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Abstract—Information Retrieval plays a vital role in extraction of relevant information. Many 
researches have been working on for satisfying user needs, tough the problem arises when accessing 
multilingual information. This Multilingual environment provides a platform where a query can be 
formed in one language and the result can be in the same language and/or different languages. 
Performance evaluation of Information Retrieval for monolingual environments especially for English 
are developed and standardized from its inception. There is no specialized evaluation model available for 
evaluating the performance of services related to multilingual environments or systems. The 
unavailability of MLIR domain specific standards is a challenging task. This paper presented enhanced 
metric to assess the performance of MLIR systems over its counterpart IR metric. This analysis shows 
that the performance of the enhanced metric is better than the conventional metric. And also these metric 
can facilitate the researchers and developers to improve the quality of the MLIR systems in the present 
and future scenarios. 
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I. INTRODUCTION 

The goal of IR is to retrieve documents that most directly relevant to the request of users. With the speed of 
access and the large scale of the information sources available today, users often wish to reach beyond single 
information source in looking for relevant answers to their queries. MLIR systems have also to address the 
problem of documents content representation and the problem of relevance evaluation. This evaluation is more 
difficult than in monolingual IR. It is indeed difficult to build a correspondence function with different 
languages for the documents and the query. Traditional retrieval techniques creates an illusion that it is 
presenting all relevant documents to the user but it is not so i.e. from the hit list, only one fourth of the 
documents are useful according to the user need. Thus relevance varies from one user to another, for example, 
for one user 20 documents may be relevant whereas for another user 40 documents may be relevant. Based on 
this binary relevance, all the documents in the resultant list are assessed and it is called continuous retrieval. An 
important consideration in evaluating MLIR systems is the need of the user and the knowledge of languages, 
since a multilingual system is most likely to be used in an interactive setting. It provides a means of measuring 
the quality of unranked information retrieval within a system. In this scheme, instead of simply employing the 
ranking produced by each SRE values, one can use the full potential of SRE values. This may be done by 
defining a measure that evaluates the utility or goodness of each SRE value. That is, F-measure uses the full 
potential of all the SRE values and it is the measure of performance that takes into accounts both recall and 
precision. 

 
This paper discusses the metric that falls under the scheme of Binary Relevance and Continues Retrieval. The 

details of traditional F-Measure are discussed and the corresponding viewpoints of enhanced measure are 
elaborated below. The experimental results declare that enhanced measure is more or less equally performed 
with traditional IR measure for some queries. In the literature, whatever the metrics are enhanced or developed 
for, the IR has lesser values than the traditional Metrics. As a consequence, the researchers are trying to get the 
more or equal performance with their counter parts i.e. IR systems.  In this way, the measure which is proposed 
and discussed in this Chapter has better performance with their counter parts.   
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II. RELATED SURVEY 

The idea of using mathematical approaches for evaluating the performance of Information Systems has been 
initiated in the year of 1976 itself. Abraham and Cooper [3] presented a mathematical model of an information 
retrieval system thought to be general enough to serve as an abstract representation of most documents and 
reference retrieval systems. Savoy [4] investigated several significance measures and echoed Van Rijsbergen’s 
concerns using statistical methods. He proposed an alternative bootstrap method, based on sampling from a set 
of query outcomes; it is not clear whether this approach could be applied with the small sets of queries for which 
the relevant judgments and it has not been used in practice to assess significance of these systems. 

Li and King [5] presented a new content-based retrieval approach using local MEFs extracted by the 
Principal Component Analysis (PCA) method. When the number of features is large, it is important to select a 
set of MEFs to capture the majority of characteristics of an object and ignore the minor details. They used PCA 
to estimate the most expressive features and the advantage is to increase the retrieval precision through local 
feature selection. The main problem associated with this method is the parameter selection: unsuitable choices 
of the number of local MEFs for clusters will decrease the performance of the PCA retrieval approach.  Mandl 
[6] presented an overview of the current activities of the major evaluation initiatives. Special attention is given 
to the current tracks and developments with the TREC, CLEF and NTCIR schemes. Author elaborated the basic 
activities and the history of the three major evaluation initiatives. Carol Peters [13] presented the CLEF which 
promotes research into the development of truly multilingual systems capable of retrieving relevant information 
from the collections in many languages and in mixed media. It yielded good results only for cross lingual 
systems only and therefore it was possible to promote the same as a generic evaluation model for MLIR systems.  

