
Multi-objective hardware/software
partitioning technique for dynamic and

partial reconfigurable system-on-chip using
genetic algorithm

N.Janakiraman#1, P.Nirmal Kumar

#2

#1Associate Professor, Department of ECE, K.L.N. College of Engineering, Madurai, INDIA
#2Associate Professor, Department of ECE, Anna University – Guindy campus, Chennai, INDIA

#1janakiramanforu@yahoo.com, #2

nirmal@annauniv.edu

Abstract – Hardware/software partitioning is a common method used to reduce the design complexity
of a reconfigurable system. Also, it is a major critical issue in hardware/software co-design flow and
high influence on the system performance. This paper presents a novel method to solve the
hardware/software partitioning problems in dynamic partial reconfiguration of system-on-chip (SoC)
and observes the common traits of the superior contributions using genetic algorithm (GA). This
method is stochastic in nature and has been successfully applied to solve many non-trivial polynomial
hard problems. It is based on the appropriate formulation of a general system model, being therefore
independent of either the particular co-design problem or the specific partitioning procedure. These
algorithms can perform decomposition and scheduling of the target application among available
computational resources at runtime. The former have been entirely proposed by the authors in
previous works, while the later have been properly extended to deal with system-level issues. The
performance of all approaches is compared using benchmark data provided by MCNC standard cell
placement benchmark netlists. This paper has shown the solution methodology in the basis of quality
and convergence rate. Consequently, it is extremely important to choose the most suitable technique
for the particular co-design problem that is being confronted.
Keyword-Hardware/software partitioning, Genetic algorithm, Dynamic partial reconfiguration, System-on-
chip

I. INTRODUCTION
Hardware/software partitioning is a method of dividing a complex heterogeneous system into hardware

co-processor functions and its compatible software programs. It is a prominent practice that can realize
results greater than the software-only or hardware-only solutions in SoC design. This technique can improve
the system performance [1] and reduce the total energy consumption [2]. The proposed partial dynamic
reconfiguration method does not depend on any tool. It uses a set of algorithms to detect crucial code regions,
compilation/synthesize of hardware/software modules, and updating of communication logic. Hence, it could
tune up the system to give full efficiency without disruption of other SoC-related operations. Here, the GA is
used for optimization process. This is essential in system-level design, since decision-making process affects
the total performance of system. This paper presents a novel system partitioning technique with in-depth
analysis. The paper is organized as follows. Section 2 briefs about the previous works in this field. Section 3
presents the proposed system model for partitioning problem. Section 4 gives the results and its analysis.
Section 5 concludes the paper and discusses about the future work. Last section provides the list of
references.

II. RELATED WORKS
When compared to dynamic partitioning using standard software, the run-time (or) partial dynamic

reconfigurable systems had attained superior performance with manually specified predetermined hardware
regions. Multiple choices of preplanned reconfigurations were rapidly executed in a run-time reconfigurable
system using PipeRench architecture [3] and dynamically programmable gate arrays (DPGA) [4]. The binary-
level partitioning technique [5] was provided a good solution compared to source-level partitioning methods
due to the functionality of any high-level language and software compiler. Since the satisfaction of
performance was not considered for the cost function of this system, it may be failed to find out local
minima. A mapping technique for nodes and hardware/software components was developed in [6] called
GCLP algorithm. The hardware cost was minimized by the incorporation of hill-climbing heuristic algorithm
with the hardware/software partitioning algorithm [7].

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 552

III. SYSTEM MODEL FOR PARTITIONING
The problem resolution requires the system model definition to represent the important issues in the

hardware/software co-design for a specific problem [8]. The system partitioning problem model is
represented by the task graph (TG) flow diagram. TG is a model of directed and acyclic graph (DAG) flow
with weight vectors. Formally, it is defined as (),G V E= , where ‘V’ represents the nodes and ‘E’ represents
the edges. The flow direction is represented by each edge. Due to reducing the complexity of TG, it can be
modified as one starting node and one ending node. Figure1 represents the overview of the partitioning
procedure. Design constraints and design specifications are given as the input to the partitioning process as a
high-level specification language. The nodes can act as giant pieces of information like tasks and processes of
coarse granularity or tiny types like instructions and operations of fine granularity approach.

