
QWS-Search: A Novel QoS Driven Web
Service Discovery Framework

R.Jeberson Retna Raj 1, T.Sasipraba2, Surya3
Department of Information Technology, Faculty of Computing, Sathyabama University,

Jeppiar Nagar, Rajiv Gandhi Road, Chennai, India
1 jebersonin@yahoo.co.in

Abstract— Web service discovery is an important process in services computing paradigm. Due to the
enormous number of service providers available for a given functionality, identifying the suitable service
to the client requirement is a challenge. The traditional discovery mechanism supports syntax-based
discovery, and it limited support on semantic discovery. Web service registries and portals does not
support client’s QoS requirements. The general purpose search engine such as Google, Baidu may
provide the required results for a search query. Since these search engines are mainly designed for
retrieving web documents, they are well suited for discovering web pages and not web services.
Traditional methods based on Term frequency (TF) and Inverse Document Frequency (IDF) limited
support for web services discovery process. The repetition of terms and finding the richness of the
document will not be applicable for finding appropriate web services. Due to the fact that WSDL contains
much less information than web pages, these service discovery mechanisms are not applicable for
discovering web services. To alleviate these difficulties, the Quality Driven Web Service discovery
Framework QWS-Search has been introduced. The system consists of functional and non functional
computations so that the returned results is semantically indexed and list them based on quality. The
system QWS-Search has been tested with more than 2000 real world web services, and the result reports
that the proposed system which outperforms the existing implementations in terms of precision and recall
values.

Keyword-Web service discovery, QoS Normalization, web services, Quality web services.
I. INTRODUCTION

The emergence of web services has created unprecedented opportunities to numerous service providers for
creating their internal business processes as web services and makes it accessible through web. Besides, clients
used to locate the required services and access it via the internet. Due to the emergence of web services, many
service providers are readily available to satisfy a client’s request. Web service discovery is an important
process in services computing paradigm. The traditional discovery methods in UDDI supports functional search
that follows syntax based discovery. It has the limitation that it excludes semantic understanding of queries and
support of non functional QoS requirements. More importantly, it may miss the most valuable services because
of different meaning of services [2][11].

Existing QoS based selection architectures focus on nonfunctional requirements. In fact, it is a time
consuming process as each time the QoS manager matches the client request to the local QoS database as well
as UDDI registry. Generally, the traditional system for web service discovery gives more importance to the
functional requirements. In services computing, it is fair that web services can be indexed based on performance.
Furthermore, the services can be invoked either based on performance or cost. Some services are semantically
relevant to the user query, but the usage of that service may not suit to the user’s expectation. Therefore, merely
selecting the services based on functional discovery is not a right way for satisfying the user needs. It is not fair
as dealing with either functional or nonfunctional requirements in web services. We have to give equal
importance to both of them so that the end user requirement is really fulfilled. The proposed QoS driven
discovery focuses on finding the similar web services based on functionality and list them based on quality.

 Existing web service discovery system like URBE (UDDI Registry By Example) [10] is based on
semantic discovery. In that framework, the similarity measurement is based on considering the services with an
equal number of terms which means semantic representation of a service. For example, web service S1 has two
terms and service S2 has three terms, the system URBE considers only first two terms of S2 for similarity
measurement. Rest of them are treated as left out terms, which are not considered for similarity measurement.
The proposed system considers both equal and unequal number of terms for similarity measurement.

 To address the aforementioned difficulties, the Quality driven discovery system has been introduced to
assist the user to search the pertinent web service. In this approach, the bipartite graph algorithm is used to
calculate the similarity between web services. To calculate the similarity measurement, the WSDL files are
parsed and decomposed. The similarities between services are calculated using the semantic distance obtained
through the Google search API. Existing systems consider each word or term in the WSDL as isolated. Since

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2209

each term in the WSDL is important, the proposed system considers every single term for finding the
similarities. QoS values of web services are normalized, and the respective values are stored in the database.
The calculated similarity measurement and QoS normalization values are utilized in displaying the web service
search results to the users. Web service with higher rank value is displayed at the top of the search results. The
proposed system has been tested with 2507 real world web services and the test result shows its accuracy with
high precision and recall values.
A. Need of QoS driven discovery

The following scenario describes four web services W1, W2, W3 and W4, all being functionally similar web
services. The web service name and operation name are partially similar for W3 and completely dissimilar for
other three web services. But these services are functionally similar.

