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Abstract— Image interpolation is widely used in many image processing applications, such as digital 
camera, mobile phone, tablet and display devices. Image interpolation is a method of estimating the new 
data points within the range of discrete set of known data points. Image interpolation can also be referred 
as image scaling, image resizing, image re-sampling and image zooming. This paper presents VLSI (Very 
Large Scale Integration) architecture of an area efficient image interpolation algorithm for any two 
dimensional (2-D) image scalar. This architecture is implemented in FPGA (Field Programmable Gate 
Array) and the performance of this system is simulated using Xilinx system generator and synthesized 
using Xilinx ISE smulation tool. Various VLSI parameters such as combinational path delay, CPU time, 
memory usage, number of LUTs (Look Up Tables)  are measured from the synthesis report. 

Keyword- Convolution interpolation, FPGA, Re-sampling, Line buffer, Weight generator  

I. INTRODUCTION 

Image interpolation technique is a widely used scheme in image processing, medical imaging, and 
computer graphics [1]. Image interpolation is a method of constructing new data points within the range of a 
discrete set of known data points [2], [3]. Interpolation processes are transformations between two habitually 
sampled grids, one at the input resolution, and another at output resolution [4]. A variety of applications require 
image zooming, such as digital cameras, electronic publishing, third-generation mobile phones, medical imaging, 
and image processing [5]. An image resolution limit the scope to which zooming develops clarity, limits the 
quality of digital photograph magnifications and in the circumstance of medical images can avert the correct 
diagnosis. Lone image interpolation (zooming, up-sampling, or resizing) can synthetically increase image 
resolution for displaying or printing, but is usually limited in conditions of enhancing image precision, or 
revelling higher frequency substance. Image interpolations based on estimates of the model sinc kernel (pixel 
replication, bilinear, bi-cubic, and higher-order splines) are normally used for their flexibility and speed, though 
these methods commonly to blurring, ringing artifacts, jagged edges, and abnormal depiction (curves of 
substance intensity) [6]. But these methods can be optimized by updating the sinc-approximating kernel to the 
image being interpolated. 

In recent years many type of image interpolation techniques have been proposed. The cubic convolution 
interpolation task which affords a good conciliation between the computational complexity and rebuilding 
precision has been exploited [7]. In the midst of various proposed interpolation algorithms, the simplest one is 
the nearest neighbour algorithm [8]. It needs a quite low time complexity and a moderately easy implementation 
since of its only selecting the nearest value from the nearest points as outcomes. Though, the images that are 
interpolated by the nearest-neighbour method are complete of blocking and aliasing artifacts. Another simplest 
method of interpolation is bi-linear algorithm which employs linear interpolation form to compute unknown 
pixels. But it makes serious blurring problem [5]. Bicubic is one of the conventional image interpolation 
techniques. This method is attractive on the aspect of algorithmic simplicity, which is highly desirable for fast 
implementation. But, this method may introduce blurring and other annoying image artifacts especially around 
edges [9]. Extended linear convolution interpolation is proposed [10]. It can give high image quality compared 
to bi-cubic interpolation. Another interpolation called the Error Amended Sharp Edge (EASE) scheme is used to 
reduce the interpolation error which is based on bilinear interpolation method [11]. 

In many practical real time applications, the interpolation process is included in the end user equipment. It 
has become a considerable trend to design a low-cost, high class, and high speed interpolation by the VLSI 
techniques from home appliances to medical image processing [12]. VLSI hardware architecture for any 
application can be implemented by using FPGA. FPGA is an integrated circuit designed to be configured by a 
customer or a designer often manufacturing.  

This work presents VLSI architecture of low-complexity image interpolation algorithm based on 
convolution kernel [13] and EASE interpolation [11]. The remaining portion of this paper is structured as 
follows. Chapter II gives a brief analysis of different image interpolation techniques. Chapter III describes in 
detail the FPGA implementation of the proposed interpolation architecture. Chapter IV compares the different 
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VLSI optimization parameters such as number of Look up tables (LUTs), power and combinational path delay 
of both existing method [13] and proposed method. 

II. RELATED WORKS 

Winscale image interpolation [14] is implemented by using an area pixel model for image scaling. Winscale 
performs the scale up/down transform using an area pixel model rather than a point pixel model. This method 
has high frequency and image quality than bi-linear interpolation method. This work requires small amount of 
memory and four line buffers. The synthesis results show that the winscale utilizes 29000 NAND equivalent 
gate counts. 