Fig.1. System Model for Partitioning

After the system space estimation, every node is tagged with some attributes. Giant pieces of data for a
node (), i jV are represented by 5 attributes as follows:

(1) Hardware area (),i jHA

(2) Hardware implementation time (), i jHT

(3) Software memory size (),i jSS

(4) Software execution time (),i jST

(5) The average execution time in numbers (),i jN

Shortly,
 Hardware module () () () ()i, j i, j i, j i, jHM HA HT N= + +

 Software module () () () ()i, j i, j i, j i, jSM SS ST N= + +

Communication values (),i jC of every node are represented by three components as follows.

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 553

(1) Transfer time (),i jTT

(2) Synchronization time (),i jSynT

(3) The average communication time in numbers (),i jM

Shortly,
 Communication value of node () () () ()i, j i, j i, j i, jC TT SynT M= + +

() () ()

() ()
i i j j i, j

i, j
i j

N * TT N * TT SynT
C

HT HT

∆ + ∆ +
=

+
;

 where () ()i i i(TT) ST HT∆ = − and () ()j j j(TT) ST HT∆ = −

Efficiency of the hardware/software system partitioning process is based on the target architecture and
its mapping technique. Hence, this work considers the ‘Dynamically Reconfigurable Architecture for Mobile
Systems’ (DReAM) as target architecture. Execution of hardware and software processes should be
concurrently in the standard processor and the application-specific co-processor. This partitioning process
concludes the assignment of modules to implement the hardware and software stages, implementation
schedule (timing), and the communication interface between software and hardware modules. In general, this
partitioning solution can be validated by the measurement of eminent attributes like performance and cost
parameters. Hence, this paper used as three quality attributes related to design elements as follows:
(1) The estimated hardware area is EA , and the maximum available area is A.

(2) The estimated design latency is ET , and the maximum allowed latency is T.

(3) The estimated software (or) memory space is EM , and the maximum available space is M.
Static-list scheduling method is used for the scheduling process [9]. It is a subtype of resource-

constrained scheduling algorithm. This scheduler considers the timing estimation of every vertex and its
interconnections. This scheduler unit provides the design latency ()ET and the cost of communication for
hardware–software co-design. Based on the hardware and software implementations, another four parameters
are considered for co-design realization.

When the entire system is implemented in hardware,
(1) The minimum design latency is MinT.
(2) The maximum hardware area is MaxA.

When the entire system is implemented in software,
(1) The maximum design latency is MaxT.
(2) The maximum memory space is MaxM.

These parameters are used to create the bounding constraints for the design space.
0 ≤ A ≤ MaxA; 0 ≤ M ≤ MaxM; MinT ≤ T ≤ MaxT.

A. System Operations
The design specifications are given in the format of ISPD98 benchmark suite [10] circuit netlist. This

partitioning process has three stages.
In first stage, the processing of design specifications is divided into three subtasks. The first subtask is

the separation of hardware (iHA &)iHT and software (iSS &)iST estimations from the design
specifications. The second subtask is to translate the design specifications into a hypergraph-based control
data flow graph (CDFG) representation (),G V E= . The third subtask is scheduling (iN & ,)i jN of each
operations in the CDFG with satisfaction of the design constraints and the priority of operations.

In second stage, the outputs of these three tasks are given into the system-level partitioning module
through the registers. It has three functionalities. The operational-level analysis is the first process, used to
classify the tasks whether it is suitable for hardware realization or software execution. Next, the allocation
process is used to allocate the required supporting entities like functional units, interconnections, and storage
elements for the scheduled hardware and software systems. This allocation is based on the speed constraint
(i.e., parallel processing) and the area constraint (i.e., dynamic partial reconfiguration). Finally, an absolute
data path is generated by integrating components in the basis of hardware and software partitions. Then, the
partitioning data are given to the specific hardware ()iHM and software ()iSM models.

