
An Instant Path Planning Algorithm for 
Indoor Mobile Robots Using Adaptive 

Dynamic Programming and Reinforcement 
Learning  

R.Karthikeyan1, B.SheelaRani2, K.Renganathan3  

1Research Scholar, Sathyabama University,  
Chennai, Tamilnadu, India 

2Centre for Research, Sathyabama University, 
Chennai, Tamilnadu, India 

3Department of Electronics & Instrumentation, Sri Sairam Engineering College 
Chennai, Tamilnadu, India 

1karthikeyan.ice@sairam.edu.in, 2kavi_sheela@yahoo.com,3renganathan.ice@sairam.edu.in  

Abstract- An Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) based instant 
path planning algorithm is proposed in this paper. The layout of any indoor environment is always 
known. This information is converted into a binary matrix containing free space and obstacle space using 
image processing system. A dynamic program algorithm translates the rough obstacles to expected 
shaped obstacles so the robot is not confined in motion. A grid policy is used for value evaluation of 
reward function. Value iteration draws out all possible paths from goal to target. A Q-learning algorithm 
finds the best possible path from the numerous possible paths determined. A Biezer curve based 
approximation is done to smoothen the discrete way points for smooth motion and determination of linear 
and angular velocities for a differential drive robot. The simulation and the results show the proposed 
algorithm have better processing time, less computational complexity, and instant determination of path, 
compared to other existing methods.  

Keywords: Dynamic Programming, Grid Mapping, Q-learning, Reinforcement Learning. 

I. INTRODUCTION 

With the enormous growth of mobile robots for Indoor applications in instances such as museums, Industrial 
material handling, material transfer, domestic assistance and   robotic competitions, use of a single robot to be 
compatible and adaptable to all situations requires complex path planning and repeated programming. This 
paper proposes a adaptive algorithm which gives best solution for many criteria such as time delay, travelling 
distance, computational complexity, planned time of arrival, instant start and target locations changeability etc. 
The algorithm aims in path planning of a mobile robot from an initial position and orientation to a goal position 
and orientation without obstacle collision in a finite time. The typical way to solve this problem is splitting it in 
less complex sub problems.[1,2]. The problem is divided into mapping, Value evaluation, Value iteration, 
Optimal way point generation, curve connection, and navigation. Some methods require the workspace to be 
two-dimensional and the object shape to be defined. The most common methods are based on road-map, cell 
decomposition and potential fields[3].  another problem of these approaches is that most of them produce 
polygonal line paths, and this geometric paths are not good to non-holonomic robot navigation. 

Few adaptation techniques were developed to make these paths executable by robots with non-holonomic 
constraints [4].In the other hand, Reinforcement Learning [5]. Is, learning what to do so as to maximize a 
reward signal. The learner is not told which actions to take, but instead must discover which actions yield the 
highest reward by trying them.  

II. MAPPING 

The layout of the environment to be path planned is given to the controller as an image data. This image data 
is converted into a binary image of 0’s and 1’s by using Thresholding technique. The obstacles which are 
converted to black are assigned 0’s and the free space is assigned 1’s. The image is partitioned as a grid of 512  
by  512 sizes [6]. Were the number of rows & columns is assumed equal as 512. A proposed environment [10]. 
as shown in fig. 1 is taken for test. The binary data is termed matrix ‘O’ as shown in fig. 2, which has the entire 
environment data of the free space and the obstacle. 
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