VLSI implementation of low-power high-quality colour interpolation [15] is proposed for CCD camera. This 
work is based on edge oriented weighting and local gain approach. This method provides a colour interpolation 
technique for a single-chip charge coupled device (CCD) with colour-filter array format. The VLSI architecture 
can interpolate different colours using a common computational kernel, reducing the circuit complexity. The 
interpolation chip uses about 10 K gates and two line buffers. The synthesis report shows that the circuit 
complexity with 518 slices, 163 slice flipflops and 795 look-up tables (LUTs).  

An Edge oriented Image scaling processor [16] is proposed for low-cost with low-complexity VLSI 
architecture. This method uses a simple edge catching technique to preserve the image edge features and to 
achieve better image quality. The results of this work states that the seven stage VLSI architecture contains 10.4 
K gate counts and yields a processing rate of about 200 MHz by using TSMC 0.18-µm technology. The 
hardware architecture of this algorithm uses a single line buffer. 

VLSI design of bi-cubic convolution interpolation [17] is proposed for digital image processing. This 
architecture reduces the computational complexity of generating coefficients and decreasing number of memory 
access time. The synthesis results show that the bi-cubic convolution utilizes 30643 gates at 279 MHz in a 498 x 
498 µm2 with 0.13 µm VLSI technologies. 

FPGA architecture of extended linear convolution interpolation [18] is proposed for real-time digital image 
scaling. This work says that the bi-linear convolution interpolation is a low-cost architecture with the 
interpolation quality compatible to that of bi-cubic convolution interpolation method. This architecture saves 
about 60% of hardware cost. Also, this is implemented on the Virtex – II FPGA and utilizes about 379 CLBs at 
104 MHz. But the bi-cubic interpolation [5] utilizes about 437 CLBs at 279 MHz. 

A low-cost high-quality adaptive scalar [19] is proposed for real-time multimedia applications. This work 
adopts bilinear interpolation algorithm due to its low-complexity and high-quality. The bi-linear interpolation is 
simplified by hardware sharing technique to reduce computing resource and hardware costs. The VLSI 
architecture of this method can achieve 280 MHz with 9.28 K gate counts, and its chip area is 46418 µm2 
synthesized by 0.13 µm CMOS process. This work utilizes the sum of 4 line buffers. 

A piecewise linear convolution interpolation with third-order approximation [20] is proposed for real-time 
image processing. This method reduces the computational complexity of generating weighting coefficients and 
gives simple hardware architecture with low-cost. The architecture has been designed on the Virtex-II FPGA 
and it utilizes 393 CLBs at 104.3 MHz in 447 x 447 µm2 with TSMC 0.13 µm VLSI technology. 

Fast first-order polynomial convolution interpolation [21] is proposed for real-time digital image 
reconstruction. The kernel of this method is built up of first-order polynomials and approximates the ideal sinc-
function in the interval [-2, 2]. This architecture reduces the computational complexity of generating weighting 
coefficients and provides simple hardware architecture. The architecture was implemented on the Virtex-II 
FPGA with the TSMC 0.13 µm CMOS process. The synthesis results show that the interpolation quality of this 
architecture is better than cubic convolution interpolation. This method utilizes 414 Configurable Logic Blocks 
(CLBs) with gate count 28904. 

VLSI Implementation of low-cost high quality image scaling processor [12] is proposed by for low-
complexity and low-memory requirement algorithm. This implementation uses a T-model and an inverse T-
model convolution kernel for realizing the sharpening spatial and clamp filters. Also, it combines two T-models 
into a combined filter to utilize one-line buffer memory. The combined filter reduces the computing resource 
and hardware cost. The VLSI architecture of this implementation can achieve 280 MHz with 6.08 K gate counts, 
and its core area is 30378 µm2 synthesized by 0.13 µm CMOS process. This work reduces gate count by 34.4% 
from the previous bilinear algorithm.  

VLSI implementation of an adaptive edge-enhanced image-scalar is proposed [22] for multimedia 
applications. This work is based on bi-linear interpolation algorithm. This uses edge detector to discover the 
edges by low-cost edge catching technique. To reduce the blurring effect a sharpening spatial filter has been 
used. A hardware sharing technique is used to simplify bilinear interpolation, which reduces the computing 
resources and chip area. This design can process streaming data by using only a one-line buffer memory. The 
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VLSI architecture of this work contains 6.67 K gate counts and achieves about 280 MHz by using the TSMC 
µm VLSI technologies.   