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 554

In third stage, the hardware and software models are executed separately and the outcomes are
compared with their estimated values (i.e., first stage). If any controversy arises, the feedbacks are given to
the second-stage process. This looping process is continued till the satisfaction of all criterions.
Next, the performance ,()i jC of hardware–software co-design is estimated and compared with target
performance metrics. If any misalignment arises, the feedback is indicated to the system-level partitioning
stage. Then, the entire second and third stages are recompiled, till the achievement of target performance
measures. Finally, the hardware/software co-simulation and co-verification is performed, and then, the SoC is
realized.

B. Hardware/Software Estimation
 The CDFG file is given to the input of both hardware and software estimations with the settings of
target technology files and processor specifications. The hardware execution is a parallel process since the
specifications are modeled in VHDL library. The software execution is a sequential process since the
specifications are modeled in C code. The GA technique is used to optimize these parallel and sequential
processes. Hardware estimation is based on the high-level synthesizable components, to share the control and
data path between hardware and software processes. GA is used to optimize this resource sharing process
[11]. The quality measures are closely associated with performance metrics like execution, implementation,
transfer, and synchronization times commonly called reaction time. This reaction time is associated with each
node in each execution of local DFG. For convenient, the CDFG is split into several small DFGs called local
DFGs.
The response times for
 Routine statements, RS DFGT T=

 Conditional statements, CS n DFGn
n

T P T=∑ ;

 n – Number of iterations
 nP – Probabilities of iterations of outcomes.

 Looping statements, LS DFGT nT= ;

CDFG DFG1 DFG1 DFGi DFGi DFG1 DFG1 DFGj DFGjT F(T ,F , ,T ,F) F(T ,F , ,T ,F)= … + …

()i, j i i, j
i

MinTα MaxA*C T N 
= + 

 
∑

 iT – Time delay for each node
 α – Co-estimation factor

iR

i i, j
i j 1

MaxT MinTβ T N
=

 
= +  

 
∑ ∑

 iR – Required components of each node ‘i’

 β – Constant, since MaxT is a higher-order term

 iF – Number of fixed components for each node ‘i’

i

i

R
i

CDFG i, j
i j F 1i

TT MinTβ N
F = +

 
= +  

  
∑ ∑

C. Register Estimation:- [12]

Many input multiplexers = ()i*MUXs

State machines based control logic is used to control lines, 2log i

ROM size, ()2 i 2
i

STA* 1 log i REG F log S bits
   

+ + +       
∑

 STA – Number of states & REG – Number of registers.
 Software estimation is based on the calculation of memory space occupied by instruction set and user-
defined data types and data structures. The average queuing time for each memory access can be modeled as

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 555

qT , and the number of access is represented by
memN . This calculation is necessary to estimate

() (), , and i j i jTT SynT .

Hardware estimation () ()() ()HM q mem,HMCDFG,HMT TαT N= +

Software estimation () ()() ()()SM qCDFG,SM mem,SMT T T N= +

Co-estimation () () mem
HM/SM q

q

NTσ T φ
T

 
= +   

 
; where σ and φ are complex structures.

IV. GENETIC ALGORITHM
Genetic algorithms (GAs) are evolutionary techniques based on the Charles Darwin’s survival of the

fitness. These are transformative computational techniques working in the concept of evolution of natural
organs. In all organic techniques the fundamental data are taken in the form of sequences or chromosomes.
Like that, genetic methods are also has chromosomes or strings, which is a collection of several data or
change alternatives for each individual or gene. The quantity and quality of data are decided by population
size of the GA. This is a key factor to find the several alternate solutions to a particular problem and that
evolution takes more number of generations. In general, GA accepts problem in the format of chromosomes.
Hence the circuit netlist or hypergraph format problems are converted in the form of chromosome.
Population Set: This paper deals the circuit in the format of hypergraph. Each component (node or vertex)
and inter-connection (net or hyper-edge) is encoded in the format of 32-bit binary digits called chromosomes
or individuals. These chromosomes are arranged in the adjacency matrix format which represents the
corresponding node and net positions using spanning tree algorithm [13]. This is a randomly generated initial
population set or matting pool with the user specified population size. The cost (number of cuts) of each
individual (partition) is calculated and stored in the registers.
Fitness Evaluation: Based on the cost value, the fitness function is evaluated for each individual (i.e. Fitness
= Total Number of Nets – Cut Size). This fitness evaluation influences the individual’s selection for next
generation. Here the rank based selection process is used to select individuals for creating a mating pool.
Crossover: The crossover operators are try to combine the attributes of highly fit individuals in the mating
pool, to create offspring which is expected to be better than their parents fitness value. Here the uniform
crossover operator is used for mating process with varying range of crossover probability value (0.91-0.98).
If the newly generated individuals or children have high fitness value than original population, then the
lowest fit individuals are replaced by new individuals, otherwise, the original population doesn’t altered
(elitism).

