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Abstract— A Hybrid flow shop scheduling is characterized ‘n’ jobs ‘m’ machines with ‘M’ stages by 
unidirectional flow of work with a variety of jobs being processed sequentially in a single-pass manner. 
The paper addresses the multi-stage hybrid flow shop scheduling problems with missing operations. It 
occurs in many practical situations such as stainless steel manufacturing company. The essential 
complexity of the problem necessitates the application of meta-heuristics to solve hybrid flow shop 
scheduling. The proposed Simulated Annealing algorithm (SA) compared with Particle Swarm 
Optimization (PSO) with the objective of minimization of makespan. It is show that the SA algorithm is 
efficient in finding out good quality solutions for the hybrid flow shop problems with missing operations.  
 
Keywords - Hybrid flow shop; Makespan; Meta-heuristics; Missing Operations. 

I. INTRODUCTION 

 
 The hybrid flow shop is a generalized flow shop with parallel machine environment of ‘n’ jobs ‘m’ 
machines with ‘M’ stages. Each stage encompasses a number of parallel identical machines at each stage. The 
layout of hybrid flow shop environment is shown in fig. 1.The entire job has to be processed first at stage 1, then 
stage 2 and so on. The scheduling problem in a multi-stage hybrid flow shop has been the subject of 
considerable research. All the literatures on this focus that each job has to be performed on all the stages, i.e., 
there are no missing operations for a job at any stage. The missing operations usually exist in many real-life 
production systems. Chao-Tang Tseng et al. [1] proposed the first paper of two stage hybrid flow shop with 
missing operations. The first stage contains only one machine while the second stage consists of two identical 
machines. Some jobs have to be processed on both stages while others need to be only processed on the second 
stage. Similarly a Four Drawer Furniture Component (4DFC) was investigated by Sridhar et al. [2] in a stainless 
steel furniture manufacturing company. The system analysed is composed of five workstations (stages) used for 
punching, bending, and spot welding, power pressing, and drilling in series. The number of machines in 
punching, bending, spot welding, power pressing and drilling stages are 5, 8, 3, 5 and 1 respectively. All jobs 
are performed by one (or) two (or) three machines depending upon the necessity. The missing operation usually 
occurs in all the jobs. This is identified as a hybrid flow shop environment with missing operations. As per the 
direction of Chao-Tang Tseng et al. [1] in this paper extent to multi-stage hybrid flow shop scheduling problem 
with 0%, 20% and 40% missing operations with the objective function of minimization of makespan. 
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compared to three state-of-the-art meta-heuristics on the same benchmark instances. WalidBesbes et al. [14] 
addressed in hybrid flow shop scheduling with machines which are not continuously available due to preventive 
maintenance tasks. Satheesh Kumar et al. [15] proposed PSO algorithm for clearance between the machines in 
the design of loop layout. The PSO was compared with the differential evolution algorithm and genetic 
algorithm for bench mark problems. The clearance between the machines was also considered in the design of 
loop layout. The PSO optimization gave optimal result to selecting the best layout. Hongcheng Liu et al. [16] 
applied hybrid PSO with Estimation of Distribution Algorithm (EDA) to solve permutation flow shop 
scheduling problem to Minimization-of-Waiting-time Local search (MWL). The computational experiment on 
different benchmark problems in permutation flow shop, in which two new best known solutions have been 
found and superiority of PSO-EDA in terms of accuracy. GhasemMoslehi and MehdiMahnam, [17] approached 
a hybridization of the PSO and local search algorithm to solve the multi-objective in flexible job-shop 
scheduling problem. The results displayed that the hybrid PSO algorithm satisfactorily captures the multi-
objective flexible job-shop problem and competed well with similar approaches. Chakravarthy and Rajendran, 
[18] proposed the development of a heuristic based on the SA algorithm for scheduling in a flow shop with the 
objective of minimizing the makespan and maximum tardiness of a job. The computational evaluation indicated 
that the heuristic based SA performed better than the heuristic. Mousavi et al. [19] presented SA algorithm for 
hybrid flow shop scheduling problem to minimize the makespan and total tardiness. The results obtained that the 
SA algorithm is more effective and efficient. Jolai et al. [20] proposed FSA (fuzzy simulated annealing) for no-
wait two-stage flexible flow shop scheduling to minimize the makespan and maximum tardiness of job. 
Mirsanei et al. [21] developed NSA (noval simulated algorithm) for sequence dependent setup time based 
hybrid flow shop scheduling problem to minimize the makespan. The results show that NSA outperforms both 
random key genetic algorithm and immune algorithm. Hui-Mei Wang et al. [22] presented SA algorithm for 
hybrid flow shop scheduling problem to minimize the makespan time. The SA algorithm was an efficient 
approach in solving hybrid flow shop scheduling problem with multiprocessor tasks for complex problems. 
AshwaniDhingra and PankajChandna [23] addressed hybrid SA algorithm for multi objective flow shop 
scheduling problem. A heuristic-based hybrid simulated annealing (HSA) reveals that obtained the near optimal 
solutions within a reasonable time. ShuaiTianping et al. [24] considered SA algorithm for hybrid flow shop 
scheduling problem to minimize the number of tardy jobs. The numerical results indicated the SA was feasible 
and efficient. 