Paul Clough et al [8] discussed about the large-scale interactive evaluation of multilingual information 
access systems, as a part of the CLEF campaign. In particular, the evaluation planned in 2008, which is based on 
the interaction with the content from Flickr, the popular online photo sharing service was described. Their 
proposed evaluation model seeks to reduce entry costs, stimulate user evaluation and encourage greater 
participation in the interactive track of CLEF. Kazuyuki et al [9] proposed new information retriever on the 
web which automatically classifies collected documents, and retrieves multi-lingual information.  In this work 
unique properties were evaluated by a set of metrics as an extension of IR systems, but not as a domain specific 
model for MLIR systems.  

Hsin and Chung [10] specified that there are increasing needs in searching Web pages of different languages 
using single query. In this work, a method based on GHSOM was proposed to discover the associations between 
different languages and it was applied to MLIR tasks. The experiments encouraged this approach to improve the 
MLIR performance but the evaluation scheme has been made as application-specific, not as a generic one. 

XiannongMeng[11] discussed about the traditional performance measures of information retrieval systems 
include precision and recall and their variants work well in closed-laboratory environments and also proved that 
they are not suitable for practical IR systems such as Web based search engines. This work presented many 
single-value measures to improve the precision-recall measures, such as expected search length (ESL), average 
search length (ASL) and RankPower. ESL, ASL, and RankPower. These metrics were applied to a set of real 
Web retrieval data and compared their performance. They demonstrated that RankPower is effective and easy 
to-use as a single-value measure for performance of practical IR systems, but realized that it is not be suitable 
for the MLIR Systems. 

Atsushi Fujii and Tetsuya Ishikawa [12] described a system for evaluating Japanese/English CLIR and 
MLIR models in terms of the retrieval accuracy and clustering effectiveness, which are relied on the traditional 
metrics of IR systems. Carol Peters et al [13] aimed to demonstrate the importance of evaluation initiatives 
with respect to the system research and development. The main achievements of CLEF and the efforts that have 
been made to ensure that CLEF continues to meet the emerging needs of system developers and application 
communities were discussed.  The discussions were on developers and application communities needs but not 
on the retrieval effectiveness which must be an important characteristic for a MLIR Systems. 

Wen-Cheng Lin et al [2] addressed a merging problem in the distributed MLIR systems and several merging 
strategies have been addressed and also provided an unique evaluation scheme for the problems addressed. But 
no evaluation scheme has been provided for assessing the MLIR systems and on the other hand, this work also 
increased the responsibility of the researchers in order to expand the scope of MLIR evaluation systems such 
that to accommodate the procedures for evaluating merging properties too. Kula Kekeba Tune et al [14] 
discussed the design and implementation of dictionary-based CLIR system for indigenous language like Afaan 
Oromo, testing the performance of Oromo-English CLIR system at standard and internationally recognized 
evaluation forum like CLEF and demonstrating the feasibility CLIR application for nonwestern and resource 
scarce language like Afaan Oromo. Sethuramalingam and Vasudeva [15] described English to Hindi and 
Hindi to English CLIR systems and the experiments were conducted using the FIRE-2008 dataset. Dictionary 
based approach was used for query translation and transliteration of named entities in the queries using a 
mapping-based, Compressed Word Format (CWF) algorithm. In both of the above cases, the overall system 
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Binary relevance and continuous retrieval measure are directly related to the system Design Issues. 
 

Design issues 
 Scalability: The definition for scalability, according to Wiktionary is “the ability to support the required 

quality of service as the system load increases without changing the system.” Thus, scalable information 
systems are those systems that continue to sustain the required quality of service even under an increased 
load. 

