
Context Aware Adaptive Service based
Dynamic Channel Allocation Approach for
Providing an Optimal QoS over MANET

A. Ayyasamy1, K. Venkatachalapathy2
1, 2 Department of Computer Science and Engineering, Annamalai University,

Tamilnadu, India.
1 samy7771@yahoo.co.in

2 omsumeetha@rediffmail.com

Abstract—Large variations in network Quality of Service (QoS) in terms of bandwidth, latency and
jitter may occur during media transfer over mobile ad-hoc networks. Applications need to adapt their
functionality according to dynamic change of their QoS update. This paper proposes an enhanced service
based platform to provide adaptive network management services to higher level application layer
components. The Context Aware Adaptive Service (COAAS) is a middleware architecture for service
adaptation based on ad hoc network and service awareness. COAAS is structured in such a way that it
can provide QoS awareness to streaming applications as well manage dynamic ad hoc network resources
using an adaptive channel allocation approach. The overall architecture of COAAS framework includes
core components to connection establishment, connection monitor, connection controller and policy
manager. Adaptive channel allocation defined as object based component helps in dynamic binding
during run time implemented using JXTA and J2ME using CDC [15] toolkit to demonstrate the
performance of a mobile setup as a conference application.

Keyword- Adaptive channel allocation, COAAS, QoS, MANET

I. INTRODUCTION

Optimal Quality of Service (QoS) depends on the underlying network communication infrastructure to
provide access to multiple services and managing resources [24]. Ideally, such QoS critical applications do not
have any concern anything about the networks used since they focus on the service functionalities. Large
variations in network QoS such as bandwidth, latency, jitter and reliability may occur during media transfer over
ad hoc networks [16], which degrade the performance of service. In this paper, an optimal QoS scheme Context
Aware Adaptive Service (COAAS) over Mobile Ad-hoc Networks (MANET) is proposed, which is a
middleware architecture, which focus on identification of the optimal service quality metrics [13] and adaptive
bind up during dynamic runtime environment [10], [17]. The primary two objectives of providing methods to
achieve optimal QoS with dynamic stateless routing among MANET as the major phenomenon and mechanism
to identify and support in dynamic channel based on QoS requirement and service applications.

Mobile ad-hoc networks [2], [5] are highly dynamic in terms of available mobility, session management
related to network resources, connectivity, location management and heterogeneous devices such as Bluetooth,
IrDA, Wi-Fi or WLAN, etc. Traditionally, middleware [6], [10] is required to support heterogeneity and to
enable the application programmer to focus on application issues. The research work proposes to develop a
middleware service that additionally provides quality services for information sharing in MANET, since the
possibility to share information is mission critical for many mobile ad-hoc network applications. The aim is to
identify solutions for this realistic setting and to quantify the QoS [3] which should support multiple service
based approaches to users.

The following objectives are addressed:
a). To design a dynamic service based channel allocation approach for providing variable service based

support over MANET.
b). To support MANET distributed node location and routing management using QoS supportive middleware

architectural approach.
c). To deal with the dynamic state of the mobile node during routing, corresponding with available resources

based on service in use.
d). To provide predictable mission-critical end-to-end QoS services and a mechanism which plays a major

role in any distributed real time system which works under unpredictable situations.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1465

User’s
Service

Context
Update

Network Service

Adaptive Manager Event
Handler

Protocol
Entities

Context
Server

Network
Devices

Fig. 1 COAAS architecture and middleware functionality

This paper provides two contributions to the study of adaptive middleware to control distributed network,
service and user’s real-time requirement. It describes how priority [19] and resource reservation[4] based
network QoS management mechanisms can be coupled with MANET standards using off-the-shelf Distributed
Object Computing (DOC) middleware [12], [16] to better support dynamic DRE applications with stringent end-
to-end service based computational real-time requirements as shown in Fig. 1.
A. Motivation

Mobile devices are heterogeneous in communication setup [11] with variable support for network
connectivity [2]. These devices vary in terms of processing, input / output capacities, energy consumption, and
session establishment. Node mobility [9] leads to the continuous change in location, environment, network
provider and access networks. As the new computing paradigm for the next generation mobile computing [8]
pervasive computing [1], [7] introduces more variations to network performance where the communication
technologies could be highly diverse and overlapping over a large space. To specify a user terminal may be
equipped with multiple connectivity technologies ranging from wireless mobile network and short-range ad hoc
connection up to local and wide range connections. Most of the existing QoS models [21], [26] focus on
network supportable parameters such as bandwidth, latency, and jitter targeting to provide a transparent quality
support on transport systems to upper applications. However, in such approaches, the mechanisms to support
adaptive user demandable resource reservation [22] are neither sufficient nor feasible. With an increasing need
for network applications to be aware of variation in network performance [20], [24] and quality [4], the
applications should be highly “context aware” [18], [5] in order to adapt to change in multiple network
environments and services.

In our model assumes that multiple nodes communicate with each other, based on a set of resource awareness
policies [16] to establish an optimal QoS route among multiple nodes engaged in session as shown in Fig.1. The
proposed set of QoS services considers service and user based policies for sharing resources, hence tailoring the
network domain flexibly. Resource awareness services [22], [23] are layered upon a set of communication
services in a middleware architecture enabling communications between nodes belonging to distinct ad-hoc
networks. We proposed COAAS middleware architecture for adaptive applications based on context awareness.
The overall architecture of COAAS emphasizes service based QoS and network management context awareness
over user and resource utilization.