 

III. OBJECTIVE FUNCTION 

 
The paper addresses a hybrid flow shop problem with missing operations for ‘n’ jobs with ‘m’ 

machines and ‘M’ stages with an objective of minimizing the makespan time. The hybrid flow shop is 
characterized by unidirectional flow of work with a variety of jobs being processed sequentially in a one-pass 
manner. The processing times of all the jobs are well known in advance and all the jobs are processed in the 
same order at various machines. It is difficult to suggest a sequence that will optimize the makespan time. So the 
task involves the use of appropriate algorithm to optimize the sequence so as to achieve minimum makespan 
time. The problem can be defined as minimizing the makespan as below, 

 
࢞ࢇ	ࢌ	࢚ࢇࢠࡹ ൌ ࢇ࢙ࢋࢇࡹ	ࢌ	࢚ࢇࢠࡹ ൌ ,൛	࢞ࢇࡹ  ൌ , ………ൟ	

A. Assumptions 

The problem has the following assumptions: 
 All jobs are available at zero time. 
 Machines are always available without breakdown. 
 The processing time of each job on each machine is known in advance. 
 Setup times and withdrawal times are negligible. 
 Material Handling duration and charges are negligible. 
 Pre-emption is not allowed. 
 

B. Notations 

Cmax  :  Makespan time in seconds 
J  :  job identifier (j=1 to n) 
M     :  Numbers of stages 
m  :  Numbers of parallel identical machines on each stages 
n  :  Numbers of jobs 
q  :  Percentage of missing operations 
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IV. PROBLEM ENVIRONMENT  
 

This paper investigated the manufacturing sequence for three drawer vertical filing cabinets in the 
leading stainless steel furniture manufacturing company, Chennai, India. The system analysed is composed of 
five workstations (stages) consisting of three punching machines, five bending machines, two spot welding 
machines, two power press and one drilling machine in series. The three drawer vertical filing cabinet consists 
of 20 subcomponents. Each subcomponent considers as a job. Each job has fixed processing time on stages as 
given in the table I. All the 20 jobs are performed by either one (or) more machines. The missing operations 
occur in all the jobs. All the jobs have to follow the same sequence 1, 2 ... M. The company production sequence 
is done manually, while performed as j = 1, 2, 3 …….. n for three drawer vertical filing cabinet. This problem 
environment is termed multi-stage hybrid flow shop scheduling problem with missing operations.  
 

Table I 

 PROCESSING TIMES OF JOBS (SECONDS) AT EACH STAGES 
 

 
V. SIMULATED ANNEALING ALGORITHM 

 
  The SA algorithm is a powerful optimization technique proposed by Kirkpatrick et al (1983). This 
technique attracts much attention, because of its ability to find the global optimum. It can escape from local 
optimum solutions of difficult combinatorial optimization problems without specific structure. It can easily deal 
with nonlinear objective functions and complex constraints. The concept of SA allows the direct inclusion of 
such constraints, generally due to the fact that the SA algorithm examines one trial solution at a time. 
Accordingly the complex constraints can be externally added in the core of the algorithm without affecting the 
main optimization procedure. These features constitute the main advantages of the SA algorithm in comparison 
with the traditional optimization methods. The SA algorithm simulates the procedure of gradually cooling a 
metal, until the energy of the system acquires the globally minimal value. Beginning with a high temperature, a 
metal is slowly cooled, so that the system is in thermal equilibrium at every stage. At each temperature is 
performed an iterative procedure proposed by Metropolis et al. 

This procedure simulates the evolution to thermal equilibrium of a metal for a fixed value of 
temperature and consists of a sequence of trials. The result of each trial depends only on the result of the 
previous one (Markov chain). In each trial, the state of an atom is randomly perturbed resulting in a change ΔE 
to the energy of the system. If ΔE<0, the change is accepted and the new configuration of the system constitutes 
the starting point for the next trial. If ΔE>0, the change is accepted with a probability given by Boltzmann 
distribution and temperature corresponds to the current value of temperature. This acceptance rule for new states 
is referred to as the ‘Metropolis criterion’. As the temperature decreases, the Boltzmann distribution concentrates 
on the lower energy state. Finally, when the temperature approaches to zero, the minimum energy states have a 
non-zero probability of acceptance. 

