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Abstract: This manuscript presents theoretical, experimental and numerical (finite element methods) analysis of 
fibers composite beams with transverse crack subjected to free vibration.  Epoxy- glass fibers (unidirectional) 
composite has been taken as the material under study. Vibration parameters have been evaluated using various 
boundary conditions of beam. The beam subjected to different boundary conditions has a principal effect on 
dynamic characteristics of composite beam. The current work presents the evaluation of changes in natural 
frequencies and corresponding mode shapes curvature for different boundary conditions by varying crack 
positions and crack depth. The numerical results were found in good agreement with experimental and 
analytical results. The study concludes that structure with crack can be diagnosed by using vibration signatures 
and it help to monitoring the health of beam type structures. 
Keywords: crack, composite, beams, natural frequency, mode shapes; finite element.  
Nomenclature: 
A = cross-sectional area of the beam 
Cij

E = young’s modulus of elasticity of the beam material 
 = flexibility influence coefficient of flexible matrix 

Fi ,

H = thickness of the beam 
(i = 1, 2) = experimentally determined function 

h1

I = moment of inertia 
 = depth of crack 

i, j = variables 
JC

K
 = strain-energy release rate 
Ii, ,(i = 1, 2) = stress intensity factors for Pi

K
 loads 

ij

L = length of the beam 
 = local flexibility matrix elements 

L1

M
 = location (length) of the crack from one end 
i

P
,(i=1,4) = compliance constant 

i,(i=1,2) =Pi= axial force (i=1) and Pj

Ω = stiffness matrix  
 = bending load (i=2) 

ui

U
(i=1,2) = additional displacement functions     
c

W = Breadth of the composite beam 
 = strain energy due to crack 

X, Y, and Z = co-ordinate of the composite beam 
y = co-ordinate of the composite beam 
Y0 = amplitude of the exciting vibration 
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yi(i=1,2) = normal functions (transverse) yi

ω
(x) 

n( 

ω
 = natural frequency of uncracked composite beam 

c = natural frequency of  cracked composite beam 
 =Relative crack Depth (RCD)  

χ = L1

ρ = mass-density of the composite beam 
/L= relative crack position (RCP)

  

1. Introduction 
Higher strain to weight ratio is a desirable characteristics in its applications to light weight structures, 

aircraft, ships, automobiles,  Composite structures have seen an increased applications in  automobiles, ship 
building, aerospace, mechanical, and civil structure etc in the recent past. It has been established that the 
presence of crack, changes the natural frequency of the structure and its mode shape. In the present manuscript 
efforts have been made to detect the crack locality and depth using theoretical, experimental and numerical 
analysis. 

Vision et al. [1] have examined that the fibers composite orthotropic material properties exhibit to 
exemplify its suitability in high speed purposes of civil structures and mechanical engineering components. 
Erdelyi et al. [2] have described mostly composites have different characteristics, such as high strength to 
weight ratio, good buckling resistance, and high stiffness. Irwin [3] has explained that existence of cracks in 
beam kind structures proves variation of local stiffness that considerably affects on natural frequency and mode 
shape of the beam. Gupta [4] has given an approach to study the stress value around the crack tip interface. 
Nikpur et al. [5] have evaluated compliance matrix of composite cracked bodies. Sreekanth et al. [6] have 
studied on composite structure taking into account various forms of transverse cracks like, fibers fracture, matrix 
cracking and surface-breaking cracks with by spectral finite element methods. They established FEM-2D model 
is more suitable for complex cracked beam to detect crack location and crack depth. Pandey et al. [7] have 
studied to identify the crack in beam using Eigen parameters and concluded that mode shape curvature is 
suitable to find out damage position. Marek [8] has used finite element approach on non propagating middle 
cracked beam to find out its dynamic and static behaviour. Amara et al. [9] have analyzed mechanical properties 
of angle-ply composites laminates and studied the effect of transverse cracks on the stiffness of laminated 
composite beam with different fibers orientations. Ramanamurthy et al.[10] have presented the detection of 
damage in a composite structure using finite element approach. Nag et al. [11] have modeled a laminate cracked 
composite using node based 2D finite element approach based on spectral wave scattering. Lakshmi et al.[12] 
have worked on detection of crack location by the first four torsional modes and bending modes and calculated 
corresponding changes in natural frequencies of a cracked beam. Murat [13] has investigated the effects of 
cracks on the vibration characteristics of beam made of graphite fiber-reinforced polyamide using finite element 
methods. Shu et al. [14] have done analysis work on delaminated non overlapping composite beam using free 
vibration techniques by theoretical and experimental procedure to find the locations of delaminations. They have 
concluded that the mode shape and frequency will change significantly in presence of delaminations. Singh et 
al. [15] have used free vibration mode shape procedure on non uniform composite to evaluate its physical 
parameter. 