The rest of the paper is organized as follows: Section II presents the overall architecture of COAAS. Section
III discusses the context considered in COAAS and the methods of how to realize context awareness. Section IV
discusses the realization of adaptive network supports and its utilization on service adaptation. Section V
concludes the paper with a discussion of future work.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1466

Application Services Application Services

COAAS
Policy Manager

COAAS
Policy Manager

C
ha

nn
el

A

llo
ca

tio
n

M
an

ag
er

St
ea

m
in

g
Se

rv
ic

e

O
bj

ec
ts

Q
oS

en

tit
ie

s

C
ha

nn
el

A

llo
ca

tio
n

M
an

ag
er

St
ea

m
in

g
Se

rv
ic

e

O
bj

ec
ts

Q
oS

en

tit
ie

s

Network and Transport
Protocol

Network and Transport
Protocol

OS Network OS
KERNEL sub-system

OS Network OS
KERNEL sub-system

End to End
QoS support

END-TO-END PRIORITY PROPAGATION

II. COAAS ARCHITECTURE

Context aware adaptive QoS middleware support over MANET networks focuses on providing end to end
QoS over service and resource availability. COAAS works on a set of policy manager which entitles definition
of multiple dynamic channels being assigned as per service in use.
A. Architecture and Execution Environment

The COAAS architecture defines dynamic channel allocation ‘Ci’ for service, network and the expected
user’s QoS by using well defined policy sets. Services in use are defined at run time through objects space [27],
which binds to event functionality [24] for exhibiting their adaptive behavior along with network Operating
System (OS) and related kernel components [28]. The networking components and underlying infrastructure
support heterogeneous OS, network and sub-network domain setup as shown in Fig. 2.

Fig. 2 COAAS: End to End QoS (runtime environment)

COAAS middleware infrastructure defines a five layered stack architecture which functions on object
monitoring, control and query of device status [20] with extended services towards session establishment.
Network devices [23] include various network components such as network adapter card, modem, access point,
routers and gateway. Hence, gathering the related system physical configuration is primary to control the
network. These physical entities are highly variable for any service, but helps in defining the variable QoS
format for temporary service in use and user defined QoS. Protocol entities include interfaces for the
management of network device drivers, protocol stack and routing table. Network contextual information can be
locally positioned in an end host and maintained in a distributed setup. COAAS middleware is identified as a
software platform above the operating system and other resource infrastructure to provide adaptive network
connectivity management to upper system modules and services. COAAS’s user defined policy adapts the
service and node such that the network’s QoS utilization is optimal and negotiable as per the available resources.
The detailed processing of the adaptation demands is left to connect controller without any concrete concern or
update from the applications.

Fig.3 shows the general COAAS architecture and execution environment. The COAAS policy manager and
policy administrator nominate an adaptation function which relates policy set to service in use. The adaptation
of supported service can be realized through various sessions in use along with measurable QoS components at
different stages, including service adaptation triggering, network resources selection and binding the objects at
run time along with the policy. Adaptation mechanisms are first triggered by some specific context according to
the predefined matching criteria. A decisive policy is arrived which keeps the resource components being
updated for any small changes and maintains the adaptation approach. The service adaptation is achieved by
automatically or manually executing a command and/or changing the external behaviors (and possible internal
states) of an entity that provides the service. COAAS provides the adaptive framework using a set of network
APIs (SMTP, FTP etc.,) to the upper network-aware adaptive applications are seen in Fig. 2. The COAAS’s
policy administrator function deputes services from primary service requirement as abstract components, but as
well performs OS kernel functionalities [17] and resource management as middleware layer tasks. The
adaptation of the end application starts from the transport layer to the service based application layer as the
middleware functionality. All the network adaptation mechanisms are abstracted and represented as objects onto
the COAAS middleware level, since the monitoring and control of available network resources are most
convenient to be implemented at this level. Semantic oriented adaptation mechanisms are finally decided at the

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1467

COAAS
Update

Route
Services

Context
Services

QoS and Session parameters

QoS Abstraction Layer

COAAS Policy Manager

MAC & OS Kernel

COAAS Policy
Administrator

Resource & Service
Management

Policy
Acknowledge

Policy on
Demand

application level for the play-out sequence and handle jitter. The fact that service updates its content and media,
which it consumes and processes the best from physical system objects to service object components.

Fig. 3 COAAS architecture and execution environment

B. Dynamic Channel Allocation
Dynamic channel and connection controller forms the management core of COAAS middleware. The service

management realizes a service as a in use by the object creation and maintenance of the connection channel [10].
A channel is defined as the logical link or connection that exists between any two communications, peer entities
or service application components of COAAS architectural stack, which are defined between various network
devices e.g. terminal or a server. Each channel uses an end to end service specific connection to transfer data
between multiple devices. The session established as a channel along with user specific QoS variables can be
dynamically changed, while leaving the channel unchanged and hence making applications imperceptible. Fig. 4
shows the collaborative operation among nodes where COAAS maintains the optimal selected route based on
available QoS and resources in use. Managing the connection channels is the core function of COAAS, which is
realized by connection controller. Multiple channels connecting to different nodes should be under the control of
the COAAS in the host. The differences of the two operation modes can be perceived by COAAS and not by
services.