Mutation: The mutation operator is randomly performed on the bits with very small probability value (0.05),
due to the prevention of sudden changes in population set. Then this modified population set is evaluated for
its fitness function.
The stopping criterion for this entire process is set to 100 runs.

Pseudo-code for Crossover

begin
 K ← Individual;
 K ← 0;
 while (K < Population Size) do
 KC ← Random number between 0 and 1;

 If (KC < 0.91) then
 Select individual K as one parent for crossover
 endif
 K ← K + 1;
 endwhile
end

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 556

V. ANALYSES OF RESULTS
All the hardware/software partitioning algorithms have been experimented in a set of benchmark suites

provided by ISPD’98, whose characterization is shown in Table1. Size and values of the system graph should
bound within the design space. All these examples are illustrated in the form of directed and acyclic graphs to
specify the certain coarse–grain tasks. Every example has been tested in different constraints, but it always
within the specified boundary conditions. The results are summarized in Table2. These results will be
analyzed from both qualitative and quantitative perspectives. The qualitative aspects will be mainly
represented by the resulting cost of the solutions obtained from each method, under different constraints. The
quantitative issues will be shown by means of the computation time resulting from each technique.

TABLE I
DESIGN CHARACTERISTICS FOR ISPD’98 BENCHMARK SUITE

Circuit # Cells # Pads #Modules # Nets # Pins
ibm01 12506 246 12752 14111 50566
ibm02 19342 259 19601 19584 81199
ibm03 22853 283 23136 27401 93573
ibm04 27220 287 27507 31970 105859
Ibm05 28146 1201 29347 28446 126308

TABLE III
RESULTS ACQUIRED WITH THE ISPD’98 EXAMPLES

Example
Constraints Genetic Algorithm

Area
(CLBs)

Time
(ns)

Memory
(Bytes) AE TE ME Fitness

ibm01 121800
103080

10200
8670

52670
44770

118146
101637

9384
8020

46350
41189

0.9233
0.9437

ibm02 154700
193375

12600
15750

55980
48980

140170
172104

11230
15435

49823
51429

1.0000
0.9733

ibm03 171200
111280

14200
9230

48090
57708

154896
103521

12040
8769

38953
54823

1.0000
1.0000

ibm04 182200
258724

15900
19239

56460
50814

173090
234597

14469
16546

62106
46749

0.9866
0.9600

ibm05 198300
97167

16800
12432

62210
81495

180453
92309

13776
10940

58478
84755

0.8900
0.9566

VI. CONCLUSION AND FUTURE WORK
In this paper, the commonly used biologically inspired optimization algorithm, which addresses the

hardware/software partitioning problem for SOC designs, is implemented using clustering approach as well
as their performance is evaluated. This evaluation process does not have any constraints on the cluster size
and the number of clusters. Hence, this evaluation approach is quiet suitable to be used in reducing the design
complexity of systems. This paper had shown how this problem can be solved by means of very different
partitioning techniques at runtime of the system (dynamic partial reconfiguration). The problem resolution
has been based on the definition of a common system model that allows the comparison of different
procedures. These extensions have improved previous implementations, because they include some issues
previously not considered. The constraints of these algorithms have been integrated into the cost function in a
general and efficient way. This genetic algorithm-based dynamic partitioning technique has produced an
average of 16.19 % accuracy in hardware/software partitioning compared to [14] and [15].