 Retrieval performance: The measures require a collection of documents and a query. All common measures 
described here assume a ground truth notion of relevancy: every document is known to be either relevant or 
non-relevant to a particular query. Many different measures for evaluating the performance of information 
retrieval systems have been proposed, but most of the measures are Mono-Lingual. 

 Minimum Error rate: IR system is said to be optimal only if it generate accurate results each time a query is 
processed. Many measure has be developed to calculate the Errors rate occurring in IR systems (e.g. 
precision at k, MAP, and R-precision etc.). [17]  

The figure 1 shows the Design issues and metric related. The metrics F-Measure has been enhanced to 
support MLIR specific systems. 

 

B. Performance Evaluation of Existing v/s Enhanced Metric 

F-Measure 
F-measure was derived by Van Rijsbergen (1979) and it provides a way of combining recall and precision to 

get a measure which falls between recall and precision [7]. F-measure is the performance measure that takes into 
accounts both recall and precision and it also defined as the harmonic mean of precision and recall. The F-
measure can be defined as in the Eqn. (1). 

 When compared to arithmetic mean, recall and precision need to be high for harmonic mean to be high. F-
measure can be deduced as weighted average of the precision and recall, the best value to be ‘1’ and worst value 
to be ‘0’. F-score is frequently used in the IR domain for measuring document classification, query classification 
and search performance. In terms of MLIR systems, when many languages are involved in the retrieval system, 
it is very intricate to identify precision and recall values in each language manually and obviously calculating F-
measure is also not simple. Traditionally, this measure is used to predict the retrieval performance of the 
documents presented in one language. The advancements in Internet and user needs lead to enhance this F-
measure. 

Existing Metrics: F-MEASURE 

PR
RP

PR
F 11

22





   (1) 

where, 
P refers to the Precision 
R refers to the Recall 

The advantage of this measure is, it is single measure and popular for many other domains like medical and 
cross validation in Machine learning etc. The advantages which are carried out with precision and recall are also 
connected with this measure. On the other side, the drawback of this measure is calculating precision and recall 
is little time consuming task and knowing total number of relevant documents from the collection is a non-trivial 
task. Another drawback is, when precision or recall is zero then there is no point of measuring effectiveness of 
retrieval system. In that case, calculating F-measure value becomes futile. In terms of MLIR systems, when 
many languages are involved in the retrieval system, it is very intricate to identify precision and recall values in 
each language manually and obviously calculating F-measure is also not simple. Traditionally, this measure is 
used to predict the retrieval performance of the documents presented in one language. The advancements in 
Internet and user needs lead to enhance this F-measure. These viewpoints, suggested this research work to 
enhance the traditional F-measure to predict the retrieval effectiveness of MLIR systems. 

 

FMLIR - ENHANCED MEASURE 

Retrieval of information on the MLIR systems is entirely different from the retrieval in traditional IR Systems. 
Thus, the traditional evaluation methodology is not possible to measure different language queries and to assess 
them. In the past, measuring the effectiveness of retrieval systems was done using a few well known measures 
like precision, recall and F-measure [20]. These measures cannot be applied for these new retrieval scenarios. 
New or revised evaluation measures are required [18, 19]. The main aim of the MLIR systems is to find relevant 
documents in numerous languages in response to a user query in any preferred languages. Hence, in a wider 
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sense, it involves the process of determining documents that satisfies a user’s information need. However, 
MLIR systems and their evaluation have increased its importance. Therefore, the requirement to evaluate these 
systems more holistically cannot be overseen.  

 
Though there are moderate number of evaluation initiatives are available, they adopt system centred 

approaches and failed to address the user centred approaches. This leads to greater challenging tasks in the near 
future to evaluate the MLIR systems with reliable factors for use in the user centred approaches.  As a result 
there is a need for both understand and present usable measures as well as methods of assessment for 
performing user-oriented issues. Holistic evaluation methods are needed to evaluate the new trends of MLIR 
systems. Holistic in the sense, which considers all the factors that are listed under user centred and system 
centred approaches. The aim of this research work is to achieve this goal in the evaluation of MLIR systems. 
Thus the need to maintain the balance is very much essential for overall goodness of the MLIR system. So the 
quality and quantity will be improved when these combined factors in performance evaluation are applied. 