Fig. 4 Channel connection session defined as objects

Channel Definition Chi α Service in use
Channel Assignment {α β ρ} …. (1) β Bandwidth required
τ = Channel Revoke {τ n} …. (2) n Bandwidth supported
 Channel Update {τ α n} …. (3) τ Route in use

 ρ Expected delay

Speaker API
interface

Service in
use object

Play out device driver
object

Linux kernel
object

 System
port

IEEE 802.11b MAC
object

Bandwidth_Req.
object

Packetization

object (bps)

Optimal
QoS

Optimal
routes

Channel session User QoS

IP framing
objects

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1468

Channel, Ch defined in equation 1 where ‘I’ being the channel number which is assigned equation 2 with
dynamic variables such as bandwidth in use, type of service and delay expected (as QoS parameter) for a service
to be supported. The channel is revoked equation 3 or re-created with an updated route and bandwidth supported
based on session update.
C. Channel Operations

1) Channel maintenance:
 Channel connection information maintained by connection controller assists the maintenance of service based
on network session established. The channel controller maintains the lists of the references of all the interfaces,
channels and policies, along with the mappings between them. The resource lists and mappings are continuously
updated in case of any special event (e.g. a channel has switched the connection under using or a new channel is
opened with a new policy).

2) Channel Update:
 The core adaptation mechanism of COAAS architecture is realized using a connection controller through
adaptively maintaining connection channels. There are two activities of the connection controller concerning
channel maintenance, i.e. channel opening and switching. To open a new channel application may provide four
parameters: target host name, traffic class, channel direction, and policy set. Connection controller then queries
the nodes in neighborhood using target host name.

3) Channel Revoke / Switching:
Connection controller periodically re-evaluates the mappings between an interface and each channel

according to the policy used for each channel. Moreover, the revoke is carried out when events such as interface
up or down, channel opened or closed take place. If, according to the policy, a better interface is found, then the
connection controller initializes a channel switching session. The session needs the cooperation between
controller peers through the signalling channel, as shown in Fig. 5. The phenomenon of revoking happens when
any incoming and outgoing connections are being decided by host node. The decision is carried out based on
contextual information of service in use and QoS value defined.
D. Context Awareness and Connection Monitor
 The context awareness works primarily based on network management and adaptive service on a user
using components such as connection monitor. Connection monitor gathers traffic from channel consistently
using a polling approach [18] or querying approach and verifies the organization of network configuration and
related contextual information. This information is primarily used by services and connection controllers for
implementing normal network supported functions and adaptation. Both local and end-to-end network
information can be monitored. The contextual network information includes:
a). The interface information is interconnected virtually across all the network interfaces as host, using
corresponding host name, domain name, DNS servers and node type.
b). Number of network interfaces, as the fact that a multiple mobile device may be equipped with multiple
network interfaces, e.g. Bluetooth, IrDA, modem, Ethernet, WLAN and Wi-Fi.
c). Information of each network interface, which includes name, type, physical and IP addresses, gateway,
DHCP server, speed, configuration parameters (e.g. Dial-up number, user account, password, etc.), the traffic
workload at local interface and the access point being used, error rate, signal strength, SNR, power consumption,
and operation status (e.g. Available, operable, connecting, connected, sleeping, idle, transmitting, receiving,
unconnected, unreachable, disabled, etc.).
d). Packet statistical information such as received, sent, and dropped packets of protocols of IP, ICMP, TCP, and
UDP.
E. Adaptation and Policy Manager

The adaptation mechanism for the network management in COAAS is primarily realized through the policy
manager and channel session controller as shown in Fig. 5. In COAAS model refers is identified channel
controller in Algorithm 2. COAAS employs a policy mechanism to ease the adaptive management of network
resources. The services suggest their adaptive requirements with policies by creating new channels, such that the
policies are configured at run time by COAAS. Policy denotes the criteria for the selection of the optimal route
setup such that the connection controller maintains each channel according to well defined policy.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1469

CHANNEL MANAGER

Interface →Channel → Policy

Policy ‘1’

Policy ‘n’

Policy Controller

Channel Session
Controller

Channel Session
Controller

Session
Interface

‘1’

Session
Interface

‘n’
.

.

Context
Information

QoS Peer
Controller

Fig. 5 COAAS channel manage

A policy manager updates and maintains the policy as either static or adaptive, where static policy explicitly
declares the network interface to be used, while dynamic or adaptive policy defines at runtime the access
selection rule for the variable specific type of traffic flow. An adaptive policy can be represented by traffic class,
network logic and QoS weighted factors. Traffic class can be any value defined in TOS [21], TC [14], DS [25]
or COAAS application specific value.
F. COAAS Policy Manager

Policy manager is used by applications to supervise policies, which include policy creation and close. Policies
are then accessed by connection controller during the channel operations in Algorithm 3. Some of the
application policies may conflict with user preference policies stored previously in context repository. However,
user preferences always have the highest priority. COAAS MAC queue manager analyzes in Algorithm 1 and
determines any contextual change in the execution properties of the network, which adapts the channel manager
to create due to change in requirements of the network.