W1: Converter
 Operation : GetCurrencyRate
 Input : CurrencyFrom, CurrencyTo
 Output : RateDate
W2: ExchangeRates
 Operation : CurrentConvertToEUR
 Input : dcmValue, strBank, strCurrency
 Output : intRank
W3: CurrencyServer
 Operation : CurrencyToCountry
 Input : licenseKey, currency,
 output : returnCountry
W4: iService.co.za_x0020_-_x0020_Finance
 Operation : ConvertCurrency
 Input : fromCurrency, toCurrency
 Output : amountToConvert
If it is a syntax-based search, then for the query ‘currency’, it matches with only one service W3 and others

are not retrieved. But, all the services are functionally similar. In the syntax-based discovery, the query is
matched with the service name in the service description file. The underlying semantics may not be the same
with the description. Therefore, text document discovery is not suitable for web services and semantic oriented
discovery is the need of the hour.
B. Issues in QoS driven discovery

 URBE (UDDI Registry By Example) has been proposed by Pierluigi Plebani et al.[10] for web service
retrieval. The model considered port name and operation name similarity for tuning the performance. The
semantic distance between terms from two compared services is employed by the lexical database WordNet.
The similarity distance between the two web services is calculated by the bipartite graph algorithm. This model
considers the two web services with an equal number of terms. However, the model does not give importance to
the unmatched left out terms. Fangfang Liu et al. [5] proposed an approach for web service discovery. In this
approach, the similarity between web services is computed based on WSDL. The model considered only the
input and output parameter names for similarity measurement. Since the search interest of the clients often
change, identifying the pertinent web service becomes challenging.

 Existing system return the results that are meeting the demand of client’s QoS soft constraints and not
connected to functional hard constraints.

 Existing QoS discovery returns the results based on QoS and ordered only according to the QoS
metrics.

 The web services whose functionalities are not exactly equivalent to the user search query are
completely excluded from the result list.

 The existing text document search approaches are insufficient in the Web service environment, because
Web services contain much more complex structure with very little text description.

 Existing system considers web services with an equal number of terms, and unequal number of terms
will not be considered for similarity measurement.

This enormous hardship increases the complexity of discovering the appropriate web services. Furthermore,
the existing service discovery mechanism returns a large number of web services, which may not be precise for

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2210

a query when the repository contains large service entries. The rationale is to propose a Quality driven web
service discovery framework that assists the user for getting the pertinent web service.
C. Web service discovery based on ranking

 The existing QoS supported registry only focuses on nonfunctional requirements and it lack the means
of giving importance to functional requirements. It is not mandatory that the name of the web service and its
operations should be alike. Each web service interface description has a different service name and has a list of
operations, which will not reflect in the service name tag. Therefore, merely matching the service name with the
user query based on syntax matching will not return better results. Existing approaches deeply concentrate on
either functional or non functional requirements. However, approaches are giving less importance to both
functional and nonfunctional requirements. The proposed approach gives equal importance to both functional
and non functional requirements.

II. QOS DRIVEN WEB SERVICE DISCOVERY ARCHITECTURE

 The proposed QoS driven web service discovery consist of functional and non functional computations.

Fig.1. Proposed QoS driven web service discovery architecture

The architecture of the proposed QoS driven web service discovery is shown in Figure 3.1. The overall
system consists of offline and online processes. In the figure, the components belonging to the dotted region
requires offline computation. The web service descriptions are retrieved from various web service portals and
directories, store the WSDL files in the database. The WSDL parser extracts the Meta data from a WSDL file
and stores it in the database. The extracted metadata contents such as Message, Port type, operation,

 GUI

Store Store

QoS Handler WSDL

Web service

Client

Search Handler Web service
Discovery

 Publish

Indexer

 WSDL
Parser

Similarity
Evaluation

Store

Store

StoreQoS Nor-
malization

Store

 QoS Com-
putation

Store

Different Quality
 Web Services

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2211

input/output is stored in the database. The QoS handler extracts the QoS attribute values and stores it in the
database. The normalization algorithm is used to normalize the different QoS values and transform it in the
range between [0, 1]. The similarity evaluation component is used to find the similarities between the two web
services using a bipartite graph algorithm. The QoS values are computed by the enhanced prediction model. The
indexer will index the web services based on the aggregated score of functional and non-functional values.
These procedures will be done in the offline mode. The QWS Dataset [3] consisting of 2507 web services
WSDL files are considered for validating the proposed system.

 The gist of the proposed framework extends from the work done by Fangfang Liu et al. [5] for web
service discovery. The system calculates the similarity between the web services based on WSDL file. The
WSDL description consists of ports, operations, input/output messages and other definitions to express its
function. WSDL acts as an interface between the service provider and consumer. Since WSDL reveals the exact
functionality of the service, the proposed system considers it as the input source. Fig.2 shows the similarity
measurement between compared web services.

Fig.2. Similarity measurements of compared web services

 The above diagram shows how the two services have undergone various step by step processes for
similarity computation.

In this approach, the similarity between web services can be computed based on WSDL. The WSDL file is
parsed, and the metadata elements such as port, operation, and input/output messages are extracted from a
WSDL file for similarity measurement. Generally, the names of those extracted terms are a concatenation of
words. Those concatenated words are decomposed using a decomposition algorithm. Soon after decomposition
process over, a term set is obtained. The computed similarity measures are used in service classification and
service query.