 
Therefore, the purpose of this research is to enhance the measures that will be usable and solve the issues 

involved in user centred approaches. This is based on the fact that these are applied on the retrieved resultant 
lists of real life search engines. In this motive, traditional F-measure has been enhanced to achieve this goal of 
this research work. The enhanced method identifies, characterize, and assess the traditional F-measure and 
modify it to adopt the user oriented aspects. 

 
The F-measure is enhanced and used for performance evaluation of MLIR systems because it is a popular 

approach for IR systems’ performance evaluation. The evaluation of these systems plays a crucial role to 
improve the quality of the systems. The foremost important way of evaluating the MLIR systems is determining 
the retrieval effectiveness. In these MLIR systems, the retrieval effectiveness evaluation measures deals with 
how effectively a given system can retrieve more relevant information and rank the relevant documents 
according to the user’s information need. 

d

r
MLIR

Rn

L
F




12
 (2) 

where, 
r1 refers to the number of documents retrieved and relevant in TL1, 
n refers to the number of documents retrieved in TL1, 
Rd   refers to the total number of relevant documents in TL1. 

 
The enhanced method identifies, characterize, and assess the traditional F-measure and modify it to adopt the 

user oriented aspects. Eqn. (2) can be repeated for ‘n’ languages that are involved in the retrieval process. 
Precision, recall and F-measure are set-based measures (order of documents not taken into account) devised by 
researchers. In a continuous retrieval context, suitable sets of retrieved documents are obviously given by the 
top ‘k’ relevant documents. 

Retrieval effectiveness is measured manually but the quality of retrieval systems may not be measured 
effectively. User can easily identify which system is good in getting more relevant documents; in what 
languages the effectiveness is more than others. 

C. Experimentation and Result Analysis 

This paper discusses the experiments conducted on four popular search engines such as Google, Bing, Alta 
Vista and Yahoo. Google is selected because it is used by many web searchers and it is the largest vividly 
available search engine. Bing is a search engine that discovers and arranges the documents that the user needs, 
so the user can make faster and more informative decisions. The optimization technique of this system is similar 
to that of Google. AltaVista is a crawler-based search engine and it has efficacy to return diversified results at 
different times of the day. It supplies a free translation service, branded Babel Fish, which automatically 
translates text between several languages. AltaVista gradually shed its portal features and refocused on search. 
Yet another Search engine which is also popular and well-known in the Internet domain is Yahoo. The same set 
of queries and the relevance assessment methodology are used in these search engines. 

English, French and Spanish language queries are used to retrieve the documents in these languages 
(Multilingual) from the specified search engines. The reason to choose these languages is that they are romance 
languages (many similarities) and Latin-based languages (Burr et al 1999). Moreover, both (French and Spanish) 
languages have similar words and most of these query words used in the experiments have similar words. The 
dependent metrics for measuring FIR is Precision and Recall. In this view point, Table 1 shows the measured 
values of precision and recall along with FIR and FMLIR. 
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TABLE I 
Measuring F-measure in Google 

Query No. Run Precision Recall FIR Run FMLIR 
1 E-E 0.6400 0.9140 0.7528 E-FSE 0.7679 
2 E-E 0.9000 0.9473 0.9230 E-FSE 0.9414 
3 E-E 0.6100 0.8714 0.7176 E-FSE 0.7463 
4 E-E 0.8200 0.9111 0.8631 E-FSE 0.8933 
5 E-E 0.8500 0.9440 0.8945 E-FSE 0.9260 
6 E-E 0.4400 0.5842 0.5019 E-FSE 0.5204 
7 E-E 0.2000 0.4248 0.2719 E-FSE 0.2729 
8 E-E 0.2100 0.6833 0.3212 E-FSE 0.3282 
9 E-E 0.1900 0.3370 0.2429 E-FSE 0.2511 

10 E-E 0.8100 0.2564 0.3895 E-FSE 0.3701 
11 E-E 0.5500 0.7014 0.6165 E-FSE 0.6253 
12 E-E 0.4400 0.1918 0.2671 E-FSE 0.2872 
13 E-E 0.3500 0.6843 0.4631 E-FSE 0.4432 
14 E-E 0.4400 0.4634 0.4513 E-FSE 0.4436 
15 E-E 0.4500 0.2366 0.3101 E-FSE 0.3201 
16 E-E 0.2600 0.2350 0.2468 E-FSE 0.2521 
17 E-E 0.7000 0.5420 0.6109 E-FSE 0.6001 
18 E-E 0.4900 0.7524 0.5934 E-FSE 0.6101 
19 E-E 0.6100 0.4951 0.5465 E-FSE 0.5467 
20 E-E 0.5400 0.1526 0.2379 E-FSE 0.2388 

 
The performance of Google is given in Table 1. For traditional FIR, a monolingual run (E-E) is used and FMLIR 

is calculated for the multilingual run (E-FSE). For each retrieval system, 20 queries were formed and submitted. 
For each query, the corresponding variables are measured and calculated for FIR and FMLIR. 

From the Figure 2, one can observe the performance differences between traditional and proposed measures. 
Very minimal differences are there between these two measures. For example, when a comparison is considered 
between FIR and FMLIR values of first query are 0.7998 and 0.8000 respectively, the difference between these two 
measures is in terms of 0.0001 values. The query numbers 2, 3 and 4 have demonstrated the similar performance 
in both IR and MLIR systems. 50% of the queries show major differences between both FIR and FMLIR. 35% of 
the queries exemplify tiny differences among these two measures. The remaining 15% of the queries of both FIR 
and FMLIR have identical performances. This effect shows that MLIR performance is improved equally with the 
performance of IR counter parts. 

TABLE II 
Measuring F-measure in Bing 

Query No. Run Precision Recall FIR Run FMLIR 
1 E-E 0.6800 0.971 0.7998 E-FSE 0.8000 
2 E-E 0.7500 0.9375 0.8333 E-FSE 0.8333 
3 E-E 0.5800 0.8285 0.6823 E-FSE 0.6833 
4 E-E 0.6800 0.9710 0.7998 E-FSE 0.8000 
5 E-E 0.6700 0.9570 0.7881 E-FSE 0.7882 
6 E-E 0.3300 0.7025 0.4490 E-FSE 0.5388 
7 E-E 0.7700 0.6424 0.7004 E-FSE 0.6303 
8 E-E 0.2500 0.7014 0.3686 E-FSE 0.3391 
9 E-E 0.6400 0.1918 0.2951 E-FSE 0.3246 
10 E-E 0.2400 0.6843 0.3553 E-FSE 0.4263 
11 E-E 0.1400 0.4634 0.2150 E-FSE 0.2558 
12 E-E 0.1900 0.2366 0.2107 E-FSE 0.2064 
13 E-E 0.1800 0.2350 0.2038 E-FSE 0.1976 
14 E-E 0.6800 0.5054 0.5798 E-FSE 0.5508 
15 E-E 0.4300 0.5420 0.4795 E-FSE 0.4603 
16 E-E 0.4600 0.7524 0.5709 E-FSE 0.5823 
17 E-E 0.3400 0.4951 0.4031 E-FSE 0.4635 
18 E-E 0.2300 0.1526 0.1834 E-FSE 0.2292 
19 E-E 0.6600 0.5256 0.5851 E-FSE 0.5441 
20 E-E 0.2300 0.9570 0.3708 E-FSE 0.3522 
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Figure 6 shows the comparison of Four IR systems by measuring the FIR.  Yahoo outperforms the other 
retrieval systems when measuring harmonic mean of precision and recall. For the second query, F-measure of 
the Google outperforms the other retrieval systems and its value is more than any other queries of the retrieval 
systems. The next overall performance is produced by AltaVista. Google and Bing show equal performance 
except for the second query. 