Inclusion of dynamic context aware parameters such as service average throughput over a variable period of
time, service delay and node to node connectivity play a major role. The instance of route scheduler state, packet
incoming / outgoing state and service admission state derive the system to be adapted for any change in service.
This scheme was implemented over MAC and network layer of MANET routing protocol. The presence of
multiple mobile gateways and the maintenance of prioritized service based routes have increased connectivity
and session availability. The algorithm3 works on admission of service or packet into a scheduled active queue.
The instance of a packet reaching the weight of drop after an interval of time signifies the chance of system
degradation.
Algorithm 1: COAAS_Resource_Discovery_Manager ()

 Receive (REQ) // receive REQ message sent by nodes for transmit stream. // Collect type of service,
source and destination address, multicast id.
 rBwd = Service_Discovery_Manager(type)
 cSo = Check_in_DC_database(Source_Ip) // check source in Database
 cDt = Check_in_DC_database(dest_Ip) //check destination in Database
 if (cSo= =1 && cDt= =1
{ //source and destination is exist in database
 Find_Route_Algorithim (Source_Ip, dest_Ip , rBwd, plp, delay, Qos_Reservation_Manager.get_Route(), Mid)
//Mid- Multicast Id
 } else if (cSo= =1 && cDt= =0)
{ // destination not exist in database
 COAAS.Activate (Source_Ip, dest_Ip , rBwd, plp, delay, Mid)
} // activate COAAS to find and establish route with // destination node in different DC
Algorithm 2: Identify_Channel_Controller ()

 Route_Add(Node_ip) //add in Route with all Ip address which has been //registered in DC
 Route_IP = Identify_Idle_Node(Route_Address []) //Identify Idle node, add to Route

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1470

 Route_SD = Identify_Source_or_destination_Node(Route)
 Route_H = Identify_Route(Route)
 // collect A_Ip, B_Ip, A_to_B_Available_bandwidth,
 // and delay from QoS_Reservation_Manager.get_Route ()
 // generate matrix. Each node consider as vertex. The delay consider as edge weightage.

If (Available_Bandwidth >= rBwd && uQoS > eQoS)
 { // rBwd –decide by Service Discovery Manager
 // if available bandwidth >= required bandwidth; uQoS – User QoS;
 // eQoS – expected QoS
 RouteQueue [v1] [v2] = delay // link delay (RTT)
 } else
 {
 RouteQueue [v1] [v2] = α // α – session
 }
 CC [i] = COAAS_Channel_Create (Route[], COAAS_QoS, Bandwidth)
 // add Route bandwidth, QoS and Bandwidth matrix Channel create algorithm to define channel

if (route [i] = = null)
 { //path1 not found
 route [j] = COAAS_Channel_Assign (CC [Ii], Bandwidth_Avai [Route_[]) //add Graph matrix and
combined (Idle nodes Route and Source
 //destination notes route) in algorithm to define channel
 if(route [k] = = null){ //path2 not found
 route[k] = COAAS_Channel_Assign (RouteQueue,(Route_I + Route_SD + Route_H))
 //Source destination nodes Route and neighboring node
 if(route[k]= = null){ //path3 not found
 REP = “sour+stream_To_DC_Ip+s_portno”
Send (REP) //send message to source node to transmit stream to DC_Ip
REP = “Dest+stream_From_DC_Ip+d_portno”
Send (REP) //send to destination node to receive stream from DC_Ip
 } else {route = path3} //path3 found
 } else {route = path2} //path2 found
 } else {route = path1} //path1 found
if (route!= null){ //route found
 if (Mid = = 0){ //not multicast communication
 REP = “sour + stream_To_HF_Ip + s_portno” //REP - Route Reply
Send (REP) //send Route reply to source node to transmit stream to HF_Ip
 REP = “Dest + stream_From_HF_Ip + d_portno”
Send (REP) //send to destination node to receive stream from HF_Ip
 REP = “HndF + From_S_Ip + s_portno + To_D_Ip + d_portno”
Send (REP) //send to Hand-off node to receive stream from Source_Ip //and send stream to
destination_Ip. Node_Routing_Table.add (Source_Ip, HF_Ip, dest_Ip)
 //add in routing table
 } else if(Mid = = 1){ //multicast communication
 REP = “sour + Multicast_Ip + s_portno” //Eg. Multicast_Ip = 230.0.0.3
Send (REP) //send Route reply to source node to send stream to Multicast_Ip
for (I = 1 to No._of_dest_node){ //one or more destination node
 REP = “Dest + stream_From_HF_Ip + d_portno”
Send (REP) //send to destination node to receive stream from new node

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1471

 REP = “ Multicast_Ip + s_portno + To_D_Ip + d_portno”
Send (REP) //send to Hand-off node to receive stream from Multicast_Ip //and send stream to
destination_Ip
Node_Routing_Queue.add (Source_Ip, dest_Ip) // add in routing queue
} } }
Algorithm 3: COAAS_Policy ()