The objective of this paper is to establish the mode shape curvatures behaviour of a composite beam 
with a transverse open crack subjected to free vibration. In the present study, a composite beam made up epoxy 
glass fibres is considered for analysis. The effort is made to study the changes in ωn

2. Analytical Approaches 

 i.e. natural frequency and 
mode shapes in presence and absence of cracks in composite structures, and the effort is also made for 
recognition of the cracks through non destructive and inexpensive ways. 

In the present article, composite beam with various end conditions has been considered for analysis with a single 
transverse crack. The mathematical analysis in the present study will lead to the derivation of stiffness matrix of 
the cracked beam. Referring to Irwin theory [3], the strain energy release rate at the cracked section can be 
expressed as,    

2
I1 I2

1 (K K )'CJ
E

= +            (1) 

Where, the stress intensity factors are KI1, KI2 of mode I (opening of the crack) under load P1 and P2

2
111

' EE
ν−=

 
respectively. 

    (For plane strain condition)   and  1 1
' EE
=    (for plane stress condition) 
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   The expression for stress intensity factors from earlier studies Irwin et al. [3], are 

1 2
1 1 2 22

6( ( )), ( ( ))I I
P Ph hK h F K h F

WH H WH H
π π= =

      
(2) 

Where parameters F1 and F2

1
2( ), ( tan( ))

2
h H hF
H h H

π
π

=

 can be presented as bellow, 

30.752 2.02(h/ H) 0.37 (1 sin( / 2 ))
cos( / 2 )

h H
h H

π
π

 + + −
 
     

(3) 

2
2( ), ( tan( )

2
h H hF
H h H

π
π

=
40.923 0.199(1 sin( / 2 ))

cos( / 2 )
h H

h H
π

π
 + −
 
      

(4) 

Let Uc be the strain energy due to the crack, then from Castiglione’s theorem, the additional displacement along 

the direction of force Pi
c

i
i

Uu
P

∂
=
∂

 is         (5) 

The strain energy (Uc) can be related to strain energy release rate (Jc

 

) as, 
1 1

0 0

( )
h h

c
c c

UU dh J h dh
h

∂
= =

∂∫ ∫  Where JC
cU

h
∂
∂

=       

 (6) From equations (5) and (6), thus we have 
1

0

(h)
h

i c
i

u J dh
P
 ∂

=  
∂   

∫         (7) 

Defining the flexibility influence co-efficient Cij   

12

0

(h)
h

i
ij c

j i j

uC J dh
P P P
∂ ∂

= =
∂ ∂ ∂ ∫

per unit depth, 

      (8) 

 Integrating over the breadth ‘W’, the final flexibility matrix element can be obtained as,  
1/22

/2 0

(h)
hW

i
ij c

j i j W

uC J dh dz
P P P

+

−

∂ ∂
= =
∂ ∂ ∂ ∫ ∫         (9) 

Using the value of strain energy release rate from equation (1) and putting in equation (8), 
12

2
1 2

0

( )
h

ij I I
i j

BC K K dh
E P P

∂
= +

′ ∂ ∂ ∫                 (10) 

The local stiffness matrix can be obtained by taking the inversion of compliance matrix. i. e. 

 
1

2221

1211

2221

1211

CC
CC

KK
KK

K
−









=







=

                  
(11) 

Figure 1 shows the relative crack depth to that of variation of dimensionless compliances. 
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Figure 1. Relative crack depth (h1 xyC/H) vs. dimensionless compliance (ln ( )) 

2.2.  Analysis of Vibration Characteristics of the Cracked Composite Beam 

A composite beam of length ‘L’ width ‘W’ and depth ‘H’, with a crack of depth ‘h1’ at a distance ‘L1

Taking u

’ from the 
one end is considered as shown in figure 2.  

1(x, t) and u2(x, t) as the amplitudes of longitudinal vibration for the sections before and after the crack 
and y1(x, t), y2(x, t) are the amplitudes of bending vibration for the same sections as shown in fig. (2). 

 
Figure 2: Geometry of composite beam: (a) Composite beam (b) cross-sectional view of the beam (c) crack depth and crack location. 

The normal function for the system can be defined as 

)xKsin(A)xK(cosA)x(u u2u11 +=                   (12) 

)xKsin(A)xK(cosA)x(u u4u32 +=                  (13) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y8y7y6y51 +++=              (14) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y12y11y10y92 +++=              (15) 

Where, 
L
uu = , 

L
xx = , 

L
yy= ,  1L

L
χ =
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u
u C

LK ω
= ,

2/1

y

2

y C
LK 









 ω
= ,

2/1

u
EC 







ρ

= ,  
2/1

y
EIC 








µ

= ,     µ = Aρ 

Ai

0)0(u1 =

, (i=1, 12) Constants are to be determined, from boundary conditions. The boundary conditions of the 
cantilever beam in consideration are: 