 

 
Fig. 7.Overall Performance of F-measure in Different MLIR Systems 

 

The most popular vividly used search engine Google’s performance is good for the eighteenth query. When 
the overall performance is concerned, like FIR, yahoo outperforms the other retrieval systems. Google shows 50% 
better performance than the other retrieval systems like Bing and Alta vista. The next highest performance is 
demonstrated by Alta Vista as like in FIR. When compared to other retrieval systems Bing’s performance is not 
even 35%.  

These experiments can be carried out for any number of languages that are provided by the search engines 
and can be done for any number of search engines that should have the capability to have the common language 
preferences. In the literature, research works that were presented have Fifty percent difference between IR and 
MLIR. That is, MLIR performance was only half of the traditional IR systems. Moreover, IR researcher in the 
trying to achieve equal performance curves with both IR and MLIR systems. FMLIR measure shows the equal 
performance with the IR measures in some of the cases. However, the F-measure values of MLIR systems are 
more when compared to the F-measure values of IR systems from the figure 6 and 7. Therefore in this paper, 
Performance of FMLIR crosses the performance of traditional IR systems. 

In this section, issues of detecting meaningful differences in FIR and FMLIR are discussed. Apart from this, the 
issues of detecting and measuring the similarities or differences between retrieval systems are also discussed, 
without regard to any choice of performance measures that are presented in this dissertation. In this statistical 
analysis, the popular t-test and Wilcoxon signed rank tests are applied to know the significance of the two 
systems. The result analysis is discussed on four retrieval systems performance related to the F-measure, but the 
statistical analysis of this Chapter presents significance of F-measure for two retrieval systems. The hypothesis 
of these experiments is stated as follows: 

 Null Hypothesis (H0): There is no difference between FIR and FMLIR. 
 Alternative Hypothesis (HA): There is difference between FIR and FMLIR. 

 
Independent t-test: The independent t-test compares the mean values between two unrelated groups on the same 
continuous, dependent variable. The t-test procedure allows the testing of equality of variances (Levene's test) 
and the t-value for both equal- and unequal-variance (Mendenhall et al 1990). For these tests the significance 
level (alpha) is set to 0.05 to either reject or accept the alternative hypothesis. 

In case of Google, p is lesser than 0.05but in case of Bing there is no significance between two 
groups(p>0.05). The group statistics of the independent t-test are exemplified in Table 5.aand Table 5.b of 
Google and Bing systems respectively. Obviously, the mean values of the two groups may be similar because 
FIR and FMLIR of Bing are saying that they are equal. On the contrast, mean values of FIR and FMLIR of Google are 
different because FMLIR performance is more than the FIR. 
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TABLEV 
a. Independent T-Test Group Statistics of Google 

TABLEV 
b. Independent T-Test Group Statistics of Bing 

Group Statistics 

IR/MLIR 
Group N 

Mean 
Std. Error 

t-value 
(sig.) 

FIR 5 0.141310 ± 0.0292253 -0.796 
(0.002*) FMLIR 5 0.422050 ± 0.0308532 

 

Group Statistics

IR/MLIR 
Group N

Mean 
Std. Error 

t-value (sig.) 

FIR 5 0.141310 ± 0.0280253 -9.894 
(0.009*) FMLIR 5 0.530330 ± 0.0319818 

 
Independent t-test group statistics are discussed above and this test is one of the existing parametric tests. The 
Table 5.b states that FMLIR is essential for evaluating the performance of the MLIR systems because difference is 
there between traditional measure and enhanced measure. The next section discusses one of the Non-parametric 
tests, namely, Wilcoxon signed rank test. 
 