Broadcast COAAS_COAAS_RREQ:
 COAAS_RREQ (SDC_Ip, Bsour_Ip, Dest_Ip, rBwd, plp, Mid)
 //SDC_Ip-Source DC_Ip which broadcast COAAS_RREQ, Bsour_Ip- source node
 //send stream to destination in different domain (some time DC may be as Bsource),
//Dest_Ip- destination node which need to find in different domain, rBwd –required
//minimum bandwidth for service, plp-packet loss percentage, Mid – multicast id
Receive COAAS_RREQ:
 If (DCi_DCj_Available_bandwidth >= rBwd && plp <= 25)
{ // DCi which broadcast COAAS_RREQ, DCj – DC which received COAAS_RREQ, //if DCi to DCj
available bandwidth >= required bandwidth and packet loss percentage <= 25.
 flag = false
 cDt = Check_in_DC_database(dest_Ip) //check destination in Database
 if (cDt = = 1) { flag = true} //destination node is in domain
 if (dest_Ip.equals (Localhost_Ip)) { flag = true} //DC as destination node
 if (flag = = true) {
COAAS_RouteTable.add (SDC_Ip, seqno, hop_count, next_DC_Ip, “A”)
 //add in COAAS routing table “A” – Alive route
COAAS_RREP = SDC_Ip + DtDC_Ip + Bsour_Ip + Dest_Ip + seqno + hop_count
 //DtDC_Ip – destination DC Ip which means the destination node being in
 //destination DC domain, sequence no, and hop count
Send (COAAS_RREP) //send route reply message
} else {
 COAAS_RouteTable.add (NDC_Ip, seqno, hop_count, NDC_Ip, “A”) //establish reverse path NDC_Ip-
Neighbor DC
 brCOAAS_RREQ (SDC_Ip, Bsour_Ip, Dest_Ip, rBwd, plp, Mid)
 } //broadcast COAAS_RREQ
Receive COAAS_RREP:
if (SDC_Ip.equals(Localhost_Ip)
{ //if Source DC is local host if there is two or more COAAS_RREP came from different DC,
 //back up that route without rejecting them, it will use for optimal route manager
COAAS_RouteTable.add (dest_Ip, seqno, hop_count, NDC_Ip, “A”)
COAAS_RouteTable.add (dest_Ip, seqno, hop_count, NDC_Ip, “B”)
 //Two or more COAAS_RREP has back-up. “B” - Back-up route
Data = SDC_Ip + DtDC_Ip + Bsour_Ip + Dest_Ip + Portno + seqno
 //send stream port no as a data to destination node
Send (Data) //send data to destination DC
} else {
COAAS_RouteTable.add (NDC_Ip, seqno, hop_count, NDC_Ip, “A”)
 //establish forward path NDC_Ip-Neighbor DC forward (COAAS_RREP)
} //Forward COAAS_RREP to neighbor DC.
Receive Data:

if (DtDC_Ip.equals(Localhost_Ip) { //if destination DC is local host
DatAck = SDC_Ip + Bsour_Ip + Dest_Ip + seqno

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1472

Send (DatAck) //Send data Acknowledgement to Source DC
if (!(dest_Ip.equals(Localhost_Ip))) { //not DC as destination node
COAAS_RREP = “Dest+stream_From_DC_Ip+d_portno”
Send (REP) //send to destination node to receive stream from DC_Ip

 }

 }

}

Algorithm 4: COAAS Execution ()
Step a: Is COAAS_Node_Status= “ACTIVE” and Route_Status="TRUE"
 Add_Route (COAAS_Route [])
 else
 Refresh_Route ()
 Refresh_Request () // request issued by controller
Step b: // determine QoS congestion value
 Is COAAS_Route > COAAS_QoS_Value (Service [])
 {
 Update_Route ()
 else
 Step a,c ;
 }
Step c: Is Traffic_Type () > COAAS_Traffic_Value and Service_Type () > COAAS_Value
 {
 // check for priority of route
 Assign_Route:= Traffic_Priority_Handler ()
 else
 Assign_Route:= Normal
 Assign_Route_Intensity:= COAAS_Weight
 }
 Update_Channel_Coordinator (COAAS_Route [])
Step d: Channel_Create (CC [])
 {
 CC (Node_Bandwidth, COAAS_Route [], Traffic_Type,
 COAAS_Weight, Service_Type [])
 Update_Channel (CC)
 }
Step e: Call COAAS_Policy_Manager (CC [])
G. COAAS Execution

Channel management and controlling are the core components of COAAS for the final realization of
assigning a resource or utilization of network management mechanisms as shown in Fig. 6. Algorithm 4
explains the COAAS execution using a set of policies and service components. The contextual information of
mobile nodes, route in use, application traffic at network controller and required QoS defines the channel. At the
same time it is also the entity for the interaction and cooperation with other related components using XML
contents [6] and peer controllers. The COAAS functionality, architecture adopts two categories, as context
information and channel management.
Essential parameters of the experiment include the following:
1) Network size - Number of nodes
2) Network connectivity - Average degree of a node (average number of neighbors of a node)
3) Topological rate of change - The speed with which a network's topology is changing

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1473

Traffic type Route type
QoS Session

handler

Services

Active context Busy idle in-
active

Channel state

4) Link capacity - Effective link speed (bits/second), after accounting for losses due to multiple access, coding,
framing, etc.
5) Fraction of unidirectional links -Effectiveness of protocol performance as a function of the presence of
unidirectional links.
6) Traffic patterns - Protocol effectiveness in adapting to non-uniform or bursty traffic patterns.
7) Mobility - An instance of mobility such that the circumstances are temporal and spatial topological
correlation relevant to the performance of a routing protocol.
8) Fraction and frequency of sleeping nodes - COAAS protocol performance in the presence of sleeping and
awakening nodes.