Select a web
service

WSDL Parsing

Decomposition
of port operation
and input /output
message

Term set

Select another
web service

WSDL Parsing

Decomposition
of port operation
and input /output
message

Term set

Calculate semantic
distance between the
terms in term set

Calculate similarity
measure

Update
DB with
calculated
measures

Database

Calculate QoS
Normalization

Import web service
details with WSDL
and QoS parameters

Retrieve similarity
measure and
normalized QoS
values

Front end –web
service search
engine

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2212

Considering two compared services as a bipartite graph includes an important assumption that there is no
edge between terms within one term set. That’s to say the terms that are originally utilized as a whole to
represent the capability of a service are now only individuals. The implied connections are broken. Especially
when two services have different number of terms, they have left out terms, which are out of consideration.
Nevertheless, these left out terms also have an effect on the similarity of services. Considering the comparison
of services in detail, when the connections between terms are broken, it’s much possible that the real semantics
of the terms are no longer kept. The “unmatched” terms definitely have an effect on the similarity of services.

Similarity measurement of two web services is calculated from the term set obtained after decomposition of
each web service. Term set of one web service is compared against a term set of another web service.
Comparison is done by calculating the semantic distance between each and every term in one term set with
terms in another term set. This approach uses new metrics to deal with the similarity of services which employ
the terms inside services fully and thus can reflect the association between the terms.

Using the Google search API, semantic distance between two terms is obtained. The Google search API
returns the number of web results containing the given term. Once the semantic distance is calculated between
the terms in the term set, higher distance will be selected, and similarity measurement is calculated.

The proposed system considers the web service QoS parameters such as Response time, Availability,
Throughput and Reliability for nonfunctional computations. These QoS parameters determine the quality of the
web services. The QoS values are normalized for every web service. The calculated QoS normalization values
determine the ranking of the web services listed in the search results. Web services having high normalization
values are listed at the top of the search results. The following functional and non-functional computations are
required for measuring the similarity between web services.

 Crawling of web services
 WSDL Parsing
 Decomposition of parsed WSDL
 Semantic distance computation
 Similarity measurement
 QoS Normalization and indexing

A. Crawling of web services
 The WSDL files are retrieved from various directories and portals from the Internet. Web service

details are obtained from the web through RSS feeds provided by the websites. Details like web service name,
WSDL file path and optional QoS parameters like Response time, Availability, Throughput, Successability,
Reliability, Compliance, Best practices, latency and documentation. QoS parameters determine the quality of the
web services available. With the help of CURL functions in PHP (Personal Home Page), the WSDL file
contents are obtained from the WSDL file path retrieved from Rich Site Summary (RSS) feeds. The downloaded
WSDL file content is considered as the input for further operations.
B WSDL Parsing

 The WSDL-parser parses the metadata contents such as message, type, operations, and service name
from the WSDL description of a web service, and gets stored in the database. The WSDL file is an XML file
which contains all the required information related to operations performed by the web service. It is an
important step where the port name, operation name, input/output messages are retrieved using XML parsing
techniques available in PHP. Fig.3. shows the excerpts of a sample WSDL file.

Fig.3 Excerpts of a WSDL file

The following details are retrieved after WSDL parsing,
 Port name = DispatcherAPI
 Operation name = getURL
 Input message = impl: getURLRequest
 Output message = impl: getURLResponse

<wsdl:portType name="DispatcherAPI">
<wsdl:operationname="getURL" parameterOrder="orgCode">
<wsdl:input message="impl:getURLRequest" name="getURLRequest"/>
<wsdl:output message="impl:getURLResponse" name="getURLResponse" />
</wsdl:operation>
 </wsdl:portType>

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2213

C. Decomposition of parsed WSDL
 Once the WSDL parsing is done, the retrieved port, operation, input/output message names are

decomposed for further processing. Decomposition is done based on the following rules,
Upper case letters are converted to lower case.
Hyphens are being converted to comma.
Numeric characters are removed.
 Reference for the rule is available in the following Table I,

TABLE I
Decomposing rules for wsdl

Rule Name Word
Case change getURL get, url
Suffix number elimination film1 film
Underscore separator from_currency from, currency

Decomposition algorithm
 The aim of the decomposition algorithm is to split the names of ports, operations and input/output

messages available in WSDL. For an input of any WSDL file, the output term set is generated. The following
steps are required for decomposition.

Step1: Read the WSDL file content.
Step2: Perform XML parsing.
Step3: Retrieve the port, operation, input and output messages.
Step 4: Splits the retrieved port name with uppercase letters.
Step 5: Convert all the available upper case letters to lower case.
Step 6: Remove the Hyphens available in port names.
Step 7: Remove the numerical characters available in the port names.
Step 8: Repeat Step 3 to Step8 for operation, input and output messages.

Application of decomposition algorithm
Before Decomposition,
 Port name = DispatcherAPI
 Operation name = getURL
 Input message = impl:getURLRequest
 Output message = impl:getURLResponse
After Decomposition,
 Decomposed port name = dispatcher, api
 Operation name = get, url
 Input message = get, url, request
 Output message = get, url, response
 Once the decomposition is done, the decomposed port, operation, input and output message terms are

inserted into the database.
D. Semantic distance computation

 Semantic distance computation is required for finding the similarity between the two web services.
Two web services already decomposed are considered for semantic distance computation. Number of terms
available in term set of two web services can vary. In this system, each and every term available in the term set
is considered important. Though, the number of terms mismatch, semantic distance between the mismatch terms
with other terms is calculated. Semantic distance between the terms available in two different term sets are
obtained using Google search API. The Google search API returns the number of web results obtained for a
term. Semantic distance between the two terms are obtained using the following formula [5],

()
() ()

N
kNkN

NkkN

cedisterm
log

log
tan_ 21

21

2,1

×

×∩

= (1)

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2214

 where N is the Number of total web pages and usually set to 1110 . 1k is a term available in term set 1.