Iterative linear interpolation based on fuzzy gradient model is proposed [23] for low-cost VLSI interpolation 
architecture. This produces quadratic iterative linear interpolation polynomials to perform interpolation. It 
adopts fuzzy gradient model to estimate gradients of the target point according to its neighbour sample points in 
different direction. It produces better robustness compared with bi-cubic interpolation. The TSMC 0.18 µm 
technology shows that only 7256 gates are required for running a 200 MHz, 8-bit input/output 15-bit fixed-point 
data path.  

A novel interpolation chip [13] is proposed for real –time multimedia applications. This work provides a 
novel scaling algorithm for the implementation of two dimensional (2-D) image scalar. This interpolation 
scheme is based on the interpolation error theorem and bi-lateral error-amender. Based on interpolation error 
theorem and bi-lateral error amender, this work develops an interpolation kernel for image scaling. Also, this 
method adopts the principle of the edge-weighted scheme and convolution interpolation to enhance edge 
features and to provide better image quality. This architecture uses resource sharing to decrease the computing 
resources and hardware cost. A nine-stage pipelined VLSI architecture achieves 278 MHz with 13K gate counts 
using TSMC 0.13 µm technology. Also, this work utilizes about four line buffers. 

An error-amended sharp edge (EASE) scheme [11] is proposed for image zooming. This EASE scheme is a 
modified bi-linear method. EASE can remove/reduce interpolation artifacts such as image blur and the check-
board effect by using interpolation error theorem. This may turn out similar effect as cubic interpolation method. 

The goal of this proposed work is to reduce the computational complexity by reducing number of 
components used for image interpolation. The proposed hardware for convolution kernel based interpolation is 
developed by using only one line buffer and it eliminates the reorder module.  Therefore, the proposed 
architecture can reduce the number of combinational elements such as adder and multiplexer. So the new 
architecture has less computational complexity as compared with the existing architecture [13].  

III. FPGA IMPLEMENTATION 

The proposed FPGA implementation of image interpolation is based on EASE interpolation algorithm [11] 
The EASE interpolation method uses interpolation error theorem and convolution kernel [13]. The goal of the 
proposed work is to reduce the computational complexity by reducing number of components used for 
interpolation. This proposed work tries to reduce the number of line buffers and combinational elements such as 
adder and multiplexer of the existing architecture [13]. 

A. Concept of Convolution Based Interpolation Algorithm  

     Convolution kernal based two dimentational interpolation is generally decomposed as two one dimentational 
operations as vertical interpolation and horizontal interpolation to decrease the computational complexity. The 
interpolation circuit receives stream-in data from orginal images and produce stream-out results for scaled images. 
With the execution direction of interpolation, the interpolation circuit first interpolates the four intermediate values 
through the vertical direction, and then uses these values to interpolate  the target value through the horizontal 
direction. Figure 1 denotes the luminance values of cocordinate  (x,y) at the source pixel Sx,y, intermediate pixel Ix,y, 
and target pixel Tx,y respectively, where (xc,yc) represents the coordinate of the correct target pixel to be interpolated. 

      The convolution interpolation kernal can be defined as [13][24][25] 

ሻݏሺܥ     ൌ െሺ1 െ                           ,ݏሻଶݏ

ሻݏଵሺܥ                ൌ ሺ1 െ ሻݏ  2ሺ1 െ ݏሻଶݏ െ ሺ1 െ  ଶݏሻݏ

ሻݏଶሺܥ	               ൌ ݏ  2ሺ1 െ ଶݏሻݏ െ ሺ1 െ           ݏሻଶݏ

ሻݏଷሺܥ	                ൌ െሺ1 െ   ଶ                                                                        (1)ݏሻݏ

 

 
 

Figure 1:  An example to interpolate 2-Dimensional images 
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The first intermediate value ہܫ௫ିۂଵ,௬ through vertical path can be intended as, 