Fig. 6 Functional diagram of COAAS

III. EXPERIMENTAL APPROACH

The outdoor routing experiment was carried out on a rectangular athletic field (200 (north-south) x 300 (east-
west) meter as shown in Fig. 7. The traffic generator on each mobile node generated packet streams with a mean
packet size of 1200 bytes (including UDP, IP and RTP headers), a mean of approximately 5.5 packets per
stream, and a mean delay between streams of 15 seconds. These parameters, generate an approximation of 423
bytes of data traffic (including UDP, IP and RTP headers) per node per second, with fair traffic volume, but
corresponding to the traffic volume observed during trial runs as one of a prototype media streaming
applications. All four algorithms are implemented in JXTA using a core set of classes. These classes include the
event loop, as well as unicast and multicast, routing, and logging support.
A. Hardware Platform
Experiments were conducted by using varying set of 25 Lenovo nodes, over differing environment such as

IEEE 802.11 standards of a, b/g, n MANET interface, 128MB of main memory, Intel Pentium III processor,
Intel Dual-core, I3 and I5 chipsets. A coordinator node is used to control each experiment, and leaving another
24 nodes to create and run the COAAS QoS and routing algorithms. The nodes run on Linux, Windows OS with
PCMCIA, as well as can transmit data at variable bit rates. It can also auto-adjust the bit rate depending on the
observed signal-to-noise ratio. Dynamic channels help to arrive at a consistent rate, channel for all the nodes in
the network. The nodes are implemented in "ad hoc mode" setup in which the transmission rate was fixed at 2
MB/s to 54Mbps such that the channel can automatically choose the setup. Specifically, the setup used was
Lucent (Orinoco) firmware version 4.32 and the proprietary ad hoc "demo" mode suggested by Lucent.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1474

Fig. 7 Outdoor experimental test-bed

To ensure consistency with multiple series of ad hoc routing experiments "demo mode" is suggested, such that
the outdoor experiment is a culminating event. The fixed rate of transmission makes it easier to analyze the
routing results and the need to account for automatic changes in each card's transmission rate is accountable.
The multi-rate capabilities and their general improvements over the demo mode are proposed to suggest variable
bit rate traffic. As the demo mode provides sufficient functionality to serve as a reasonable data-link layer, the
routing results determine as a representative. Each node is also attached to the Garmin General Positioning
System (GPS) unit through the serial port to support an accuracy of thirty feet throughout the experiment. The
experimental test bet result has been shown in table 1.

TABLE 1
Outdoor statistics gathered

M
od

el
s

M
es

sa
ge

 D
el

iv
er

y
R

at
io

D
at

a
P

ac
k

et
s

P
er

M

es
sa

ge

C
on

tr
ol

 P
ac

k
et

s
P

er
 M

es
sa

ge

T
ot

al
 P

ac
k

et
s/

M

es
sa

ge

A
ve

ra
ge

 H
op

C

ou
n

t
(s

u
cc

es
sf

u
l

m
es

sa
ge

s)

M
es

sa
ge

 L
at

en
cy

(s

ec
on

d
s)

AOD
V

0.2
0

1.3
2

6.18 7.50 1.61 0.4
9

DSR 0.5
0

0.9
0

32.40 33.3
0

2.11 1.3
2

COAA
S

0.7
7

22.7
9

22.80 45.5
9

2.47 0.3
7

DSD
V

0.0
8

0.2
0

150.47 150.6
7

1.18 2.9
8

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1475

IV. PERFORMANCE & EVALUATION

From the case study above, several conclusions can be drawn on the performance of the above mentioned
routing algorithms. First, COAAS outperforms AODV significantly in terms of routing overhead in low
mobility (small p) and small-scale network (small N) situation. However, its performance deteriorates rapidly
when the situation gets stressful, i.e. p and N increase. This is due to the aggressive use of source routing cache.
During a route discovery process, the source can learn several routes to its destination. This enables the source
node to switch to cached routes in case of the currently used route break, which significantly reduces the
possibility to restart a route discovery process. However, in stressful situations, it is more likely that all the
cached routes are already invalid and thus there is unnecessary delay and extra network traffic.