 
A.  Step by step procedure of SA 

 
  This algorithm is a combinatorial optimization techniques based on random evaluation of the objective 
function has proven to be a good technique in the area of sequencing and scheduling. SA is employed in such a 
way that it finds best priority sequence through random generation of initial priority sequence set at high 

JOBS 

STAGES 
j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20

M1 50 78 20 32 54 54 70 60 32 20 0 0 45 0 0 15 0 0 0 0 

M2 44 66 30 0 80 80 0 0 77 23 0 0 91 0 0 35 0 0 0 0 

M3 0 80 64 0 0 92 0 0 34 34 0 0 0 0 0 0 0 0 0 0 

M4 0 0 0 0 0 0 0 58 0 0 7 28 0 14 78 0 9 8 12 10 

M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 
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temperature and pair-wise exchange perturbation scheme for further improvements. The parameters and steps of 
the SA algorithm are as follows. 
 
Step 1 Initialization 
 Set AT = 475; FR_CNT = 0; ACCEPT = 0; TOTAL = 0; 
Step 2 Generation of initial solution 

Arbitrarily generate two initial priority job sequences S and B. To find the 
Makespan time corresponding S and B, and Assign to both MS and MB. 

Step 3 Checking termination of SA 
If (FR_CNT = 5) or AT < 20 then go to step 16. Else proceed to step 4. 

Step 4 Generation of neighbours 
Generate number of nearer sequence to S using pair wise perturbation scheme. 

Step 5 Find Makespan time of all sequence generated in step 4. Sort the minimum 
Makespan time and store it in MS. 

Step 6 Compute ∆S (Ms, Ms’) 
If (∆S<=0) then proceed to step 7. Else go to step 10. 

Step 7 Assign S = S’, MS = MS’ and ACCEPT = ACCEPT + 1. 
Step 8 Compute ∆B (MB, MB’) 

If (∆B<=0) then proceed to step 9. Else go to step 12. 
Step 9 Assign B = S’, MB = MB’ and FR_CNT = 0, and go to step 12. 
Step 10  Compute P and Sample U 

If U>P then go to step 12. Else proceed to step 11. 
Step 11 Assign S = S’, MS = MS’ and ACCEPT = ACCEPT + 1. 
Step 12 Set TOTAL = TOTAL + 1. 
Step 13 If (TOTAL > 4 * n) or (ACCEPT > n), then proceed to step 14. Else go back to 

step 4. 
Step 14 Compute PER = (ACCEPT * 100 / TOTAL). 

If PER < 15, then set FR_CNT = FR_CNT + 1. 
Step 15  Set AT = AT * 0.9, ACCEPT = 0, TOTAL = 0 and go back to step 3. 
Step 16 The algorithm frozen. B contains the best sequence. MB has the minimum 

Makespan time. 
 
B. Numerical Illustration of SA for the problem given in Table I 
 
Step 1  Initialization  

Set Temperature = 475οC, FR_CNT = 0, 
Accept = 0, Total = 0. 

[Initially setting temperature to 475οC, Freeze count to zero and setting the two counter values Accept and total 
to zero] 
Step 2  Generation of initial solution 

S and B are two sequences generated randomly 
S = 18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  
B = 18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16 
Step 3  Checking termination of SA 

Check If (FR_CNT = 5 (or) Temp = 20οC) 
Condition not satisfied, so go to Step 4. 
[Checking the termination criteria, whether FR_CNT is equal to 5 or the temperature is equal to 20οC, 
here termination criteria is not achieved so proceeding step 4]  

Step 4 Generation of neighbours 
Neighbourhoods generated using pair-wise exchange perturbation for seed sequence. 
S’= 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 
[The neighbourhood sequence for S is being evaluated by swapping two neighbourhood values in that 
sequence i.e., S = 18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 --- swap (18, 2)  
S’= 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16]  

Step 5 Evaluating the Makespan Time for S B and S’ and stored in MS, MB and MS’. 
MS = 21414 
MB = 21415 
MS’ = 21414 

Step 6 Compute ∆S (Ms, Ms’) 
Computing ΔS = MS’ – MS,  
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  = 21414 - 21414 = 0 
Here ΔS ≤ 0 Condition Satisfied. So proceed to Step 7. 
[Evaluating the difference between the makespan time of sequence S from makespan time of sequence 
S’ and Checking whether the ΔS value is less than or equal to zero. Here the condition satisfied, so 
proceed to Step 7] 
Step 7 Assign, S = S’= 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 
MS = MS’ = 21414 and Accept = Accept + 1= 0+1= 1 

 [Assign the sequence S’ to S, store the makespan value of sequence S’ in S and increase the counter 
value accept from 0 to 1] 
Step 8 Compute ∆B (Ms’, MB) 

Computing ΔB = MS’ – MB 

= 21414 – 21415 = -1 < 0 
Here ΔB ≤ 0 Condition Satisfied. So proceed to Step 9. 
[Evaluating the difference between the makespan time of sequence B from makespan time of sequence 

S’ and Checking whether the ΔB value is less than or equal to zero. Here the condition satisfied, so proceed to 
Step 9] 
Step 9 Assign,  B = S’= 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 

MB = MS’ = 21415 
 FR_CNT = 0 and Go to Step 12. 

