctions blocks consumes a lot of space in the FPGA platform.
C. Mixed implementation

Fig 11.design of the mixed implementation of the MLP

The second implementation is a mixed implementation (serial and parallel), which all the layers (hidden and
output) contain a single neuron which deals with the complete calculation of the layer, to build an artificial
neurons network capable of performing a specified task. The interconnection of these neurons (layers) requires a
number of blocks to guarantee both the timing and the proper functioning of the MLP (e.g. Fig. 11).

1) Block 1

Fig 12. Schema of the Block 1

This block has two functions: the first is to generate the synaptic weights memorized in the memory of all the
neurons in the hidden layer (iW) at times well defined and the second is to choose the right moment to activate
the block 2. This requires working with a block that is both a counter and a memory. As soon as the neuron,
which represents the hidden layer, Receives the vector iX at its input from the input layer, this block, generates
the memorized synaptic weights corresponding to the first neuron, then successively generates the synaptic
weights of the other neurons of this layer based on clock edges. With regard to the activation signal of the
second block, block 1 counts the number of clock cycle required for calculating the output iY to enable the
block 2.

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2014

2) Block 2

Fig 13.schema of the Block 2

The functioning of this block is similar to block 1. As soon as this block receives the activation signal from
the block 1, meaning that the outputs of the hidden layer are available, the block 2 controls demux 1 which will
look after to routing the output iY arriving in series to the inputs of the second neuron representing the output
layer. Block 2 then generates, in the same manner as the block 1, the synaptic weights memorized. When the
calculation is completed for this neuron, this block controls demux 2 which can display output to C1 and C2.

IV. TESTS AND RESULTS

The two VHDL implementations of artificial neuron network are synthesized on a FPGA platform of the
family Altera Cyclone II Version EP2C70F896C6. To test the design, we have performed several tests on this
network; these tests provide to the network all the necessary values (Synaptic weights and the inputs of the
network). The test has been performed on a simple example that provides the network a vector of 4 parameters
and 2 outputs. The topology chosen for this network is (4, 3, 2), 4 inputs, 3 neurons in the hidden layer and two
neurons in the output layer, and this is valid for two implementations (parallel and mixed). The two ANN
architectures are capable of test one or more examples not seen in the learning phase of the ANN; this requires
one or more test vector for the example tested and final synaptic weights as shown in Table 1. These synaptic
weights are determined during the learning phase, which provides the best synaptic weights to simulate this
application. This phase was performed in the same network in C + + on Linux and has allowed to obtain the
synaptic weights that will be exploited in the VHDL network. The simulation of the synthesized networks is
performed using the option VECTOR WAVEFORM of Quartus II 9.1 software.

TABLE I.
The example tested and final synaptic weights

Value

Floating point
representation in 32 bits

(hexadécimal)
Neuron 1 of the hidden
layer

Wi11 -0.893062 BF649FA4
Wi12 2.894112 40393921
Wi13 -1.056650 BF87404E
Wi14 3.849348 3F765AEE

Neuron 2 of the hidden
layer

Wi21 -3.279809 BF51DB22
Wi22 6.124747 40C3F7CE
Wi23 -3.293418 C052C083
Wi24 9.450170 41173333

Neuron 3 of the hidden
layer

Wi31 -3.157932 C04A0C49
Wi32 2.302409 401353F7
Wi33 -3.287087 C0522F1A
Wi34 2.299887 401322D0

Neuron 1 of the output
layer

Wj11 0.827811 3F53B6C8
Wj12 6.815142 40DA154C
Wj13 -5.542226 C0B159B3

Neuron 2 of the output
layer

Wj21 -0.822810 3F52A305
Wj22 -6.821629 C0DA4A8C
Wj23 5.468048 40AEF9DB

Output 1 of the two
networks

C1 0.846 3F589374

Output 2 of the two
networks

C2 0.154 3E1DB22D

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2015

The synaptic weights in Table 1 are used in the two architectures of artificial neuron network, in the parallel
architecture as input for each neuron, and in the second mixed architecture the synaptic weights are stored in the
two blocks and in the second mixed architecture synaptic weights are stored in the two blocks, so that they are
provided to the neurons which represent the hidden layer and the output layer. The table also shows 2 outputs
C1 and C2 when testing two implementations.