ଵ,௬ିۂ௫ہܫ  ൌ ሺܵ௩ሻܥ ൈ ௩ሻݏଵሺܥଵ  ିۂ௬ہ,ଵିۂ௫ہܵ ൈ ௩ሻݏଶሺܥ  ۂ௬ہ,ଵିۂ௫ہܵ ൈ ଷሺܵ௩ሻܥାଵ  ۂ௬ہ,ଵିۂ௫ہܵ ൈ ାଶۂ௬ہ,ଵିۂ௫ہܵ

                                                                  (2) 

ۂݔہ  → is the biggest integer not bigger than ݔ 

 ܵ௩ → is the present distance in the vertical path 

	ାଵ andۂ௬ہ,ଵିۂ௫ہܵ ,ۂ௬ہ,ଵିۂ௫ہܵ ,ାଵۂ௬ہ,ଵିۂ௫ہܵ   .ାଶ  are the four neighbouring values in the vertical pathۂ௬ہ,ଵିۂ௫ہܵ
Three additional intermediate values ہܫ௫ۂ,௬ ାଵ,௬ۂ௫ہܫ , ାଶ,௬ۂ௫ہܫ ,  can be intended in the similar way by the 
dissimilar neighbouring values (Figure 1). These values are able to interpolate the target value ௫ܶ,௬ throughout 
the horizontal path as, 

 

 ௫ܶ,௬ 	ൌ ሺܵሻܥ ൈ ଵሺܵሻܥଵ,௬ ିۂ௫ہܫ ൈ ଶሺܵሻܥ௬ ,ۂ௫ہܫ ൈ ଷሺܵሻܥାଵ,௬ ۂ௫ہܫ ൈ  ାଶ,௬                     (3)ۂ௫ہܫ

 

 ܵ → is the present distance in the horizontal path.  ܥሺܵሻ	 to ܥଷሺܵሻ be the consequent weights mentioned in 
equation (1). Equation (3) can also be written as  

    ௫ܶ,௬ ൌ ሺ1 െ ܵሻ ൈ ௬,ۂ௫ہܫ  ܵ ൈ ାଵ,௬ۂ௫ہܫ  ൣሺ1 െ ܵሻሺ2ہܫ௫ۂ,௬ െ ଵ,௬ିۂ௫ہܫ െ ାଵ,௬൯ۂ௫ہܫ  		ܵሺ2ہܫ௫ۂାଵ,௬ െ
௬,ۂ௫ہܫ െ ାଶ,௬ሿܵሺ1ۂ௫ہܫ െ ܵሻ                                                                                                                               (4)
                                                                                          

Equation (4) shows that it needs 14 operations per pixel. To decrease the needed computing resources of the 
hardware architecture, the design [13] uses the connection between the neighbour pixels and modifies equation 
(4) as 

 

௫ܶ,௬ ൌ ሺ1 െ ܵሻ ൈ ௬,ۂ௫ہܫ  ܵ ൈ ାଵ,௬ۂ௫ہܫ  ሺ1 െ ܵሻሺ2ܧ
ሻ  ܵሺ2ܧ

ோሻሿܵሺ1 െ ܵሻ                   (5) 

 

Where 2ܧ
 and 2ܧ

ோ are the present 2-Dimensional error amenders. The error amended system is based on the 
bilinear interpolation technique. 

 

B. Hardware Architecture 

The block diagram of the image inaterpolation architecture is shown in figure 2. It includes the Scaling 
Coordinate Accumulator (SCA) , the Weight Generator (WG), the Vertical Interpolation unit (VI) and the 
Horizontal Interpolation unit (HI). 

 
Figure 2: Block diagram of Image Interpolation 

       The Coordinate Accumulator (CA) calculates the corresponding coordinate of the current target pixel to be 
interpolated. Its inputs are two scaling factors one is for the Horizontal direction denoted as scale_x and another 
one is for the Vertical drection denoted as scale_y. These factors provide the scaling ratio of each direction. The 
current target pixels coordinate (ݔ,  ,ሻ is calculated asݕ

ݔ  ൌ ିଵݔ   ݔ_݈݁ܽܿݏ

ݕ  ൌ ିଵݕ    ݕ_݈݁ܽܿݏ

Where ሺݔିଵ, ݕିଵሻ coordinate of the previous target pixel. 
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       The detailed structure of the Weight Generator (WG) [13] is depticted in Figure 3 

 
Figure 3: Architecture of  Weight Generator  

       The WG generates the corresponding four weights ܥሺܵሻ	to ܥଷሺܵሻ in Equation (1). The WG first obtains 
the value of  ܵ௩ as 