TABLE 2
 Experimental test-bet and results

Video Streaming

Movie for
Experiment

Average
Bandwidth
Required

Mbps

Average
Bandwidth
Used Mbps

Multicast
Groups /

User

Delay
ms

RTT
ms

Hops Loss %
Jitter

ms

Movie –A
1800Mbps

1200

DSR 160 5 30.0 16.0 6 26 425
COAAS 110 5 23.3 15.4 6 20 384
DSDV 135 5 27.0 20.9 8 20 450
AODV 210 5 35.4 23.6 12 31 502
Movie -B
2440Mbps

1220

AODV 220 7 39.0 15.7 7 42 521
COAAS 197 7 31.5 15.2 5 34 504
DSR 206 6 37.7 15.9 5 44 600
DSDV 245 7 39.8 17.2 6 68 628
Movie-C 2200
Mbps

2000

AODV 232 6 31.0 14.2 6 31 500
COAAS 204 6 28.8 13.6 5 30 478
DSR 249 6 29.1 14.8 5 42 507
DSDV 210 6 34.0 16.1 6 58 578
Movie-D 2300
Mbps

2990

AODV 201 7 36.6 15.1 5 38 510
COAAS 165 6 31.0 14.0 5 21 464
DSR 240 6 34.2 15.4 5 30 525
DSDV 214 6 39.0 17.3 6 47 570

 In the first set of experiments, the performance of COAAS with varying number of packets per source node is
tested in Table 2. Since each mobile node creates a new packet with a fixed sampling interval, the total number
of packets created by each node is determined by the duration of the experiment. The traffic test illustrates the
basic performance properties of the protocol. It has to be noted that the default experimental settings are used in
the traffic test, except the number of packets created per node variables in individual experiments. The
experiment starts with generating 50 packets per node, which sums up to 250 packets in total in the network.
Then the number of packets created (and the experiment duration) is increased by 40% to 100 packets per node,
which equals to 500 packets in total. At last, the number of packets created is increased by 120% to 200 packets
per node, which sums up to 1200 packets. The experimental results are shown in Fig. 8, Fig. 9 and Fig. 10.
 The increase in the "route discovery" interval and "packet admission" rate degrades the behavior of the
proactive route maintenance system, which occurs in a set of nodes closer to the scheduler gateway. Any
spurious update of packet increase may cause congestion due to excessive traffic. In Fig. 10 shows the effect of
registered nodes on the throughput, delay and gateway overhead.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1476

a) If there is an increase in the percentage of registered nodes, the throughput decreases by 7% while the delay
rises by 32ms.

b) If the number of registered node increases, a single mobile gateway can serve more nodes resulting in
relatively lower throughput. The performance of DSR scheme was observed to be 12% better than the pure
reactive scheme AODV.

 In the node discovery scheme of COAAS scheme, as mobile gateways broadcast advertisements within
periodic intervals, the overhead slightly increases. However, the overhead is higher by 3% in pure reactive
scheme compared to the DSR schemes when the number of registered nodes increases. As the number of
registered nodes increases, the mobile gateway overhead increases by 5.9%.

Fig. 8 Percentage of packet loss against traffic intensity

Fig. 9 End to end delay measured against number of MANET nodes

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1477

Fig. 10 Traffic load consumed against increase in time

V. CONCLUSION

 COAAS is necessary for the optimization of future mobile communications as a platform for intelligent
services. The architecture proposed in this paper aims at providing an adaptive network management for QoS
supportive network-aware applications. The mechanisms for providing service aware QoS using dynamic
channel management for improving context awareness and adaptation are supported. COAAS is currently a
work in progress, while it is implemented as a preliminary prototype based on Java on PDA’s, pocket PC
platform. More functionality will be implemented gradually during the COAAS’s evolvement. Moreover, the
future work of COAAS can be further extended by embedding the QoS into a broader platform of investigation
of real context-aware applications. Future work can also focus on providing end to end security along with
providing QoS.

REFERENCES
[1] Abolhasan, M., Wysocki, T. and Dutkiewicz E., “A review of routing protocols for mobile ad hoc networks,” Ad Hoc Networks, vol. 2,

no. 1, pp. 1-22, 2004.
[2] Anuradha, S., Raghuram, G., Sreenivasa murthy, K. E. and Gurunath Reddy B. “New Routing Technique to improve Transmission

Speed of Data Packets in Point to Point Networks,” ICGST-CNIR Journal, vol. 8, no. 2, pp. 66-71, 2008.
[3] Arunkumar T. “QASAN: Delivering Quality of Services for media streaming services in Group Communication over Mobile Ad-Hoc

Networks,” in Proc. of the First International Conference on Industrial and Information Systems (ICIIS’ 06), 2006, p. 435-443.
[4] Azzedine Boukerche, Begumhan Turgut, Ladislau Blni and Damla Turgut. “Routing protocols in ad hoc networks: A survey,”

Computer Networks: The International Journal of Computer and Telecommunication Networking, vol. 55, no. 13, pp. 3032-3080,
2011.

[5] Bechler, M., Franz, W. J. and Wolf L. C. “Mobile Internet Access in Fleet Net,” in Proc. of the 13th Fachtagung Kommunikation in
Verteilten System (KiVS’ 03), Germany, 2003, p. 107-113.

[6] Cabri, G., Leonardi, F. and Zambonelli x. “Engineering Mobile Agent Applications via Context-Dependent Coordination,” IEEE
Transactions on Software Engineering, vol. 28, no. 11, pp. 1039-1055, 2003.

[7] Camp, T., Boleng, J. and Davies V. “A survey of mobility models for ad hoc network research,” Wireless Communication Mobile
Computing, vol. 2, no. 5, pp. 483-502, 2002.