;  0)0(1 =y ;   0)0(1 =′y ;  0)1(u 2 =′ ;  0)1("y 2 = ; 0)1(y2 =′′′   

At the cracked section: 1 2( ) ( )u uχ χ= ; 1 2( ) ( )y yχ χ= ; 1 2( ) ( )y yχ χ′′ ′′= ;  1 2( ) ( )y yχ χ′′′ ′′′=  

Also at the cracked section at distance L1 from fixed end of cantilever beam,







 −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(duAE 1112

12111211
11

 we have: 

                         
(16) 

Multiplying both sides of the above equation by 
1211KLK

AE

 
we get; 

1 2 2 2 1 1 2 1( ) ( ( ) ( )) ( ( ) ( ))M M u M u u M y yχ χ χ χ χ′ ′ ′= − + −    (17) 

Similarly,  





 −+−=

dx
)L(dy

dx
)L(dyK))L(u)L(u(K

dx
)L(ydEI 1112

221112212
11

2

                       
(18) 

Multiplying both sides of the above equation by
2122

2 KKL
EI

 
we get,            

3 4 1 3 2 1 4 2 1( ) ( ( ) ( )) ( ( ) ( ))M M y M u u M y yχ χ χ χ χ′′ ′ ′= − + −     (19) 

Where, 
11

1 LK
AEM = , 

12
2 K

AEM = , 
22

3 LK
EIM = ,  

21
24 KL
EIM =  

The normal functions, equation (11) along with the boundary conditions as mentioned above, yield the 
characteristic equation of the system as: 0Ω =        (20) 

Where, Ω is a 12 12×  Matrix. This determinant is a function of natural circular frequency (ω), the relative 
location of the crack (χ) and the local stiffness matrix (K) which in turn is a function of the relative crack depth 
(h1

3. Numerical analysis of cracked composite beam using ANSYS 
/H). 

Finite element approach (FEA) is widely used numerical methods for vibration analysis of structures. ANSYS is 
a software tool based on FEA is used here for free vibration analysis of a composite beam under consideration. 
A Composite beam of dimensions 650mm×60mm×6mm with eleven layers of epoxy glass fibers for 
determinations of natural frequency and mode shapes under various end conditions with and without crack were 
analyzed using ANSYS 12. The crack depth and crack locations were varied in a systematic manner for 
analysis. Following procedures for a cracked composite beam were followed for the analysis: 
 Step-1:  geometry modeling of composite beam. 
 Step-2:  selection of element type (here solid 186 layered element for 3D modeling) for composite 
beam. 20 nodes Solid 186 layered element is used for solid modeling.  
 Step-3:  material modeling of test composite beam (properties of orthotropic material). 
 Step-4:  section layup of model (here 00

 Step-5:  model meshing   

 fibers orientation). With a shell section or layered composite 
specified with layer thickness, orientation, number of integration points through the thickness of layer. 

 Step-6:  boundary conditions and modal solution 
 Step-7:   result and plotting 
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Figure 4: Epoxy E-glass fibre composite cracked beam meshing 

 

 

 

 

 

 

Figure 5: Epoxy E-glass fibre composite cracked beam meshing 

Table: 1. Mechanical properties of prepared Epoxy E-glass with 00

(E

 fiber orientation composite beam: 

XX) in 
KN/mm

 (E
2 

YY) in 
KN/mm

 (E
2 

ZZ) in 
KN/mm

 (G
2 

XY) in 
KN/mm

 (G
2 

YZ) in 
KN/mm

 (G
2 

ZX) in 
KN/mm2 

   ρ in 
Kg/m

3 

39.36 7 7 1.2 1.2 1.2 0.23 0.23 0.23 1740 

4. Experimental Procedure 
  Composite beam of epoxy glass fibres with dimensions 650mm×60mm×6mm were prepared using 
hand layout techniques. Crack depths with respect to fixed different locations are taken separately for 
experimental analysis. A total of eleven layers (unidirectional fibers) of uniform thickness with matrix put 
alternately were prepared using hand layout techniques.  The mechanical properties of the composite beam 
recorded using Instron setup machine are given in Table 1. 

The transverse cracks were created at different locations of the beam individually by inserting sharp 
thin smooth plate at time of preparation of composite beams. The transverse cracks were located at different 
locations from one end of the beam to study the changes in dynamic characteristics. The results were compared 
with a beam without crack. The composite beam with different boundary fixations i.e. fix-free, fix-fix, were 
considered. For each experiment the crack location were changed for different boundary fixations keeping the 
crack depth ratio constant. Pre fixed distance of ranging from 50mm to 500mm with 50mm steps along the 
length were considered for crack location for each experiment with a specified boundary fixation. The 
experiments were repeated for various boundary fixations and investigation. The experimental setup is shown in 
figure (6) the beams were put into the holder for test with different boundary fixations. External excitation was 
created in the beam with a impact hammer initially at mid position of beam.  
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Fig.6: Schematic diagram of experimental setup 

The excitation created by hammer is transmitted in the form of a signal to the FFT (model pulse lite 
3560-L Device) through amplifier.  The readings of the amplitude of transverse vibration and resonant 
frequencies at different crack locations along the length are recorded by using vibration set up. The experimental 
set up with beam under test is shown in the fig. (6). 

5. Results and Discussions Analysis: 
 Theoretical, Finite element (numerical) and Experimental analysis of a cracked composite beam were 
carried out. Relative natural frequency was calculated varying the crack depth and crack locations.  Finite 
element analysis (ANSYS) was used to extract natural frequency and mode shapes of various end supports and 
results were compared with experimental and theoretical results. The relative crack depth to that of variation of 
dimensionless compliances is given in figure (1) and in figure (2) is present the Geometry of composite 
cracked beam. 20 nodes Solid 186 layered element is used for solid modelling in numerical analysis. In figure 
(4-5) are shown the mesh form of (epoxy E-glass fiber) composite beam. The schematic diagram of 
experimental setup of beam under test is given in figure (6). In figures (7-9) are presented the first three mode 
shape of composite cracked beam. It is observed from 1st mode of vibration that relative frequency decreases 
with increase in crack depth for a given crack position. The slop of the curve is more significant between 0.4 to 
0.6 of crack depth ratio and indicating a steep fall in relative frequency. Similar trend is observed for the 
corresponding relative frequency of second mode of vibration. However the drop in relative frequency is 
higher in 3rd mode figure (10) as compared to 1st and 2nd mode of vibration in respect to crack depth. Similar 
trend is observed for variation in relative frequency of C-C end support composite beam figure (11). Variation 
in relative frequency are recorded by varying the crack positions for a given crack depth ratio. It is observed, 1st 
mode of vibration that the relative frequency increases with the shifting of crack positions from one end 
support with respect to 1st mode of vibration. However similar trend is not observed for 2nd and 3rd mode of 
vibration for given crack depth ratio. For Clamp-Clamp beam figure (13), a drop in relative frequency is 
significant as compared to Clamp-Free beam. The relative frequency variation in 2nd mode of vibration is more 
pronounced as compared to its corresponding 3rd

 

 mode of vibration.In general, the natural frequency decreases 
with increase in crack depth due to beam losses its stiffness.   
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(a). Mode shape of epoxy glass fiber Composite cantilever(C-F) Beam using ANSYS at Relative crack 

position 1( )L
L

χ = 0.08 and Relative crack depth(h1/H)=0.58: 

 
Figure 7. First mode shape of C-F cracked (epoxy glass fiber) composite beam 

 
Figure 8. 2nd mode shape of C-F cracked (epoxy glass fiber) composite beam 

 
Figure 9. Third mode shape of C-F cracked (epoxy glass fiber) composite beam 

(b). (h1/H) vs. (ωc/ωn
1L

L
χ =) at fixed (  ) of C-F Composite beam: 

 

 

 

 

 

 

 

Figure 10. (h1 χ =/H) vs. (ωc/ωn) at  0.08 of C-F Composite beam in 3rd mode 

 

 

(ω
c/
ω
n)

 

h1/H 
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(c). (h1/H) vs. (ωc/ωn
1( )L

L
χ =) at  = 0.08 of C-C Composite beam 

 

 

 

 

 

 

 

 

 (d). ( 1 )L
L

χ = vs. (ωc/ωn) of C-F at fixed (h1

 

/H) :  

 

 

 

 

 

 

 

 (e). ( 1 )L
L

χ = vs. (ωc/ωn) of C-C at fixed (h1

 

/H): 

 

 
 
 
 
 
 
 
 
 

Figure 13. ( )χ vs. (ωc/ωn) of C-C at crack depth Ratio ( h1/H)= 0.12 in 1st

 

 Mode. 

 

 

(ω
c/
ω
n)

 

χ →

h1/H 

(ω
c/
ω
n)

 

 

Figure 11.  (h1/H) vs. (ωc/ωn) at χ =  0.08 of C-C Composite beam in 1st mode 

 

(ω
c/
ω
n)

 

χ →
 

Figure12. ( χ ) vs. (ωc/ωn) of C-F at crack depth Ratio h1/H= 0.48 in 1st Mode 
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6. Conclusions: 
The results of experimental, analytical and finite element analysis investigation are given and the observed 

that with increase in crack depth, the relative frequencies reduce in order due to drop in stiffness of the 
composite beam. Further it is observed that the relative crack position affects the relative frequency of the 
composite beam. The relative frequency increases with higher relative crack location. Further attempts will be 
made to investigate the effect of frequency for composite beams with variation in fibre angles and volume 
fractions. 
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