 ܵ௩ ൌ ܻ െ ہ ܻۂ 
Equation (1) shows that the values of both ܥሺݏሻ	to ܥଷሺݏሻ are negative or zero. Therefore, adopt ܥ

ᇱሺܵ௩ሻ and 
ଷܥ
ᇱሺܵ௩ሻ intend ܥሺݏሻ	and ܥଷሺݏሻ of are defined as 

ܥ 
ᇱሺܵ௩ሻ ൌ ሺ1 െ ܵ௩ሻሺ1 െ ܵ௩ሻܵ௩         (6) 

ଷܥ 
ᇱሺܵ௩ሻ ൌ ሾሺ1 െ ܵ௩ሻܵ௩ሿܵ௩ 

Therefore, WG produces the four weights in the series as, 

ଷܥ
ᇱሺܵ௩ሻ ൌ ሾሺ1 െ ܵ௩ሻܵ௩ሿܵ௩  

ܥ 
ᇱሺܵ௩ሻ ൌ ሾሺ1 െ ܵ௩ሻܵ௩ െ ଷܥ

ᇱሿ 

ଵሺܵ௩ሻܥ  ൌ ሺ1 െ ܵ௩ሻ  ܥ2
ᇱ െ ଷܥ

ᇱ  

ଶሺܵ௩ሻܥ  ൌ ܵ௩  ଷܥ2
ᇱ െ ܥ

ᇱ            (7) 

The complete organization of the Vertical Interpolator [13]  is shown in Figure 4. 

 
Figure 4: Architecture of Vertical Interpolator (VI) 

The VI is used to generate the intermediary values using the four weights and Luminance values 
acquired from the WG and RM respectively. 

 
ଵ,௬ିۂ௫ہܫ ൌ ൫ܥଵሺܵ௩ሻ ൈ ۂ௬ہ,ଵିۂ௫ہܵ  ଶሺܵ௩ሻܥ ൈ ାଵ൯ۂ௬ہ,ଵିۂ௫ہܵ െ ൫ܥ

ᇱሺܵ௩ሻ ൈ ۂ௬ہ,ଵିۂ௫ہܵ  ଷܥ
ᇱሺܵ௩ሻ ൈ   ାଶ൯ۂ௬ہ,ଵିۂ௫ہܵ

                                       
(8) 

The complete structure of the Horizontal Interpolator [13]  is shown in figure 5. 
The 2-Dimensional values of  2ܧ

ோ and 2ܧ
  can be intended as 

 
ܧ2 
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ܧ2 

 ൌ ାଵ,௬ۂ௫ہܫ2 െ ାଶ,௬ۂ௫ہܫ െ               (9)	௬,ۂ௫ہܫ
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Equation (5) can be reorganized [13] as 
 
       ௫ܶ,௬ ൌ ሺ1 െ ܵሻ ൈ ௬,ۂ௫ہܫ  ܵ ൈ ାଵ,௬ۂ௫ہܫ  ሾሺ1 െ ܵሻሺ2ܧିଵ

ோ ሻ  ܵሺ2ܧ
ோሻሿܵሺ1 െ ܵሻሿ                  (10) 

 
Where, 			ሺ1 െ ܵሻ ൈ ௬,ۂ௫ہܫ  ܵ ൈ ାଵ,௬ۂ௫ہܫ ൌ ௬,ۂ௫ہܫ െ ܵ ൈ ௬,ۂ௫ہܫ  ܵ ൈ  ௬,ۂ௫ہܫ
                                                                         ൌ ௬,ۂ௫ہܫ  ܵ ൈ ሺہܫ௫ۂାଵ,௬ െ  ௬ሻ                   (11),ۂ௫ہܫ
 
The computation of  2ܧ

ோ can be reorganized as, 
 
ܧ2      

ோ ൌ ାଵ,௬ۂ௫ہܫ2 െ ାଶ,௬ۂ௫ہܫ െ  ௬,ۂ௫ہܫ
             ൌ ൫ہܫ௫ۂାଵ,௬ െ ௬൯,ۂ௫ہܫ െ ሺہܫ௫ۂାଶ,௬ െ   ାଵ,௬ሻۂ௫ہܫ
 Let, 						ہܦ௫ۂ,௬ ൌ ାଵ,௬ۂ௫ہܫ െ  ௬,ۂ௫ہܫ

