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Abstract- This paper presents a technique of searching a keyword in a spoken utterance using Dynamic 
Programming algorithm.  This method is being revisited because of the evolution in computing power. 
The proposed methods present less computational complexity compared with the conventional Dynamic 
Time Warping (DTW) method.  The proposed methods are  tested  with connected TIDIGIT data. 
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I. INTRODUCTION 

Many times, there is a need to spot a particular spoken word called as a keyword in the spoken utterance. The 
system designed for this particular task  is called as Key Word Spotting(KWS) system. This is a specific 
application of Automatic Speech Recognition(ASR). Therefore, most of the  approaches used for ASR could 
also be used for KWS system with a little modification. In this paper, we are using one such ASR approach for 
KWS system called as Dynamic Time Warping (DTW) technique based on Dynamic Programming(DP) 
algorithm. Unlike other techniques used for ASR, this does not need training of any models as well as any 
addition of new keyword to the database do not call for a retraining. The basic approach is keywords are stored 
as templates in the database and matched against the unknown spoken utterance for similarity. Based on the 
similarity index, conclusion is drawn that a keyword is found or not. 

As with the development and worldwide adoption of ASR technology, additional ASR applications came into 
picture. Some of the emerging applications  that could use KWS system are Audio Indexing, Call Monitoring 
for National Security, Interactive Voice Response (IVR) system. Basically keyword spotting (KWS) referred to 
as a problem of searching of keyword template in an unknown  speech signal. This task of searching is very 
important and  some  of the application which does not require knowledge of whole contents of the unknown 
speech signal. In such cases we could use KWS system.  

In this paper different keyword spotting methods are surveyed. The various approaches used for 
implementing KWS are, DTW based, Hidden Markov Model (HMM) based and phone or word based. Out of all 
the above listed methods, one of the easiest strategy for keyword spotting is introduced by Bridle[1] and which 
is used in [2,3,4] which suggest the use of DTW to search for match between keyword template and test 
utterance. But the major problem with DTW based approach is its computational complexity and estimation of 
threshold [5] and poor modelling of word duration [6], which means that we don’t know actual starting point 
and ending point of the word to be spotted and there may be silent part in between. HMM  is normally used for 
ASR, has also been used for keyword spotting. The fundamental idea of this technique, is to build HMM model 
for both keyword and test utterance. The models other than  the keyword is referred as garbage model or filler 
model and the probability is calculated for each speech region to search if it is closer to the keyword. One more 
strategy as stated above which involves analysing and searching phone or word based  speech recognizer to spot 
keyword occurrence [5,6]. This strategy is based on speech recognition which involves speech recognizer to 
spot keyword from predefined vocabulary which gives high error rate [6,7] when the unknown  speech is noisy. 

Because of these problems associated with the DTW and word-phone based, HMM model is used in most of 
the previous work of keyword spotting [8]. On the other hand, HMM based keyword spotting suffers from 
number of problems like mainly collection of large amount of illustrated training data[9]. This annotation  alone 
is time consuming and it requires language expertise. One more problem associated with HMM is regarding 
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flexibility[10], addition of new keyword which requires  retraining. There were many attempts to overcome 
these problem of HMM-based KWS such as building different types of model[11]. However, it again requires  
training which can cause a problem for audio indexing of new words, which is the main focus of this paper. 
These problems related with the HMM, in recent years leads to the use of DTW based KWS. 

 Because of the  recent advancement in the computing power, DTW based system is revisited. In this paper, 
we have proposed alternative methods related to the sliding window search, in order to reduce the computational 
complexity. We have extracted Mel Frequency Cepstral Coefficients(MFCC) features from keyword and  from 
unknown utterance. Then these features of keyword and utterance are used by the proposed DTW. 

The rest of the paper is structured as follows:  Section 2 briefly describes the system design which includes 
overview of the system, feature extraction method. Section 3 talks about the proposed modified DTW methods 
using hashing technique. Section 4 describes the experimental setup and the results. Section 5 provides the 
conclusion and future scope of the system. 

II. SYSTEM DESIGN 

A. Overview of the System 

The block diagram of the keyword spotting system is shown in Fig.1. Feature Extraction Block(FEB) uses 
MFCC feature extraction method. Feature extraction of keyword as well as unknown utterance is done using 
FEB. Features  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Proposed Configuration of Keyword Detection System 

of keyword and unknown utterance are compared in the modified DTW block. Then the Global Warping 
Cost(GWC) is computed for each window comparison. If the GWC of the particular window is below the 
threshold, then it  is declared as keyword found.  