A future study could extend the system model to encompass other quality attributes, like power
consumption, influence of communications, and the degree of parallelism. Also, the hybrid algorithms of
these biologically inspired algorithms and their compilation are currently under study.

ACKNOWLEDGMENT
 This work was supported in part by All India Council for Technical Education-Quality Improvement
Programme scheme 2010. Access to research and computing facilities was provided by the Anna University
and K.L.N. College of Engineering.

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 557

REFERENCES
[1] D.D. Gajski, F. Vahid, S. Narayan and J. Gong, “SpecSyn—an environment supporting the specify-explore-refine paradigm for

Hardware/Software system design,” IEEE Trans. VLSI Syst., vol. 6(1), pp. 84–100, 1998.
[2] J. Henkel, “A low power Hardware/Software partitioning approach for core-based embedded systems,” in Proc. of the 36th

[3] S.C. Goldstein, H. Schmit, M. Budiu, M. Moe and R.R. Taylor, “PipeRench—a reconfigurable architecture and compiler,” IEEE
Computer, vol. 33, pp. 70–77, 2000.

 ACM/IEEE
Conf. on Design Automation, 1999, pp. 122–127.

[4] A. DeHon, “DPGA-coupled microprocessors-commodity ICs for the early 21st

[5] G. Stitt and F. Vahid, “Hardware/Software partitioning of software binaries,” in IEEE/ACM Inter. Conf. on Computer Aided Design,
2002, pp. 164–170.

 century,” in Proc. of FCCM, 1994.

[6] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel hypergraph partitioning-application in VLSI domain,” IEEE Trans.
VLSI Syst., vol. 20(1), 1999.

[7] C.J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. of the Inter. Symp. on Physical Design, 1998, pp. 80–85.
[8] Y. Jiang, H. Zhang, X. Jiao, X. Song, W.N.N. Hung, M. Gu and J. Sun, “Uncertain model and algorithm for Hardware/Software

partitioning,” IEEE Comp. Soc. Annu. Symp. VLSI, 2012, pp. 243–248.
[9] A. Al-Wattar, S. Areibi and F. Saffih, “Efficient on-line Hardware/Software task scheduling for dynamic run-time reconfigurable

systems,” in 26th

[10] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Pearson Education, 2004.
 Inter. Parallel and Distributed Processing Symp. Workshops & PhD Forum, 2012, pp. 401–406.

[11] W. Sheng, W. He, J. Jiang and Z. Mao, “Pareto optimal temporal partition methodology for reconfigurable architectures based on
multi-objective genetic algorithm,” in 26th

[12] P. Mazumder and E.M. Rudnik, Genetic Algorithms for VLSI Design Layout and Test Automation, Pearson Education, 2003.

 Inter. Parallel and Distributed Processing Symp. Workshops and PhD Forum, 2012, pp.
425–430.

[13] J. Yu, Z. Hehua, J. Xun, S. Xiaoyu, N.N.H. William, G. Ming and S. Jiaguang, “Uncertain Model and Algorithm for
Hardware/Software Partitioning,” IEEE Computer Society Annual Symp. on VLSI, 2012, pp. 243-248.

[14] L. Luo, H. He, Q. Dou and W. Xu, “Hardware/Software partitioning for heterogeneous multicore SoC using genetic algorithm,” in 2nd

[15] L. Su and X. Zhang, “Research on an SOC Software/Hardware partition algorithm based on undirected graphs theory” in IEEE Inter.
Conf. on Computer Science and Automation Engg., 2012, pp. 274–278.

Inter. Conf. on Intelligent System Design and Engg. App., 2011, pp. 1267–1270.

N.Janakiraman et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 2 Apr-May 2014 558

	Multi-objective hardware/software partitioning technique for dynamic and partial reconfigurable system-on-chip using genetic algorithm
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORKS
	III.SYSTEM MODEL FOR PARTITIONING
	IV.GENETIC ALGORITHM
	V. ANALYSES OF RESULTS
	VI.CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES

