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Abstract— Power networks modernization toward smart grids has encouraged the use of smart 
meters, opening opportunities for the development of new applications to improve energy efficiency of 
consumers, as nonintrusive load monitoring. This paper presents a nonintrusive load identification and 
characterization model with real power and impedance by using artificial neural network. The approach 
involved the use of real power and impedance measures obtained from an educational building to 
represent the consumption behaviour of loads and to identify the operation states. Transitions between 
operation states of devices are identified as events. Common operation states transitions were used to 
create a representative set of events to train the multilayer feed-forward neural network designed. 
Comparisons between the conventional power model and the proposed mixed power-impedance model 
were achieved and results showed that the proposed method was better to identify loads and characterize 
the consumption behaviour. This model has been proposed to detect load variation in real applications 
using smart meters. 

Keyword- Energy efficiency, Load characterization, Neural networks, Nonintrusive load monitoring, Smart 
meter 

I. INTRODUCTION 

Loads of electricity end users are usually passive elements to the power grid, not allowing monitoring, control 
and better energy efficiency programs. Under the current trend of modernization of electrical networks to smart 
grids [1], end users are becoming active participants of the power networks. End users require necessary 
information to develop actions such as energy efficiency, energy management, among others [2]. 

The interest for developing applications to achieve active participation of demand has increased in recent 
years [2]–[5]. Consumption monitoring with smart meters allow performing energy efficiency and energy 
management at different points in the electrical installation [6].  

The traditional load monitoring method uses electricity meters at different points of the electrical installation 
to measure all possible variables. Various drawbacks are present when applying this method such as the division 
of the load circuits, the cost of the electricity meters, the cost of installation, the available space for installing the 
hardware, among others. 

The nonintrusive load monitoring method focus on using the user’s electricity meter [7], to identify the 
operation state of electrical devices, and the characteristics of the consumption and the load. This monitoring 
method has been applied for different type of installations, being most common for residential users.  
Nonintrusive load monitoring has become more important with the growing use of smart meters at electrical 
installations.  

Nonintrusive load monitoring models can be obtained through different techniques and using various 
electrical parameters. Hardware is needed to detect some features of the loads and some algorithms must be 
program to identify the characteristics. These models can be calculated using the steady state features, transient 
features or the combination of both [8]. 

One of the first approximations held about the topic was developed at the MIT. Individual consumption of 
equipment was obtained based on the detailed analysis of the steady state current and voltage of the total load 
[9]. In this research, some load models, equipment signatures, algorithms and prototypes focused on monitoring 
residential buildings were presented.  

A steady state analysis of residential measurement using smart meters was presented in [10]. Low rate data 
collection was considered in the study, but no transient studies were conducted. Disaggregation of total real 
power was developed in [11], to obtain specific information of the devices at residential installations. Equipment 
and load characteristics were modelled according to its real power consumption profile. Only two states of 
equipment, off and on, were considered in the study.  
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Harmonic pattern recognition applied in commercial buildings was considered in [12]. The patterns were 
obtained from measures, considering odd harmonic currents. The harmonic patterns are introduced in a SVM 
and a RBFN to infer the operation state (on/off) of each electrical device connected downstream of the 
measurement point. Major research efforts have focused in load characteristics exploration rather than in the 
development of algorithms [13]. Due the high cost and long time required for the recollection of measures for 
this purpose, many researchers have begun to publish their data bases to facilitate the work of others researchers 
and promote the development of algorithms, as in [14]–[16]. 

This article shows the development of a model to determine the operation state changes of loads through a 
nonintrusive load monitoring performed by a neural network. Results of the developed model give opportunities 
to obtain the electrical consumption characterization of the installation. This method considers a load study and 
electrical variable measurement during a period to represent the model and to program the algorithm to monitor 
the behaviour of consumption and load. Steady state features were considered due the proposed model is 
intended to be applied using low cost user’s smart meters. Most of these devices do not have a high 
measurement rate that allows determining transient features. A device that nonintrusive identifies these 
characteristics is more expensive and is not commonly used to measure energy consumption of residential, 
commercial and industrial electrical installations. 

II. LOAD STUDY 

Residential, commercial or educational users commonly have loads with different behaviours. Connection 
and disconnection of equipment at different points of installation are achieved continually, which difficult load 
variation studying. However, similar loads are normally used for each building and those can be considered as 
typical loads. 
A. General load identification method 

The influence of load in the total energy consumption of an electrical installation can be studied by 
identifying the nominal power and characteristics of consume, the amount of the equipment, and the frequency 
of use. Load measurement gives important information as real power, reactive power, apparent power, power 
factor, current and voltage. Data can be used to identify the operational state, variation and identification of 
loads.  

Fig. 1 shows the operational states of a load and the possible transitions between them, which are established 
according to the load behaviour.  For example, lights have only two states, off and on, while computers have as 
additional the suspended state. 

 
Fig. 1. States and transitions of a computer 

Behaviour of the electrical parameters of each device is registered and analysed considering all possible states. 
For example, lights have a stable behaviour in time, while computers have a high variability when they are in on 
state, due to their internal composition and variable functionality. 
B. Educational building load test 

In educational buildings, loads such as computers, lights, communication racks, video beam, air conditioning 
and TVs are commonly found. Loads such as lights, computers and communication rack were identified to have 
the higher influence in total power consumption. These types of loads were identified as typical loads and a 
characterization were obtained for the nonintrusive load-monitoring model.  

Lights are usually grouped in circuits to be activated by one switch or grouped in different zones of the circuit 
and controlled by different switches. In this research, a lighting circuit with three switches and four operation 
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states was used. The operational states were determined by the number of active switches: all off; 2 off and 1 on; 
1 off and 2 on; and all on. Two kinds of devices were found on the communication racks: Ethernet access 
switches (Catalyst 2960) and integrated services routers (Cisco 1841 and Cisco 1941). The measurements made 
to these equipment showed that the power consumption remained relatively stable in time. 

III. MODEL DEFINITION 

Fig. 2 shows a block diagram with the general steps to implement a nonintrusive load monitoring systems. 
The general consumption curve is obtained adding the consumption of all the loads at the electrical installation. 
This curve has significant changes when the electrical devices change their operation state. Load curve is 
analysed several times to identify the events according to the behaviour. After the identification of an event, the 
operation state of the devices that have changed must be determined. 

 
Fig. 2. Block diagram of a nonintrusive monitoring system. 

An artificial neural network was trained with the electrical features obtained for each typical load. The state 
of each load is indicated as an output of the neural network, allowing constant knowledge of the impact of the 
devices on the total electric power consumption. Nonintrusive load monitoring systems have been developed 
using different steady state parameters as real power [4], [17], reactive power [9], current [18] and harmonics 
[19]. Normally, the real power has been widely used to identify the load and no impedance parameters are 
considered due this parameter is often insufficient to generate high positive results by itself. The proposed 
model seeks to use as input the real power along with the impedance in search of optimizing load identification.  

For an electrical installation with n loads, the total real power, Pt, can be calculated as the sum of the real 
power of each load, Pi, as shown in (1). 

௧ܲሺݐሻ = ܲሺݐሻ
ୀଵ  

 
(1) 

The change in real power of each load, dPi, between time t and time t-1, can be calculated as shown in (2). ݀ ܲሺݐሻ = ܲሺݐሻ െ ܲሺݐ െ 1ሻ = x (2) 
The total change in real power of the electrical installation, dPt, between time t and time t-1, is calculated as 

expressed in (3). This change must reflect the change of each single load of the system. ݀ ௧ܲሺݐሻ = ௧ܲሺݐሻ െ ௧ܲሺݐ െ 1ሻ = x (3) 
Considering n loads, the change in the real power of each load, dPi, can be detected in the total change in real 

power of the electrical installation, dPt, as expressed in (4). ݀ ௧ܲሺݐሻ =݀ ܲሺݐሻ
ୀଵ  

 
(4) 
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Using the measures of real power, reactive power and current with the smart meter, the changes in load can 
be detected over time. The sum of real power and reactive power of each load, gives the total power of the 
installation, and the apparent power can be calculated using (5). ܵ௧ሺݐሻ =ඥ ܲሺݐሻଶ + ܳሺݐሻଶ

ୀଵ  
 

(5) 

where St(t) is the total apparent power, Pi(t) the real power of load i and Qi(t) the reactive power of load i. 
The impedance of the installation can be calculated using the sum of the apparent power divided by the 

current of each load, as expressed in (6). ܼ௧ሺݐሻ = ܵሺݐሻܫሺݐሻଶ
ୀଵ  

 
(6) 

where Zt(t) is the total impedance, Si(t) the apparent power of load i and Ii(t) the current of load i. As loads of 
electrical installations are connected in parallel, the relation between the total impedance and the impedance of 
the loads is determined as expressed in (7). ܼ௧ሺݐሻ = ൬ 1ܼଵሺݐሻ + 1ܼଶሺݐሻ + ⋯+ 1ܼሺݐሻ൰ିଵ 

 
(7) 

IV. ARTIFICIAL NEURAL NETWORK DESIGN 

When the occurrence of an event is identified in the total consumption curve, the load characterization model 
through a neural network is applied. This network must establish the operation state of each device before and 
after the event. According to the considered parameters for model development, the neural network 
implemented in this research has 4 inputs and six outputs as shown in Fig. 3.  

 
Fig. 3. Neural network structure. 

When an event is identified at instant t, the total impedance and the total real power at instant t, Pt(t) and Zt(t), 
are used as an input for the neural network, as well as the information before the event, Pt(t − 1) and Zt(t − 1). 
With this data, the network is in the ability of establishing relations between the level and the delta values of the 
selected parameters and the state of each device.  

The network has six outputs corresponding to the state of each device before and after the occurrence of an 
event. Outputs 1 and 2 are associated with the computer, 3 and 4 with the lights, 5 and 6 with the rack. Thus, 
odd outputs correspond to states before the event and even outputs to states after the event. Outputs can take 
integer values between 1 and 9, representing a specific operation state as follows: 1. PC Off/Suspended 2. PC 
with screen off 3. PC On 4. All lighting circuits off 5. Two lighting circuits off and one on 6. One lighting 
circuit off and two on 7. All lighting circuits on 8. Rack off 9. Rack on 
A. Neural network training 

Neural network training must be performed with a representative set of input and output data. In order to 
obtain these data a total consumption curve was build from the three measured loads (one of each set of typical 
loads), performing a combination of common state changes of these devices. With the sum of real power, 
reactive power and current of each load can be obtained a total curve of these parameters. Fig. 4 shows the real 
power consumption of an education building for hours of high demand. Real power consumptions of individual 
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and total loads of an electrical circuit are shown. Lights have the highest power consumption level and the 
computers have a variable behaviour in the state on.  

 
Fig. 4. Individual loads and total real power profile 

Similarly, Fig. 5 shows impedance profile of each load and the impedance generated by the set of them. The 
total load impedance is lower than the individual load impedance, representing the change in consumption and 
the stages. According to this, the lowest impedance loads are the lights, limiting the total impedance to a low 
value when they are in the on state, and producing a substantial increase when they are in the off state (zero 
power, infinite impedance).  

 
Fig. 5. Individual loads and total impedance profile  

Following the structure defined for the neural network shown in Fig. 3, an input data was defined as shown in 
Table 1. Each column corresponds to input data of a specific event. An output data set was created to train the 
neural network, where each position identifies the states of loads before and after the event. 

TABLE I 
Input Data Example 

P(t-1) 2.838 453.053 2.838 302.838 334.229 
P(t) 393.641 18.976 302.838 323.765 404.282 
Z(t-1) 904.101 40.531 904.101 31.407 28.938 
Z(t) 18.07 176.075 31.407 23.702 21.166 
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Output data structure is shown in Table 2, which contains the outputs corresponding to the input data example 
of Table 1. From the created consumption curve, a total of 230 events were obtained, generating 230 input and 
output data as basis information for developing the model. A feed forward back-propagation network is used 
due the nature of the problem to be solved. This kind of network has the ability to successfully work in a wide 
range of classification applications and allows establishing relationships between a numeric input data set and an 
output data set of the same type [20]. 

TABLE II 
Output Data Example 

PC Before 1 3 1 1 1 
PC After 3 1 1 1 3 
Lights Before 4 5 4 5 5 
Lights After 5 4 5 5 5 
Rack Before 8 9 8 8 9 
Rack After 9 8 8 9 9 

The structure of a multilayer feed-forward network is shown in Fig. 6. A neural network with one hidden 
layer is designed, using the back-propagation Levenberg-Marquardt algorithm for its training. The development 
of this network was performed through the neural network toolbox of MATLAB software. To establish the 
adequate number of neurons that the hidden layer must have, various training cases were performed and the 
network performance was registered. A set of 230 data was considered to develop the model. 70% of the data 
was used for training, 15% for validation and 15% for testing. For each step of the model development, the 
mean squared error (MSE) and the correlation coefficient between the network output and the target to reach 
(regression) were obtained. The number of wrong classification events and the percentage of success reached by 
the neural network were also nonintrusive  

 
Fig. 6. Multilayer feed-forward network structure registered. 

Results are shown in Table 3. The neural network had an adequate performance in terms of low MSE and 
number of errors and high correlation in the steps of training, validation and testing. When the number of hidden 
neurons was low, the network made a high amount of mistakes due the low connections to solve the problem. 
The mistakes decreased as the number of hidden neurons increased. However, from a certain point of neurons 
increasing, the performance fell again, especially in the validation and testing. This happened because the 
network particularizes training data and loses ability to generalize due the over fitting phenomenon.  
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TABLE III 
Network Performance by Number of Hidden Neurons 

Neurons Errors 
Succ. 

% 
Training Validation Testing 

MSE Regress. MSE Regress. MSE Regress. 
1 230 0 3,96E-01 0.27 3.77E-01 0.455 4.34E-01 0.303
5 207 10 2.64E-01 0.412 2.29E-01 0.422 2.72E-01 0.335

10 138 40 1.34E-01 0.907 1.75E-01 0.89 2.13E-01 0.6
15 151 34.35 1.38E-01 0.828 1.88E-01 0.773 2.75E-01 0.414
17 154 33.04 1.50E-01 0.785 2.50E-01 0.513 2.32E-01 0.65
19 81 64.78 6.60E-02 0.878 8.12E-02 0.746 1.14E-01 0.809
20 124 46.09 9.16E-02 0.898 2.11E-01 0.739 1.95E-01 0.75
21 43 81.3 3.52E-02 0.975 6.17E-02 0.909 2.53E-01 0.51
22 169 26.52 1.70E-01 0.706 2.40E-01 0.541 1.90E-01 0.766
23 61 73.48 4.06E-02 0.969 1.71E-01 0.946 2.01E-01 0.932
24 66 71.3 4.39E-02 0.961 8.11E-02 0.902 1.12E-01 0.939
25 47 79.57 3.25E-02 0.979 6.83E-02 0.941 6.14E-02 0.965
27 63 72.61 4.07E-02 0.956 1.32E-01 0.921 2.91E-01 0.911
30 40 82.61 3.27E-02 0.978 5.56E-02 0.966 1.12E-01 0.944
32 67 70.87 4.16E-02 0.952 9.54E-02 0.871 1.97E-01 0.677
33 41 82.17 3.41E-02 0.973 9.12E-02 0.936 5.74E-02 0.958
35 44 80.87 3.00E-02 0.973 9.82E-02 0.916 4.19E-02 0.97
40 51 77.83 3.64E-02 0.97 8.01E-02 0.931 2.46E-01 0.888
45 51 77.83 3.97E-02 0.961 5.77E-02 0.909 1.02E-01 0.795
50 32 86.09 2.08E-02 0.984 9.20E-02 0.948 8.78E-02 0.973
55 34 85.22 2.73E-02 0.979 8.86E-02 0.934 7.32E-02 0.942
60 38 83.48 2.63E-02 0.978 5.98E-02 0.947 4.45E-02 0.957
65 74 67.83 5.04E-02 0.969 2.10E-01 0.819 2.57E-01 0.897
75 62 73.04 3.78E-02 0.97 2.18E-01 0.75 1.66E+00 0.558

Fig. 7 shows the percentage of the events classified correctly according to the number of hidden neurons of 
the network. From 40 neurons the success percentage has low variations, indicating that and increase in the 
number of neurons will not cause significant increases in the performance. According the above, the optimal 
number of hidden neurons was determined as 50. This case has low number of errors, low values of MSE, high 
values of regression and the highest success percentage. 
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Fig. 7. Success percentage vs. neurons in the hidden layer 

V. RESULTS AND DISCUSSIONS 

A. Model performance 
With the results obtained from the simulation of the 230 input data with the designed network, the mean 

absolute percentage error (MAPE) was calculated using (8). ܧܲܣܯ = 1230|ݕ െ ଶଷݕ|ොݕ
ୀଵ ∗ 100 

 
(8) 

where, y୧ is the target of the network and yො୧ is the network output. The result obtained for the MAPE was 
19,09%. 

The correlation diagram obtained for the designed neural network is shown in Fig. 8. The outputs obtained by 
the network for each target on the stages of training, validation and testing, are shown separately and together. 
Due the neural network had at its output decimal values near the integer values identifying a specific operation 
state, these output values were approximated to the nearest integer, becoming the final output of the model. In 
Fig. 8, states 4, 5, 6 and 7 were the most accurate and those were related to the lighting circuit. On the other 
hand, a higher variability in the results when the targets were the states corresponding to the computer and the 
rack was obtained, especially for the values 3 and 8. This was reflected in the number of times that the network 
made mistakes in identifying the state of each load.  

 
Fig. 8. Correlation of the designed network 
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Table 4 shows that the computer was misclassified in 13 of the 230 events, the rack in 24 events, and the 
lights had no errors. In general, the developed model misclassified 32 of the 230 events introduced to it, which 
represents a success percentage of 86,087%. 

TABLE IV 
Load Identification Performance 

Load Number of 
misclassification 

Success percentage 
(%) 

PC 13 94,35 
Lights 0 100 
Rack 24 89,57 

B. Real power model 
Another neural network with the same number of hidden neurons previously used (50) was trained, but in this 

case the only input parameter considered was the real power. Thus, this new network has as inputs the real 
power before and after an event occurs, while the outputs are the same as described above for the proposed 
model. In this case, the network made mistakes in 126 of the 230 entered events, which represents a success 
percentage of 45,217%.  

Fig. 9 shows that the network outputs have a higher variability around the target values than the obtained with 
the previous model. This was observed especially in the validation and testing steps, indicating that it does not 
have good ability to generalize. Other models that only use real power have been developed, as the presented in 
[11], which uses an optimization model for load identification. In this work, 56% of the energy consumption of 
a residential installation was detected. From the results obtained, we can conclude that the proposed neural 
network model performed better than other simpler models that only use real power as input parameter, which 
implies that adding impedance generates more accurate results. 

 
Fig. 9. Correlation of the network with real power input 

VI. CONCLUSIONS 

This paper presented a nonintrusive load identification and characterization method with real power and 
impedance by using artificial neural network. The results showed that this method was useful to identify 
different states of loads before and after an event. The proposed model has a better performance compared to 
real power model, which demonstrates the usefulness of impedance parameter in the development of the load 
characterization models. Lights were better identified in the test with the proposed model, while rack 
communication devices and computer in some states had a higher number of errors on their identification, due to 
the low consume. Better identification of loads were related to the low variation in load consumption, due to the 
greater stability in the power consumption of the lights as well as high and constant power deltas in transitions 
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between states. Errors on the identification of computers occurred for the variable consumption and on the rack 
for the low power consumption. 
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