B. Feature Extraction 

Speech signal is applied through a pre-emphasis filter, framed  for 25ms, windowed using Hamming widow 
with an overlap of 15ms. Fourier transform of each  frame is applied through a  set of Mel Filter banks. Filter 
bank output is calculated in decibels and applied with a  discrete cosine transform to decorrelate the cepstral 
coefficients. The whole feature extraction method is shown in Fig.2. 
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Fig.2. MFCC Feature Extraction 
 

MFCC can be defined as short time power spectrum of speech signal in decibels. So basically MFCC 
represent the energy in each band of triangular filter. In case of MFCC, Mel scale (m) is used which 
approximates the human auditory system’s response more closely than the linearly space frequency bands. Mel 
scale warps the frequency and allows better representation similar to human auditory system. Mel scale is 
roughly linear below 1000Hz and is non-linear (logarithmic) above 1000Hz.  So here at the output we get 20 
coefficients, but typically lower 13 coefficients are chosen by spectral smoothing. In this paper, we extract 13 
static MFCC coefficients, 13 delta coefficients, 13 acceleration coefficients for a speech frame of length 25ms. 

III. PROPOSED DTW METHODS 

As it is well known that in speech processing, when we record the speech signal, two occurrence of the same 
word, even if it is uttered by the same person, they are not exactly the same. This is the biggest challenge while 
designing any ASR system. This could be because of many factors like speaker variation, accent, pronunciation 
and further may be because of noise while recording the speech signal. The proposed system depends on one 
hypothesis that  the GWC  between the keyword and part of the utterance containing the keyword are small 
compared to other part of the utterance.   

A. DTW Algorithm 

Assume the keyword feature sequence is represented by (A1, A2, A3…An), where n is number of frames in the 
keyword and unknown utterance  is represented by (B1, B2, B3…Bm), where m is the number of frames in the 
unknown utterance  in which  m>n. Each Ai, Bi   represents frames of keyword and unknown utterance which in 
turn contains 39 MFCC feature vectors. So the total number of features in keyword, unknown utterance is n*39, 
m*39 respectively. To compare time series sequence of different lengths,  the sequences must be warped in 
dynamic manner [12,13]. The DTW algorithm will find out warping path between keyword and utterance to be 
tested. Here we are trying to find out whether there is a keyword present in the long spoken utterance, so the 
number  of frames in the utterance(m) is going to be always bigger than n. The computational complexity of  
DTW is O(N2) where N is the maximum length of the two time series. 

A generic DTW algorithm is explained below. 

Let the keyword template of A=(a1, a2, a3…an) and utterance B=(b1, b2, b3…bm). The absolute distance 
between the  two elements  ai, bj is dij. This results  in a local distance matrix of length n*m as given by the 
following equation: 

              ݆݀݅	 ൌ 	 |	ܽ݅	 െ 	ܾ݆	|, ݅ ൌ 1,2…݊	, ݆ ൌ 1,2…݉.                            (1) 

The global distance matrix calculated  from the local distance matrix  through the following steps. 
1. Start with the calculation of a(1,1) = d(1,1) 

2. Calculate the first row  

ܽሺ݅, 1ሻ 	ൌ ܽሺ݅– 1, 1ሻ 	 	݀ሺ݅, 1ሻ.                                                  (2) 

Calculate the first column  

ܽሺ1, ݆ሻ 	ൌ ܽሺ1, ݆ሻ 	 	݀ሺ1, ݆ሻ.                                                      (3) 

3. The second row to the last row is calculated by the following steps 

                        ܽሺ݅, 2ሻ 	ൌ 	݉݅݊ሺܽሺ݅, 1ሻ, ܽሺ݅– 1,1ሻ, ܽሺ݅	– 	1, 2ሻሻ 	 	݀ሺ݅, 2ሻ.        (4) 

4. Carry on from left to right and from bottom to top with the rest of the grid  

       ܽሺ݅, ݆ሻ 	ൌ 	݉݅݊ሺܽሺ݅, ݆– 1ሻ, ܽሺ݅– 1, ݆– 1ሻ, ܽሺ݅	– 	1, ݆ሻሻ 	 	݀ሺ݅, ݆ሻ. (5) 

5. Trace back the best path through the grid starting from a(n, m) and moving towards a(1,1) by following 
the minimum score  path. 

Then the GWC  is given by       

	ܥܹܩ                         ൌ 	 


P

i

iW
N 1

1
                                                                        (6) 
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