[Assign the sequence S’ to B, store the makespan value of sequence S’ in B and increase the counter 
value accept from 0 to 1] 

Step 12 Set Total = Total + 1= 0+1= 1. 
[Increase the counter value total from 0 to 1] 

Step 13  Check for iteration 
As (total < 4 * n) or (accept < n) proceed to step 4 otherwise, when it satisfies the condition (TOTAL > 
4 * n) or (ACCEPT > n), it completes one iteration for set temperature (now T = 475οC) and proceeds 
to Step 14. 

Step 14  Freeze counter increases by one FR_CNT = FR_CNT + 1; on satisfying the conditions stated in 14 and 
proceed to Step 15. 

Step 15  Annealing temperature reduces to 0.9* AT. The TOTAL and ACCEPT are set to zero and then proceed 
to Step 3. 

Step 16  Termination of SA (FR_CNT = 5 (or) Temp = 20οC); B contains the best sequence and MB contains
  minimum makespan time. 

 B = 19 14 2 17 12 3 16 11 7 6 5 15 13 10 9 8 20 1 18 4 
 MB = 17668 

VI. PSO ALGORITHM 
 

The beginning of the PSO algorithm is done with a population of random solutions. New generations 
are formed by means of velocity updates. The good solution is searched among the updated generations. The 
potential solutions are called particles. The particles fly through the multi-dimensional search space and follow 
the current optimum particles. The PSO is carried out the optimal value for the required number of iterations. 
All particles in the pool are kept during the whole run. PSO does not combine the survival of the rightist, 
whereas all other evolutionary algorithms do. Each particle has particular velocity. Particles are carried to new 
positions with this velocity. The each iteration of fitness value particles are evaluated according to their 
positions. The communication between the each particle segments its information with others. A particle 
exchanges its information with the particles in the neighborhood. Therefore, after some number of iterations the 
swarm loses its diversity and the algorithm converges to the optimal solution. 

A.    Basic Elements    
 
The basic elements of PSO algorithm is expressed as follows: 
  
a. Particle: 

Xi denotes the ith particle in the swarm at iteration t and is represented by n number of dimensions as, 
ሾX୧ሿ୲	 ൌ ሾሺݔଵሻ௧, ሺݔଶሻ௧, ………	ሺݔሻ௧, Where (xij)

t is the position value of the ith particle with respect to the jth 
dimension (j = 1,2,..., n ). 
 

b. Population: 

popt is the set of ρ particles in the swarm at iteration t. ௧ ൌ ሾሺ ଵܺሻ௧, ሺܺଶሻ௧, ………൫ܺρ൯
௧
ሿ. 
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c. Permutation: 
A New variable (Лi)

t  which is a permutation of jobs implied by the particle (X1)
t. It can be described as,  

ሾЛ୧ሿ 	ൌ ሾሺЛ୧ଵሻ௧, ሺЛ୧ଶሻ௧, ………ሺЛ୧୬ሻ௧ሿ, Where (Лij)
t is the assignment of job j of the particle i in the permutation 

at iteration t. 
 

d. Particle velocity: 
[Vi]

t is the velocity of particle i at iteration t. It can be defined as, ሾV୧ሿ 	ൌ ሾሺv୧ଵሻ௧, ሺv୧ଶሻ௧, ………ሺv୧୬ሻ௧ሿ  
Where (vij)

t is the velocity of particle i at iteration t with respect to the  jth dimension. 
 

e. Personal best: 
(Pi)

t  represents the best position of the particle i with the best fitness until iteration t, so the best 
position associated with the best fitness value of the particle i obtained so far is called the personal best. For 
each particle in the swarm, (Pi)

t can be determined and updated at each iteration t. In a minimization problem 
with the objective function f(Лi)

t where (Лi)
t is the corresponding permutation of particle (Xi)

t, the personal best  
(Pi)

t  of the ith particle is obtained such that f(Лi)
t≤ f(Лi)

t-1, where (Лi)
t is the corresponding permutation of 

personal best  (Pi)
t  and (Лi)

t-1 is the corresponding permutation of personal best (Pi)
t-1. To simplify, we denote 

the fitness function of the personal best as (fi)
pb = f(Лi1)t. For each particle, the personal best is defined as 