2k is a term available in term set 2. ()21 kkN ∩ , ()1kN , ()2kN are returned by the Google search API.
()21 kkN ∩ denotes the co-occurrence of terms 1k and 2k in Google search results. ()1kN denotes the

occurrence of the term 1k in the web pages from Google. ()2kN denotes the occurrence of the term 2k in the
web pages from Google. Semantic distance between the two terms can also be obtained using the following
Google normalized distance formula,

() () (){ } ()
() (){ }yfxfM

yxfyfxfyxNGD
log,logminlog

,loglog,logmax,
−

−= (2)

where x is a term available in term set 1 and y is a term available in term set 2. In this formula, the
Normalized Google Distance ()yxNGD , represents the Google semantic distance and M represents the total
web pages that Google search engine obtains. ()xf represents the return pages of Google search engine
containing term x . ()yf represents the return pages of Google search engine containing term y . ()yxf ,
represents the return pages of Google search engine containing term x and y .

E. Bipartite graph construction
 The graphical representation of extracted terms for the compared web services are shown in Figure 3.5.

The similarity of services is based on maximum weight matching of bipartite graph. For a given graph G= (S1,
S2, E), where S1 and S2 be the two web services and S1={ki}and S2={kj}. ki and kj are the terms in their
corresponding WSDLs.),,(, jiji WkkE ><= , where jiW , is the semantic distanced between terms ik and jk . If
G is a bipartite graph then S1 and S2 are two disjoint subsets such that there exist no edges between the vertexes
within the same set. In the maximum weight matching EM ⊆ of G, no two edges share the common end vertex
and sum of the weights of M is the maximum [5]. The maximum weight match M of G is:

 }max{max_
2

1

,
∈

∈

=
Sk

Sk
ji

j

i

Wvalue (3)

where 10 , ≤≤ jiW

 When two services have the same cardinality, i.e. 21 SS = , the graph is a balanced graph. For a
balance graph, the terms in S1 and S2 are connected which is shown in Fig.4. Otherwise, for an unbalanced
graph there exist a unmatched term as in Fig.5.

 Once the semantic distance between two different term sets are calculated using the Google search API,
a bipartite graph is constructed to show the calculated semantic distance between the terms. Fig.4 shows the
bipartite graph for equal number of terms. To find the semantic distance between two terms 11k and 21k , first

11k is sent to Google search API and number of web pages containing term 11k are returned as output. Google
search API then returns the number of web pages containing the term 21k . Then both terms are given to the
Google search API to calculate the total number of web pages containing both the terms. Once the number of
web pages containing term1, term2 and term1 & term2 is calculated, semantic distance between 11k and 21k can
be obtained using the above formulas. Then the semantic distance between 11k and 22k are calculated. The same
process repeats for terms 12k & 21k and terms 12k & 22k are calculated. The maximum semantic distance
between the terms are used to calculate the similarity measure.

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2215

Fig.4. Bipartite graphs with equal terms

The maximum weight matching of two services in Fig.5 is 0.125 + 0.14 = 0.265.

Fig.5 shows the bipartite graph for unequal number of terms.

F. Semantic distance calculation algorithm
 The objective of the semantic distance calculation algorithm is used to find the semantic connection

between the terms using Google web search results. The term sets of two web services are given as a input and
the algorithm returns the semantic distance between the terms available in different term sets.

Step 1:Using Google search API, calculate the number of web results returned for a term x available in one
term set.

Step 2:Obtain a term y available in another term set and calculate the number of web results returned using
Google search API.

Step 3: Calculate the number of web results returned for both the terms x and y .

Step 4: Calculate semantic distance between the terms using any one of the formulas (1) and (2).
Step 5: Repeat the step 1 to 3 to all available terms in both term sets.
Step 6: Find the maximum semantic distance between the terms.

G. Similarity Measurement
 Similarity measure for compared web services of equal number of terms and unequal number of terms

can be calculated. Highest semantic distance between the terms is retrieved and similarity measure is calculated
using two different formulas (4) and (5). The similarity degree of web service S1 and S2 is the normalized factor
of equal and unequal number of terms in the respective term set. Similarity measure for equal terms can be
defined as [5],

M
value

Similarity 2,1
2,1

max_
= (4)

 where 10 2,1 ≤≤ Similarity and M is the number of edges.