Wilcoxon Signed Rank test: Wilcoxon Signed Rank test is a non-parametric test i.e. it is used when data sets are 
not following normal distribution and it is used to test the median difference in paired data. Paired data means 
that the values in the two groups being compared are naturally linked, and usually arise from individuals being 
measured more than once (Bland 1995). Thus to test FMLIR metric performance in different cases, Wilcoxon test 
is performed.  

The null hypothesis is that the median difference between pairs of observations is zero. SPSS output of the 
Wilcoxon Signed Rank Test is enumerated in Table 6a. 

TABLEVI 
a. Wilcoxon Signed Rank Test Statistics of Google  

Ranks N Mean Rank Z-value (sig.) 

FIR– FMLIR 
Negative Ranks 1 0.03 

-2.791 (0.018*)
Positive Ranks 4 2.00 

b. Wilcoxon Signed Rank Test Statistics of Bing 

 

 

 

On performing the Wilcoxon Signed Rank test, it is noticed that there is statistical significance (p>0.05) 
between the MLIR and IR of F-Measure.   

In both the cases of this test, H0 is rejected as the p value is lesser than the 0.05. Table 6.a shows the 
significance value of two groups for Google (0.01) and Table 6.b shows the significance value of two groups for 
Bing (0.018). Therefore, though the Wilcoxon signed rank test is a non-parametric test; results of this test may 
not be taken into consideration because this may not be true for all the cases. For instance, in the experiments of 
the retrieval systems, FIR and FMLIR showed 505% of the queries are having same values with tiny differences.  
Despite this, this test shows significant results in both Google and Bing. Parametric tests are more appropriate 
than non-parametric tests, especially in the IR domain. 

IV. SUMMARY 

This paper discussed the measures comes under the scheme of Binary relevance and continuous retrieval. For 
multilingual scenarios, a measure called FMLIR to evaluate the performance of MLIR Systems has been 
developed. The FIR is enhanced and used for measuring the performance of MLIR systems because it is a 
popular and vividly used measure for predicting the performance of IR systems. In the MLIR systems, the 
evaluation plays a crucial role to improve the quality of services. The foremost important way of evaluating the 
MLIR systems is determining retrieval effectiveness. Experiments are conducted on real-time search systems 
such as Google, Bing, Alta Vista and Yahoo using document collections of English, Spanish and French 
languages. The result analysis shows that the enhanced measure is important in the multilingual scenarios 
especially in the evaluation process. 

Empirical result of the measured value outperforms the manually measured value and also outperforms the 
monolingual IR value. It shows very minimal differences between empirical and impractical values measured in 
each language. Except the value of Spanish language, measured values of other two languages are performing 
better than the empirical results. The raw aggregated measure is subject to statistical noise in the analysis. In 
order to shape the outcomes of our research or to get scientific meanings about our findings, paired statistical 
tests are used. In all these paired statistical tests the FMLIR demonstrates the p-values less than 0.05 except in one 
case. This reveals that there exists difference between traditional and enhanced measures. The enhanced 

Ranks N Mean Rank Z-value (sig.) 

FIR– FMLIR 
Negative Ranks 1 0.00 

-2.761 (0.01*)
Positive Ranks 4 2.50 
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measure FMLIR outperforms FIR, the traditional measure. When statistically analysed the T-test shows the true 
significant over the FMLIR than the Wilcoxon Signed Rank Test. 

V. CONCLUSION 

MLIR systems are very popular and attractive to the internet users and researchers. Evaluating these systems 
play a vital role in the field of Information retrieval. There are various schemes to evaluate the performance but 
we have discussed only one evaluation scheme along with its metrics. That scheme is called as Binary 
Relevance and Continuous Retrieval, the related core metric (FIR) have been enhanced to work with multilingual 
information, the paper shows the evaluation of the core metric with the enhanced metrics (FMLIR). This 
evaluation scheme will help the researchers and developers to improve the overall quality of the MLIR Services; 
hence the outcomes of this paper will serve as a benchmark for MLIR systems such that the researchers can 
make use of this metric to evaluate their systems. In future the other foresaid evaluation schemes of metrics will 
be focused. 
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