ሾP୧ሿ 	ൌ ሾሺp୧ଵሻ௧, ሺp୧ଶሻ௧, ………ሺp୧୬ሻ௧ሿ, where (pij)
t is the position value of the ith personal best with respect to the 

jth dimension ( j = 1,2,..., n ). 
 

f. Global Best: 
(G)t denotes the best position of the globally best particle achieved so far in the whole swarm. For this 

reason, the global best can be obtained such that f(Л)t≤ f(Лi)
t for i = 1,2,...,ρ where (Л)t is the corresponding 

permutation of global best (G)t and (Лi)
t is the corresponding permutation of personal best (Pi)

t. Simplify to 
denote the fitness function of the global best as (f)gb = f(Л)t. The global best is then defined as ሺGሻ୲ 	ൌ
ሾሺgଵሻ௧, ሺgଶሻ௧, ………ሺg୬ሻ௧ሿ, where (gj)

t is the position value of the global best with respect to the jth dimension ( j 
= 1,2,... n). 

 
 
g. Termination criterion: 

It is a condition that the search process will be terminated. It might be a 750 iteration to terminate the 
search. 

 
B.   Step by step procedure for PSO 
  
Step 1 
 Initialize a population of n particles generated randomly. 
Step 2  

 Compute fitness value for each particle. The fitness value is better than the best fitness value ( 1t
ijp  ). 

Set current value as the new pbest. 
Step 3 

 Choose particle with the best fitness value of all the particles as the gbest ( 1t
jg  ). 

Step 4  
 For each particle, calculate velocity and position by using the equation,  

 ൫V୧୨൯
୲
	ൌ 	 ቂ൫v୧୨൯

୲ିଵ
		cଵrଵ ቄ൫p୧୨൯

୲ିଵ
	–	൫x୧୨൯

୲ିଵ
ቅ  cଶrଶ ቄ൫g୨൯

୲ିଵ
	–	൫x୧୨൯

୲ିଵ
ቅቃ	 

൫X୧୨൯
୲
ൌ 	 ൫x୧୨൯

୲ିଵ
 ൫V୧୨൯

୲
  

Where, 
 (vij)

t-1 = Velocity of particle i at t-1th iteration 
 (Vij)

t = Velocity of particle i at tth iteration 
 (xij)

t-1  = Position of particle i at t-1th iteration 
 (Xij)

t = Position of particle i at tth iteration 
 c1 = Acceleration factor related to pbest 
 c2 = Acceleration factor related to gbest 
 r1 = Random number between 0 and 1 
 r2 = Random number between 0 and 1  
 (gj)

t-1 = global best position of swarm 
 (pij)

t-1 = local best position of particle 
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Step 5  
 Update particle velocity and position. 
Step 6  
 Terminate if maximum number of iterations is reached. Otherwise, go to Step 2. 
 
  There is a communication between the each particle delivers its information with others. A particle 
exchanges its information with the particles in the neighborhood. Therefore, after some number of Iterations the 
swarm loses its diversity and the algorithm converges to the optimal solution. Since PSO consists of simple 
concepts and mathematical operations with little memory requirements it is fast and appealing in use for many 
optimization problems. To verify the PSO algorithm, comparisons with simulated annealing algorithm is made. 
Computational results show that the PSO algorithm is very competitive. Computational results show that the 
local search can be really guided by PSO.  
 
C.  Numerical Illustration of PSO for the problem given in Table I 
Initializing 100 particles are generated randomly. Evaluating the fitness function of 100 particles and choose 10 
best particles according to their fitness function from 100 particles. Among these 10 particles best particle as 
gbest according to their fitness function.  
 
Particle 1 
  Particle 1 = 18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16 = Makespan = 21415 
          pbest = 18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16 = Makespan =  21415 
         gbest = 18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  = Makespan =  21414 
 Position to pbest 
    18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16 = Makespan = 21415 
 Position to gbest 
   18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16  
     Swap (15, 2) and (15, 17) 
   18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 
Velocity 
 ሺV୧୨ሻ୲ 	ൌ 	 ሾሺv୧୨ሻ୲ିଵ 		cଵrଵሼሺp୧୨ሻ୲ିଵ 	െ 	ሺx୧୨ሻ୲ିଵሽ 	 cଶrଶሼሺg୨ሻ୲ିଵ 	െ	ሺx୧୨ሻ୲ିଵሽሿ	 

 (Vij)
t = 0 + [1*0.75 (0)] + [1*0.55 (15,2) (15,17)] 

Assume c1 and c2 =1; r1= 0.75 and r2 = 0.55 generated randomly. 
 In the first part of the equation 75% probability has to be considered. So, here swapping value is not 
considered for velocity. In the second part of the equation 55% probability has to be considered. So the 
minimum of 50% of the changes are taken i.e. only (15, 2) is taken.  
 (Vij)

t 
 = (15,2). 