 Similarity measure for unequal terms can be defined as,

 0.125

 0 .10

0.121

0.14

 11k 21k

22k

 12k

S1 S2

S3

S4

41k

42k

42k

0.27

1

31k

32k
Unmatched
term

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2216

{ }

21

_
,2,1

2,1

maxmax_2

SS

wvalue

Similarity
MVUk

ji
j

+

+

=

ε
 (5)

 where 10 2,1 ≤≤ Similarity and 1S is the number of terms available in term set of web service 1. 2S
is the number of terms available in term set of web service 2. MVU _ is the unmatched term and { }jiw ,max is
maximum semantic distance between the left out term with other terms.

Similarity measurement algorithm
 The aim of the similarity measurement algorithm is to find the similarity between two web services.

The maximum semantic distance between the terms are taken as input and the algorithm returns the similarity
measure between two web services.

Steps:
Check whether the similarity measure is to be calculated for equal terms or unequal terms.
If equal terms then apply the formula (4).
If unequal terms then apply the formula (5).

H. QoS normalization
 The QoS normalization and ranking is required for transforming the vector of multidimensional QoS

value into single metric. Assume that all services are registered with their respective parameters. QoS
parameters of the web services determine the quality of the web service. In this work, QoS normalization is
done by using the following formula [11]:

 (6)

 PositiveQoS denotes the positive QoS attributes which represents Throughput, Reliability and

Availability. These attributes based on higher-is-better policy can be followed. If the values of availability and
reliability are higher, then the normalized values are higher. NegativeQoS denotes the negative attributes and
response time is come under the category. These attributes are based on ‘lower-is-better’ principle. If the
response time is lower, then the normalized value is higher.

 iq is a QoS parameter value of a particular web service. min)(iq is minimum QoS parameter value of
all available web services. max)(iq is maximum QoS parameter value of all available web services. In the front
end, calculated QoS normalization values are used to rank the web service search results. Web service with
higher QoS values are listed on the top.

III. AGGREGATING FUNCTIONAL AND NONFUNCTIONAL SCORE

 The aim of the proposed QoS driven discovery is to focus on both functional and non-functional
requirements. For that, the functional score and non functional score can be aggregated. The semantic distance
of underlying terms such as portType, message and input/output of compared web services are added with QoS
distances of the compared web services.

 In our earlier implementation, the functionally similar services are identified based on semantic
comparison and ranked based on quality. The system identifies the similar services which are grouped together
functionally. According to the QoS score the services are listed to the user query. This kind of approach is again
giving more importance to non-functional information and less to functional requirements. Therefore, the
proposed approach computes the similarity measurement for both functional and non-functional information of
compared web services.

 The functional similarity between compared services in terms of normalized factor is added with the
normalized score of non-functional QoS values. In this work, the similarity measure between two web services
Si and Sj can be computed by using the proposed formula,

−

∈
−

−

∈
−

−

=

minmax

minmax

max

minmax

min

)()(1
)()(

)(
)()(

)(

)(

ii

Negative
i

ii

ii

Positive
i

ii

ii

ii

qqif

QoSifQ
qq

qq

QoSifQ
qq

qq

qUtility

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2217

∈ ∈ ∈

 = + −

i , j i i i
i j i j

i S i S i S

f (S (d)) nf (q) nf (q)Sim(S ,S) d(S) S ()
N N N (7)

 where),(ji SSSim is the similarity between two web services Si and Sj, id is semantic distance
between parametric representations of portType, operation, input and output parameters of a web service. N is
the total number of WSDL elements considered for similarity measurement. The term)(iqnf is the non-
functional normalized score value of web service Si and jidS , is the non-functional distance between web
services Si and Sj.
A. Web Service Search

 Calculated similarity measure and QoS normalization values are used in web service search. Front end
contains the web service search. User can search for their required web services through three options. The
options are ‘search by keyword’, ‘search by WSDL’ and ‘search by input/output messages’. When the user
searches by keyword, only the web services whose name and description matching with the given query is listed.

 When the user searches by WSDL, the calculated similarity measure and QoS normalization values in
the back end are applied in displaying the search results. The search results are listed based on the QoS
normalization values. The web service having higher QoS normalization value is listed at the top. The web
services which are matched with the given query is listed along with similar web services whose similarity
measure value is greater than or equal to the threshold value.

 When the user searches by input/output operations, the calculated similarity measure and QoS
normalization values are applied in displaying the search results. The web service whose input or output
messages matching with the given query is listed along with its similar web services whose similarity measure
value is greater than or equal to the threshold value. Threshold value used is 0.5. Once the search operation is
done, database table ‘search term’ is updated with user’s given query, search mode and the total number of
results obtained.
B. QWS Dataset

 The proposed system using QWS data set consist of 2507 web services with QoS attributes like
Response Time, Availability, Throughput, Successability, Reliability, Compliance, Best Practices, Latency,
Documentation, Service Name, WSDL Address[2]. The proposed system considers Response time, Throughput,
Reliability and Availability as required parameters for the discovery process. The reason for not considering the
other attributes is discussed in Chapter 1.

Sample QoS data for weather web service
103,85,16.1,95,73,78,80,0.89,91,DOTSFastWeather,http://ws2.serviceobjects.net/fw/fastweather.asmx?wsdl
261,100,1.8,71,58.1,78,80,229.5,94,71,2,WeatherForecast,http://www.webservicex.net/WeatherForecast.asm

x?wsdl
160,100,2.2,71,73.3,78,84,74,32,71,2,WeatherFetcher,http://glkev.webs.innerhost.com/glkev_ws/WeatherFet

cher.asmx?wsdl
3356.5,91,1.5,97,60,78,79,19.07,91,Service,http://ejse.com/WeatherService/Service.asmx?wsdl
285,85,4.2,95,73,78,84,96,38,GlobalWeather,http://www.webservicex.com/globalweather.asmx?WSDL
642.5,72,5.4,72,67,89,72,25,41,ndfdXML,http://weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.ph

p?wsdl
409.33,49,1.8,27,41.4,89,72,401.5,96,55,4,ndfdXML,http://www.weather.gov/mdl/XML/Ccode_test/DWML

gen/wsdl/ndfdXML.wsdl
IV. EXPERIMENTAL RESULTS

 The proposed system considers each and every term of the message, portType, input and output
messages during similarity measurement. The main purpose of similarity measurement is to list the related web
services to the consumers, so that they can have more options to select their required web service. To validate
the proposed system, more than 2500 real-world web services are considered. QWS dataset (Eyhab Al-Masri et
al. 2008) has been used for nonfunctional computations [3].

 The QoS values are measured by using enhanced WSRec [9]. When the number of operations is equal
in web service S1 and S2, the similarity measurement between two operations is measured by equation (3). If
the number of operations is unequal, the similarity between web services is calculated by equation (4).

 QoS normalization values are calculated for each and every web service. Calculated QoS normalization
values determine the ranking of the web services listed in the search results. Web services having high

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2218

normalization values are listed in the top of the search results. Each and every web service is decomposed, and
so each web service contains more than one port, operations and input/output messages.

 For example, consider two web services, let S1 be “phoneService” and S2 be “EmailValidation.” The
detailed process of WSDL parsing, decomposition, semantic distance computation, similarity computation, QoS
normalization, and similarity measurement are illustrated with that example.

WSDL parsing
 In the WSDL parsing the metadata of WSDL such as Port type name, operation name, input and output

messages are extracted. For the given example, the following details are obtained from the WSDL of web
service S1 by parsing,

Port type name: phonePhonePort
Operation name: getSecret
Input message: getSecret
Output message: getSecretResponse
 Similarly, the following details are obtained from the second web service S2 WSDL by parsing,
 Port type name: xWebEmailValidationInterface
 Operation name: validateEmail
 Input message: validateEmailIn
 Output message: validateEmailOut
Decomposition
 The importance of decomposition is to preprocess the parsed contents. The parsed details are

decomposed using the decomposition algorithm and the terms are obtained. Web service S1 details are
decomposed and the resultant terms are as follows,

Port type name : phone, phone, port
Operation name: get, secret
Input message : get, secret
Output message: get, secret, response

Similarly, web service S2 details are decomposed and the resultant terms are as follows,
Port type name : x, web, email, validation, interface
Operation name : validate, email
Input message : validate, email, in
Output message : validate, email, out

Semantic distance calculation
 Once the details are decomposed, the terms are obtained. The semantic distance between the terms are

calculated and represented using bipartite graph. The semantic distance between the terms of port, operation,
input and output messages are calculated and represented using bipartite graph. Table II shows the semantic
distance between two web service port names similarity.

TABLE II
Semantic distance between ports of S1 and S2

Terms Semantic distance
x, phone 0.056
x, port 0.007
web, phone 0.061
web, port 0.052
email, phone 0.062
email, port 0.070
validation, phone 0.068
validation, port 0.093
interface, phone 0.083
interface, port 0.109

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2219

For example, the semantic distance between the terms x and phone is obtained from Google and the value is
0.056. Similarly, the semantic distances between other terms are obtained. According to the bipartite graph
algorithm, the maximum weight matching term is considered. Fig. 6 shows the bipartite graph constructed for
port similarity between web services s1 and s2.

 Bipartite graph: Comparing ports

x

web

email

validation

interface

phone

phone

port

Web service 2 Web service 1

Fig.6 Bipartite graph shows semantic distance between ports of S1 and S2

 Fig.6 shows the bipartite graph for similarity between two web services S1 and S2 with port name
similarity. Here, the semantic distance between the terms ‘x’ and ‘phone’ is 0.056, and ‘x’ and port is 0.007.
According to the graph showing in Fig.6, the maximum weight matching terms are connected for similarity
measurement. Therefore, the maximum weight matching terms ‘x’ and ‘phone’ is connected. Similarly, other
terms are mapped. Similarly the semantic distance of terms for operation, input and output are computed.

For similarity measurement, the maximum weight matching terms between compared web services are
considered. The maximum weight matching terms in port element is added together to obtain the portType
similarity between compared services.

TABLE III
Similarity measure between web service S1 and S2

Similarity
Measure

Port Operation
Input

message
Output

message
Functional

Score
S1 & S2 0.326 0.048 0.108 0.066 0.137

 Table III shows the Port, operation, input and output similarities between web service S1 and S2. For
example, the port similarity between web services S1 and S2 is 0.326.

QOS normalization for service S1 and S2
 The QoS normalization is used to normalize different QoS values and transform it to [0, 1]. The QoS of

web services such as response time, throughput, reliability and availability are normalized using the equation (6).
TABLE IV

QoS normalized values of S1 and S2

Service
Respons

e time
Availabilit

y
Throughpu

t
Reliabilit

y
score

S1 0.088 0.818 0.02 0.607 0.383
S2 0.024 0.807 0.517 0.893 0.560

 Table IV shows the normalized QoS values of web service S1 and S2.The nonfunctional score of web
service S1 is obtained through taking average of normalized QoS values of response time, availability,
throughput and reliability. Similarly, the nonfunctional score of service S2 is calculated. Table 3.7 shows the
nonfunctional score of service S1 and S2. The difference between the nonfunctional score S1 and S2 is
calculated.

Similarity between web service S1 and S2
 The similarity between web service S1 and S2 is calculated by aggregating the functional score and the

nonfunctional score values. Table V shows the similarity between web service S1 and S2 based on their
functional and nonfunctional scores. Similarly, the similarity is calculated for other comparable services and
indexed.

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2220

TABLE V
Similarity between S1 and S2

Web Service Functional score
Non functional

score
Total

score

S1 and S2 0.137 0.177 0.314

 Table V shows the total score value consisting of functional and nonfunctional computations. The
similarity between web service S1 and S2 is 0.359 which is based on functional and nonfunctional similarity
measurements. Here, the functional similarity between web service S1 and S2 is 0.137 which is less than the
threshold value 0.5, so that they are not considered as similar services. In this way, other services are compared
and indexed.
A. Performance Analysis

 The system has been implemented with the support of following system configurations. The offline
computation and online processing of queries can be implemented with the support of PHP 5.3.0 server side
scripting language. Apache 2.2 is a web server for client server interaction. MySQL 5.1 acts as a database server
for backend. The hardware configuration for the processor of Intel Pentium IV, speed of RAM will be 2GB with
the hard disk capacity of 40 GB.

 The approach used in this work provides greater precision and recall values, since it depends upon the
semantics of the terms available in the WSDL. Google search API is used to find the semantic distance between
the terms. The system is tested with three web service categories such as currency converter, weather and
address validation services. The precision and recall values are computed from the following.

{ } { }

{ }itemsretrieved
itemsretrieveditemsrelevant

precision
∩

= (8)

{ } { }

{ }itemsrelevant
itemsretrieveditemsrelevant

recall
∩

= (9)

TABLE VI
Performance measures of three clusters

Cluster
Proposed framework

Existing approach
Khalid (2010)

Precision% Recall% Precision% Recall%
Currency exchange 89.4 94.7 84.2 88.9
Weather 87.5 100 70.0 87.5
Address validation 81.2 93.7 60 93.7

 Table VI shows the performance analysis for functional similarity of the proposed approach with the
existing approach. The proposed approach provides higher precision and recall values due to the introduction of
robust similarity measurement algorithm. The existing model employs the lexical database ‘WordNet’ for
semantic distance calculation. Due to the fact that some of the terms are not supported by ‘WordNet’, the
existing system is not precise enough for similarity measurement. For currency exchange web service, the
precision and recall is 87.5% and 94% based on the proposed framework as against 84.2% and 88.9%
respectively. For the other categories ‘weather’ and ‘address validation’, the proposed system achieves more
than 10% in terms of precision and recall values comparing to the existing approach. The test results show that
the proposed approach provides better performance than the existing approach in terms of high precision and
recall values.

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2221

Fig.7 Comparison of precision value for existing and proposed method

Fig.8 Comparison of recall value for existing and proposed approach

 Fig.7 and 8 shows the comparison of precision and recall between existing and the proposed method.
The Address validation service cluster, the recall value is same as 93.7% with the existing approach. The service
WSDL document http://142.176.62.103/ GEONOVA_WS/CivicAddressPointRange.asmx?WSDL defines
addresses in a different manner than the other Web services and it uses a large number of acronyms. Therefore,
the proposed approach is not able to group it correctly.

TABLE VII
 Functional support of proposed and existing approaches

Models
Similarity

Measurement
Keyword

Keyword,
Input/Output

QoS
Support

Woogle(2004) TF/IDF no yes no
WSExpress(2010) TF/IDF yes yes yes
CoWS(2011) TF/IDF yes No yes
URBE(2009) Bipartite graph no yes no
Homogeneous web service

discovery (2009) Agglomerative no yes no

Proposed QoS driven
discovery Bipartite graph yes yes yes

 Table VII shows various existing models and their functional support for web service retrieval.
Comparing with these models, the WSExpress provides QoS support which is based on TF/IDF. In CoWS, the
reputation is the QoS attribute used for nonfunctional computation and functional computation based on TF/IDF.
Since the web service description has little information, finding the repetition of terms and applying the TF/IDF
is not enough for similarity measurement. In URBE, the compared web services with equal number of terms are
considered for similarity measurement. Since the left out terms are also important for similarity computation, the
returned results of URBE are not precise. The proposed approach gives importance to the left out terms for
similarity measurement by making use of Google search results for semantic distance calculation. Furthermore,
the proposed model precisely returns the web services for a user query based on the importance of both
functional and nonfunctional weights. Therefore, the Quality Driven Discovery system is good enough to assist
the user in locating the desired web services.