[8] Cao, M., Ma, W., Zhang, Q., Wang X. and Zhu W. “Modeling and performance analysis of the distributed scheduler in IEEE 802.16
Mesh Mode,” in Proc. of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2005, p. 78–89.

[9] Han, Q., Bai, Y., Gong, L. and Wu W. “Link Availability Prediction-Based Reliable Routing for Mobile Ad Hoc Networks,” IET
Communications, vol. 5, no.16, pp. 2291-2300, 2011.

[10] Chuanlai Lu. “Queue Theory,” Beijing University of Posts and Telecommunications Press, 1993.
[11] David, A., Maltz, Josh Broch and David B. Johnson. “Lessons from a Full-Scale Multi hop Wireless Ad Hoc Network Test bed,” IEEE

Personal Communications, vol. 8, no. 1, pp. 8-15, 2001.
[12] Deering, S. and Hinden R. “Internet Protocol version6 (IPv6) specifications,” IETF RFC 2460, 1998.
[13] Haas, Z. J., Deng, J., Liang, B., Papadimitratos, P. and Sajama S. “Encyclopedia of Telecommunications Chapter-3,” Wireless Ad Hoc

Networks, John Wiley, 2002, p. 45-53.
[14] Han, Y., La, R. J., Makowski, A. M. and Lee S. “Distribution of path durations in mobile ad-hoc networks,” Computer Networks, vol.

50, no. 12, pp. 1887-1900, 2006.
[15] Hayun Roy Ben “Java ME on Symbian OS: Inside the Smartphone Model,” 1st Edition, Wiley, 2009.
[16] Kai Chen and Klara Nahrstedt. “iPass: An Incentive compatible Auction Scheme to Enable Packet Forwarding Service in MANET,” in

Proc. of 24th International Conference on Distributed Computing System (ICDCS'04), 2004, p. 534-542.
[17] Kaixin, Xu., Mario, Gerla., Lantao, Qi. and Yantai Shu. “TCP Unfairness in Ad Hoc Wireless Networks and a Neighborhood RED

Solution,” Wireless Networks, vol. 11, no. 4, pp. 383-399, 2005.
[18] Kumar, M., Shirazi, B., Das, S. K., Singhal, M., Sung, B. and Levine D. “Pervasive Information Communities Organization PICO: A

Middleware Framework for Pervasive Computing,” IEEE Pervasive Computing, vol. 2, no. 3, pp. 72-79, 2003.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1478

[19] Lee, S. J., Gerla, M. and Chiang C. C. “On-demand multicast routing protocol,” in Proc. IEEE Wireless Communications and
Networking Conference (WCNC ’99), vol. 3, 1999, p. 1298–1304.

[20] Li, B. and Wang K. H. “Non Stop: Continuous multimedia streaming in wireless ad hoc networks with node mobility,” IEEE J. Sel.
Areas in Communications, vol. 21, no. 10, pp. 1627-1641, 2003.

[21] Luciano Bononi, Marco Conti and Lorenzo Donatiello, “Design and Performance Evaluation of a Distributed Contention Control
Mechanism for IEEE 802.11 Wireless Local Area Networks,” ACM workshop on Wireless Mobile Multimedia, 1998, p. 59-67.

[22] Luo, H., Lu, S. and Bharghavan V. “A new model for packet scheduling in multi-hop wireless networks,” in Proc. 6th Annual
International Conference on Mobile Computing and Networking (ACM MOBICOM ’00), 2000, p. 76–86.

[23] Michiardi, P. and Molva R. “CORE: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks,”
in Proc. of the 6th Joint Working Conference on Communications and Multimedia Security, vol. 100, 2002, p. 107-121.

[24] Nasim Faruque M., Ahmad, S. N. and Manoj Kumar. “Performance of QoS in Wireless Ad hoc Network for AODV Protocol using
Fuzzy Based Techniques,” IJECT, vol. 2, no. 2, pp. 41-45, 2011.

[25] Perkins, C. E., Belding-Royer, E. and Das S. R. “Ad-hoc on Demand Distance Vector (AODV) Routing,” IETF Internet Draft, 2003.
[26] Perkins C. E. “Mobile IP Design Principles and Practices (Ed-2),” New Jersey: Addison Wesley Publications USA, 1998.
[27] Shor, J. and Robertazzi T.G. “Traffic sensitive algorithms and performance measures for the generation of self-organizing radio

network schedules,” IEEE Transaction on Communications, vol. 41, no. 1, pp. 16-21, 1993.
[28] Sau and Scholefied C. “Scheduling for GPRS service class,” in Proc. of IEEE Wireless Communication and Networking Conference,

vol. 3, 1999, p. 1229-1233.

A. Ayyasamy et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 3 Jun-Jul 2014 1479

	Context Aware Adaptive Service basedDynamic Channel Allocation Approach forProviding an Optimal QoS over MANET
	Abstract
	Keyword
	I. INTRODUCTION
	II. COAAS ARCHITECTURE
	III.EXPERIMENTAL APPROACH
	IV.PERFORMANCE&EVALUATION
	V. CONCLUSION
	REFERENCES