 
Position 

 ൫X୧୨൯
୲
ൌ 	 ൫x୧୨൯

୲ିଵ
 ൫V୧୨൯

୲
 

 (Xij)
t
    = 18 9 19 14 15 20 4 7 13 17 12 1 6 2 5 8 10 3 11 16  + (15, 2) 
   = 18 9 19 14 2 20 4 7 13 17 12 1 6 15 5 8 10 3 11 16 
 

Particle 2 
  Particle 2 = 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  = Makespan = 21414 
   pbest   = 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 = Makespan = 21414 
(Compare particle 1 and 2, particle 2 is best particle according to their fitness function. So here Particle 2 is 
pbest) 
   gbest = 18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  = Makespan =  21414 

Position to pbest 
    2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  = Makespan = 21414 

Position to gbest 
   2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16  

  swap (18,2) 
   18 9 19 14 2 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16   
 
Velocity 
 ሺV୧୨ሻ୲ 	ൌ 	 ሾሺv୧୨ሻ୲ିଵ 		cଵrଵሼሺp୧୨ሻ୲ିଵ 	െ 	ሺx୧୨ሻ୲ିଵሽ 	 cଶrଶሼሺg୨ሻ୲ିଵ 	െ	ሺx୧୨ሻ୲ିଵሽሿ  
  (Vij)

t = (15,2) + [1*0.75 (0)] + [1*0.55 (18,2)] 
 In the first and second part of the equation 75% and 55% probability has to be considered respectively. 
So, here swapping value is not considered for velocity. 
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Position 

 ൫X୧୨൯
୲
ൌ 	 ൫x୧୨൯

୲ିଵ
 ൫V୧୨൯

୲
 

  (Xij)
t
   = 2 9 19 14 18 20 4 7 13 15 12 1 6 17 5 8 10 3 11 16 + (15,2) 
   = 15 9 19 14 18 20 4 7 13 2 12 1 6 17 5 8 10 3 11 16 
 

The new sequence 1 and 2 are 18 9 19 14 2 20 4 7 13 17 12 1 6 15 5 8 10 3 11 16 and 15 9 19 14 18 20 4 7 13 2 
12 1 6 17 5 8 10 3 11 16 respectively for the next iteration. Similarly for all other eight particles, new particles 
are generated and evaluate the fitness function. This course of action is completed means one iteration is 
completed. This procedure is carried out for 750 iterations to get the optimum value. 
  
Optimum sequence = 20 11 17 6 19 5 18 3 12 10 2 16 9 14 8 13 7 1 15 4 and their fitness value = 17669. 
 

VII. COMPUTATIONAL RESULTS 

The proposed SA and PSO algorithms evaluated the performance aspects. The population based both 
optimization algorithms were coded in java and run on a corei3 processor 2.40 GHz PC with 6 GB memory. The 
SA and PSO algorithms are tested over randomly selected test set problems. The 5 and 8 stage hybrid flow shop 
problems were generated with the number of jobs n = 5, 10, 15, 20, 25, 50, 60, 75, 80, 100 and each stage 
involves of 5 and 8 machines in the experiment. For each problem 100 batch size and 30 instances were 
generated. The percentages of missing operations q% tested were 0%, 20% and 40%. The processing times are 
selected as random integers from a uniform distribution p(i,j)_U[1, 99] at all stages for 0% of missing operations 
and uniform distribution p(i,j)_U[0, 99] at all stages with 20% and  40% of missing operations. Totally, 3600 
instances (120 different test sets with each test set 30 instances) observed in the experiment. The Relative 
Performance Deviation (RPD) computes as the algorithm performance evaluation criterion. The RPD of the 
solution can be calculated as,  

 
	۲۾܀ ൌ 	 ሺሺ۱ܜܖ܍ܚܚܝ	ܕܐܜܑܚܗܔۯ	ܖܗܑܜܝܔܗ܁	– ∗	ሻܖܗܑܜܝܔܗ܁	ܜܛ܍۰	/	ሻܖܗܑܜܝܔܗ܁	ܜܛ܍۰	 	 

 
The RPD average and maximum values of the solution obtained by the makespan approach and 

computational time in seconds needed by the algorithms to achieve the best solution. The average RPD values 
are calculated over 30 instances generated for a specified problem test sets and also observed the maximum 
RPD values in these 30 instances. The SA and PSO algorithms results of the average value of RPD (Avg) and 
maximum RPD (Max) are analyzed in Table II to VII for 5 and 8 stages of hybrid flow shop problem test sets 
with q = 0%, 20% and 40% of missing operations respectively and also indicated the computational time in 
seconds. It is found that the proposed SA algorithm outperforms PSO in all number of test sets and takes less 
computation times than PSO in most cases. The computational time increases in SA for large size of problems 
than PSO. 