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2222

Fig.9 Precision comparisons for Top-k results

Fig. 10. Recall comparison for Top-k results

 Fig.9 and 10 shows the precision and recall comparison for top-k results for existing and proposed
model. The precision for top-5, top-10 and top-20 results are analyzed. The proposed model outperforms the
existing implementations. The precision of the proposed system for the top-5 and top-10 are higher, which
means the proposed system returns the very relevant services at the top of the results. Similarly, the recall value
for the proposed method is higher comparing to the existing models. The similarity measurement in URBE is
focused on the input and output messages of compared web services for increasing the precision and recall. The
other details such as operation and port similarity are not considered. The proposed system considered port,
operation, input and output messages for similarity measurement. Fig.11 shows the search results for the
proposed discovery and the conventional syntax-based discovery.

Fig.11 Search results for the proposed discovery and the syntax-based discovery

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2223

V. CONCLUSION
 The conventional syntax-based discovery matches the user query with the available service description

in the registry or repository. The proposed system calculates the similarity between the compared web services
based on the semantic distance for operations, ports, input and output messages using Google search API. The
search results are based on computation of functional similarity of compared web services and QoS ranking. For
the user query ‘weather’, the syntax-based discovery returns all the services matched with the description.
Totally twenty three services matches with the user query and returns to the user. Web service consumers are
provided with a list of related web services, from which they can retrieve the pertinent web service. Due to the
same query for the proposed discovery, the search results are reduced to fourteen. The system returns the
semantically matched services for a user query.

REFERENCES
[1] Athman Bouguettaya, Qi Yu, Xumin Liu and Zaki Malik (2011), “Service-Centric Framework for a Digital Government Application”,

IEEE Transactions on Services Computing, January-March, Vol. 4, No. 1, pp. 3-15.
[2] Brian Blake M. (2009), “Knowledge Discovery in Services”, IEEE Internet Computing, pp. 88-91
[3] Eyhab Al-Masri and Qusay H. Mahmoud (2008), “Discovering Web Services in Search Engines”, IEEE Journal on Internet

Computing, May/June, pp. 74-77.
[4] Eyhab Al-Masri and Qusay H. Mahmoud (2008), “Toward Quality-Driven Web Service Discovery”, IEEE Journals & Magazines on

IT Professional, May/June, pp.24-28.
[5] Fangfang Liu, Yuliang Shi, Jie Yu, Tianhong Wang and Jingzhe Wu (2010) “Measuring Similarity of Web Services Based on

WSDL”, IEEE International Conference on Web Services, pp.155-162.
[6] Khalid Elgazzar, Ahmed E. Hassan and Patrick Martin (2010), “Clustering WSDL Documents to Bootstrap the Discovery of Web

Services”, IEEE International Conference on Web Services, pp. 147-154.
[7] Kyriakos Kritikos and Dimitris Plexousakis (2009), “Requirements for QoS-Based Web Service Description and Discovery”, IEEE

Transactions on Services Computing, October-December, Vol. 2, No. 4, pp.320-337
[8] Richi Nayak Bryan Lee (2007), “Web Service Discovery with additional Semantics and Clustering: Queensland University of

Technology”, IEEE/WIC/ACM International Conference on Web Intelligence, pp. 555-558.
[9] Zheng Z.B., Ma H., Lyu M.R. and King I. (2009), “WSRec: a collaborative filtering based Web service recommendation system,”

Proceedings of 7th International Conference on Web Services (ICWS), pp. 437-444.
[10] Pierluigi Plebani and Barbara Pernici (2009), “URBE: Web Service Retrieval Based on Similarity Evaluation”, IEEE Transactions on

Knowledge and Data Engineering, November, Vol. 21, No. 11, pp.1629-1642.
[11] Jeberson Retna Raj and Sasipraba T “Web Service Recommendation Framework Using QoS Based Discovery and Ranking Process”,

IEEE – Third International Conference on Advanced Computing, ICoAC2011, MIT campus, Anna University, Chennai, India, ISBN :
978-1-4673-0669-0, pp.371-377,

R.Jeberson Retna Raj et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 5 Oct-Nov 2014 2224

	QWS-Search: A Novel QoS Driven WebService Discovery Framework
	Abstract
	Keyword
	I. INTRODUCTION
	II. QOS DRIVEN WEB SERVICE DISCOVERY ARCHITECTURE
	III. AGGREGATING FUNCTIONAL AND NONFUNCTIONAL SCORE
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	REFERENCES