TABLE II.
The result of comparison between the parallel and mixed implementation

 Parallel architecture Mixed Architecture
Execution time 1.78 us 1.9 us
Surface in the FPGA
platform

Registre 25989 (38%) 9887 (14%)
Combunational functions 34492 (50%) 13889 (20%)
Logic element 39202 (57%) 15438 (23%)

The result of two implementations allows comparing the two architectures in terms of hardware resources and
execution time. The analysis of this comparison illustrated in Table 2 show the following two points:

In terms of resources as shown in Table 2, parallel architecture requires a large space of the platform relative
to the mixed architecture. By cons, in terms of execution time, the parallel architecture is relatively faster than
the mixed architecture. However, this time difference is negligible because we are talking about a few
nanoseconds. The mixed architecture that implements a multilayer perceptron remains an ideal architecture
since it offers advantages of implementations in terms of resources unlike to the parallel architecture whose
development is limited.

V. CONCLUSION

This paper has examined the technical of hardware implementation of an artificial neuron network (MLP type)
in the FPGA platform, and the impact of the use of the data represented in floating-point on 32-bit on precision
of calculations. The document also gave comparative results between two implementations (parallel and mixed),
which allowed to highlight the performance of the mixed hardware implementation of the MLP network.

REFERENCES
[1] Savich, A. W., Moussa, M., &Areibi, S. (2007). The impact of arithmetic representation on implementing MLP-BP on FPGAs: A

study. Neural Networks, IEEE Transactions on, 18(1), 240-252.
[2] Mellit, A., Mekki, H., Messai, A., &Kalogirou, S. A. (2011). FPGA-based implementation of intelligent predictor for global solar

irradiation, Part I: Theory and simulation. Expert Systems with Applications, 38(3), 2668-2685.
[3] Y. Sun, A.C. Cheng. Machine learning on-a-chip: A high-performance low-power reusable neuron architecture for artificial neural

networks in ECG classifications .Computers in Biology and Medicine 42 (2012) 751–757.
[4] Roy Chowdhury, S., &Saha, H. (2010). Development of a FPGA based fuzzy neural network system for early diagnosis of critical

health condition of a patient. Computers in biology and medicine, 40(2), 190-200.
[5] G.J. Gibson, S. Siu, C.F.N. Cowan, Application of multilayer perceptrons as adaptive channel equalizers, in: Proc. IEEE Conf. Acoust.

Speech Signal Process., 1989, pp. 1183–1186.
[6] Gomperts, A., Ukil, A., &Zurfluh, F. (2011). Development and implementation of parameterized FPGA-based general purpose neural

networks for online applications. Industrial Informatics, IEEE Transactions on, 7(1), 78-89.
[7] Tisan, A., &Cirstea, M. (2013). SOM neural network design–A new Simulink library based approach targeting FPGA implementation.

Mathematics and Computers in Simulation, 91, 134-149.
[8] Rostro-Gonzalez, H., Cessac, B., Girau, B., & Torres-Huitzil, C. (2011). The role of the asymptotic dynamics in the design of FPGA-

based hardware implementations of gIF-type neural networks. Journal of Physiology-Paris,105(1), 91-97.
[9] Lin, C. J., & Tsai, H. M. (2008). FPGA implementation of a wavelet neural network with particle swarm optimization learning.

Mathematical and Computer Modelling, 47(9), 982-996.
[10] Grossi, G., &Pedersini, F. (2008). FPGA implementation of a stochastic neural network for monotonic pseudo-Boolean optimization.

Neural networks, 21(6), 872-879.
[11] Sibanda, W., & Pretorius, P. (2011). Novel Application of Multi-Layer Perceptrons (MLP) Neural Networks to Model HIV in South

Africa using Seroprevalence Data from Antenatal Clinics. International Journal of Computer Applications, 35.
[12] Atibi, m., Bennis, a., & Boussaa, m. (2014) precise calculation unit based on a hardware implementation of a formal neuron in a fpga

platform. International Journal of Advances in Engineering & Technology (IJAET), Volume 7 Issue 3, pp. 733-742, July 2014.
[13] Boussaa M, Bennis A, Atibi M. (2014) Comparison between Two Hardware Implementations of a Formal Neuron on FPGA Platform.

International Journal of Innovative Technology and Exploring Engineering, Volume-4 Issue 1.

Atibi Mohamed et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2016

	Parallel and Mixed HardwareImplementation of Artificial NeuronNetwork on the FPGA Platform
	Abstract
	Keyword
	I. INTRODUCTION
	II. THEORY OF NEURAL NETWORKS
	III.DETAILED DESIGN AND IMPLEMENTATION
	IV. TESTS AND RESULTS
	V. CONCLUSION
	REFERENCES