Table II 

 Relative Percentage Deviation of SA and PSO in 5 stage test sets (q = 0%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

5 
 

5 

5 0 0 1.512 2.80 1 32 
10 0.029 0.283 0.217 0.822 2 37 
15 0.020 0.103 0.688 2.850 3 41 
20 0.087 0.401 0.176 0.819 6 47 
25 0.022 0.057 0.113 0.546 9 52 
50 0.026 0.041 0.312 1.191 33 77 
60 0.033 0.051 0.388 1.565 46 82 
75 0.043 0.100 0.265 1.119 71 97 
80 0.132 0.586 0.346 1.072 81 100 

100 0.020 0.036 0.071 0.348 119 120 
Mean 0.0412 0.1658 0.4088 1.3132 - - 

8 

5 0 0 0.647 1.918 1 34 
10 0.444 1.144 0.403 1.099 2 38 
15 0.164 0.394 0.370 1.226 3 43 
20 0.117 0.216 0.382 2.066 6 48 
25 0.107 0.206 0.193 0.634 9 55 
50 0.185 0.508 0.160 0.887 37 81 
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60 0.099 0.176 0.308 1.592 51 92 
75 0.123 0.152 0.545 1.808 71 102 
80 0.182 0.420 0.238 1.059 94 107 

100 0.093 0.179 0.399 1.158 127 124 
Mean 0.1514 0.3395 0.3645 1.3447 - - 

Table III 

 Relative Percentage Deviation of SA and PSO in 8 stage test sets (q = 0%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

8 

5 

5 0 0 0.169 0.348 1 31 
10 0.760 1.115 0.301 1.370 2 36 
15 2.468 4.473 2.447 5.408 3 41 
20 0.248 1.689 0.067 0.219 6 47 
25 0.418 1.126 1.949 3.746 9 55 
50 0.064 0.123 0.089 0.538 38 82 
60 0.006 0.034 0.148 0.418 52 92 
75 0.015 0.057 0.145 0.783 73 102 
80 0.078 0.112 0.347 0.901 93 106 

100 0.036 0.051 0.417 1.272 126 127 
Mean 0.4093 0.878 0.6079 1.5003 - - 

8 

5 0 0 1.038 8.340 1 35 
10 1.761 3.117 0.489 1.550 2 38 
15 1.077 2.266 1.441 5.044 3 44 
20 0.368 1.048 0.883 2.975 6 48 
25 0.623 1.642 1.464 8.173 10 55 
50 0.146 0.425 0.331 1.714 38 82 
60 0.011 0.055 0.297 1.673 51 93 
75 0.026 0.100 0.382 1.185 72 104 
80 0.113 0.169 0.645 2.441 94 108 

100 0.136 0.183 0.199 0.732 128 124 
Mean 0.4261 0.9005 0.7169 3.3827 - - 

Table IV 

 Relative Percentage Deviation of SA and PSO in 5 stage test sets (q = 20%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

5 
 

5 

5 0 0 3.895 4.493 1 32 
10 2.220 5.552 5.692 13.606 2 36 
15 0.094 0.306 0.436 2.491 3 41 
20 0.696 1.415 1.544 4.827 6 47 
25 0.940 3.679 1.491 4.790 8 51 
50 0.101 0.170 1.047 2.684 31 74 
60 1.923 2.647 0.843 1.680 43 82 
75 1.641 3.365 2.111 5.426 65 93 
80 0.164 0.949 0.750 2.790 74 97 

100 1.517 2.757 3.270 7.435 114 114 
Mean 0.9296 2.084 2.1079 5.0222 - - 

8 

5 0.134 0.448 2.092 8.861 1 32 
10 2.387 6.385 2.528 8.393 2 37 
15 0.308 0.456 0.279 0.587 4 42 
20 1.343 3.624 3.673 7.220 6 48 
25 1.435 2.502 2.505 7.415 9 52 
50 0.146 0.254 0.277 1.127 33 75 
60 2.493 4.077 1.906 5.236 47 85 
75 1.974 4.633 2.032 6.037 72 99 
80 0.563 3.793 1.410 5.804 83 104 

100 1.293 2.032 3.270 5.889 128 123 
Mean 1.2076 2.8204 1.9972 5.6569 - - 
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Table V 

 Relative Percentage Deviation of SA and PSO in 8 stage test sets (q = 20%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