ାଵ,௬ۂ௫ہܦ  ൌ ାଶ,௬ۂ௫ہܫ െ  ାଵ,௬ۂ௫ہܫ
ܧ2            

ோ ൌ ௬,ۂ௫ہܦ െ	ہܦ௫ۂାଵ,௬		                        (12) 

 
Figure 5: Architecture of Horizontal Interpolator 

Equation (10) can be modified [13] as, 
 

 ௫ܶ,௬ ൌ ௬,ۂ௫ہܫ  ܵ ൈ ௬,ۂ௫ہܦ  ሺܵܥ ൈ ିଵܧ2
ோ  ܵ ൈ ܧ2

ோሻ ൈ ܵ ൈ                     (13)ܵܥ
 

Where, ݔ → is the horizontal coordinate position from CA. ܵ ൌ ݔ െ ܵܥ and 	,ۂݔہ ൌ 1 െ ܵ. 
 

C. The Proposed Hardware Architecture 
 

In order to design a less area and low power architecture an optimized architecture of  decreasing 
computational complexity is proposed as shown in figure 6. 
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Figure 6: Block diagram of the proposed interpolation method 

Image preprocessing in Matlab simulink helps in providing input to FPGA as specific test vector array which 
is suitable for FPGA bitstream compilation using system generator. The block diagram of  image pre-processing 
[26]  is shown in Figure 7. 

 

 
Figure 7: Block diagram of preprocessing 

The proposed architecture  has no  line buffer and reorder module to provide the source image pixels to the 
vertical interpolation unit. But the existing architecture [13] uses four number of line buffers and a reorder module.  
So that by eliminating the  line buffers in the interpolation architecture the computational complexity is very much 
reduced  from the existing method and it also reduced the number of logics or number of LUTs for the FPGA 
implementation. 

Image post processing helps recreating image from 1D array. Figure 8 shows the block diagram of post-
processing operation [26]  used to produce the output image. 
 

 
Figure 8: Block diagram of post processing 

IV. RESULT AND DISCUSSION 

The performance of scaling algorithm is evaluated based on two categories such as quality measure and 
performance measure. Quality measure specifies the performance of the algorithm based on metrics such as 
Mean Squared Error and Peak Signal to Noise Ratio. Performance measure specifies the computational 
complexity of image interpolation algorithms. Here quality measure and performance measure of NICFMA [13] 
and the proposed method are evaluated by using MATLAB simulation and MATLAB Simulink with Xilinx 
System Generator respectively.  

First, the image quality of the scaled images is analysed for NICFMA method. This algorithm is simulated in 
MATLAB simulation tool for the selected gray scale/colour images of size 512x512 in USC-SIPI database. Two 
different quality analysis measurements are used on these test images. In order to obtain these measures, the 
selected images are first down sampled by a factor of 0.5 and then magnified by a factor of two. The 
measurements are Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). 

Then the computational complexity of image interpolation algorithms are calculated for the two methods and 
the comparison was made. To measure the computational complexity, the image interpolation circuit of two 
different methods such as NICFMA [13]   and the proposed method are simulated using Xilinx System 
Generator and synthesized using Xilinx ISE simulation tool. The specifications such as summary of device 
utilization (Number of slice registers, Number of Slice LUTs, Number of occupied Slices), memory usage and 
power consumption are found out from the synthesis report. 

A. Database 

For testing the quality of scaling algorithms, images from USC-SIPI database of size (512 × 512) are 
selected and coded in MATLAB and executed. The USC-SIPI image database is a collection of digitized images. 
The database is divided into volumes based on the basic character of the pictures. Images in each volume are of 
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V. CONCLUSION 

This paper proposes an area efficient VLSI architecture of convolution kernel based interpolation for digital 
image scaling. The operation of proposed architecture requires seven additions, eight subtractions and 11 
multiplications with single line buffer and no reorder module. Therefore, the number of arithmetic elements in 
the proposed architecture is much less than the other interpolation methods. Further, the proposed method can 
be implemented without using line buffers. Consequently, the proposed VLSI architecture has solved the 
problem of computation complexity of image interpolation and furthermore, simplified the hardware for FPGA 
implementation and reduced the chip area. The architecture works with less area, but it may be extended for 
working with high accuracy. 
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