8 

5 

5 0 0 3.356 13.382 1 31 
10 0.065 0.314 0.123 0.432 2 36 
15 4.769 7.215 3.472 6.279 3 41 
20 1.151 2.256 1.438 7.738 6 47 
25 1.127 3.462 2.172 5.369 9 56 
50 1.080 2.467 3.025 6.007 38 82 
60 0.042 0.121 0.637 1.372 52 92 
75 0.012 0.033 0.643 1.854 74 102 
80 0.042 0.088 0.385 1.281 94 106 

100 0.154 0.435 0.532 2.219 126 125 
Mean 0.8442 1.6391 1.5783 4.5933 - - 

8 

5 0.078 0.784 1.118 3.762 1 35 
10 0.219 1.048 1.236 3.160 2 38 
15 6.223 9.565 6.257 15.720 3 45 
20 1.129 2.332 1.082 4.053 6 48 
25 1.085 1.987 1.146 3.247 10 55 
50 1.119 2.159 4.114 7.685 38 82 
60 0.063 0.158 0.815 4.194 51 94 
75 0.011 0.021 0.606 3.128 72 104 
80 0.161 0.343 0.361 1.779 94 108 

100 0.055 0.146 1.196 3.399 128 126 
Mean 1.0143 1.8543 1.7931 5.0127 - - 

Table VI 

 Relative Percentage Deviation of SA and PSO in 5 stage test sets (q = 40%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

5 
 

5 

5 0 0 0.546 3.459 1 31 
10 0.869 2.677 1.549 5.163 2 36 
15 0.013 0.066 0.210 0.395 3 40 
20 0.011 0.029 0.091 0.230 5 45 
25 0.443 1.271 2.250 9.896 8 50 
50 0.059 0.195 0.042 0.155 29 71 
60 0.281 1.160 0.709 3.691 42 79 
75 0.090 0.262 1.332 4.240 64 92 
80 0.138 0.676 0.250 0.955 74 96 

100 2.287 4.204 3.948 10.577 115 113 
Mean 0.4191 1.054 1.0927 3.8761 - - 

8 

5 0 0 0.026 0.265 1 32 
10 1.235 2.544 1.231 2.239 2 37 
15 0.188 0.548 0.864 4.385 3 42 
20 0.083 0.230 0.094 0.528 6 48 
25 0.488 0.770 1.841 4.107 10 53 
50 0.160 0.428 0.053 0.210 33 76 
60 0.179 0.562 0.699 3.964 46 86 
75 0.122 0.142 0.245 1.395 71 93 
80 3.020 3.141 3.475 5.386 82 97 

100 3.120 4.365 3.079 8.886 125 120 
Mean 0.8595 1.273 1.1607 3.1365 - - 
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Table VII 

 Relative Percentage Deviation of SA and PSO in 8 stage test sets (q = 40%) 

M m n 
SA PSO 

Computational Time 
(Seconds) 

Avg Max Avg Max SA PSO 

8 

5 

5 0 0 0.235 0.503 1 32 
10 0.265 1.082 0.674 1.205 2 36 
15 3.544 5.568 2.271 5.577 3 42 
20 4.296 8.098 5.937 13.895 6 47 
25 0.138 0.373 0.749 5.701 10 56 
50 0.809 1.837 4.910 11.371 38 82 
60 0.033 0.085 1.632 4.966 52 93 
75 0.046 0.128 1.714 4.826 74 102 
80 0.654 1.575 1.509 3.809 94 106 

100 0.043 0.116 2.268 6.175 126 124 
Mean 0.9828 1.8862 2.1899 5.8028 - - 

8 

5 0.317 1.587 0.159 1.587 1 35 
10 0.127 0.450 0.704 3.314 2 38 
15 4.690 6.427 3.152 6.246 3 45 
20 3.013 5.546 5.160 12.122 6 48 
25 0.369 0.510 0.403 1.573 10 55 
50 0.943 1.591 4.433 15.314 38 84 
60 0.038 0.090 0.198 0.401 51 94 
75 0.068 0.253 1.431 2.857 72 104 
80 0.534 1.194 1.778 4.849 94 108 

100 0.161 0.218 2.032 3.960 128 126 
Mean 1.026 1.7866 1.945 5.2223 - - 

 
VIII. CONCLUSION AND FUTURE SCOPE 

 
 In this paper, a case study for multi-stage hybrid flow shop with missing operations is carried out 
for three drawer filing cabin with the objective of minimizing the makespan time. The proposed SA algorithm is 
compared with PSO, which evaluated using the various sizes and stages of missing operations. It is observed 
from that the SA algorithm is efficient in finding out good quality solutions at all the stages of missing 
operations for the hybrid flow shop problems when compared with PSO. The SA computational time is less for 
less complex problem and it slightly increases with an increase in complexity. Future research efforts need to be 
focused on the development of hybrid combinatorial algorithms for solving multi-stage hybrid flow shop 
problems involving setup times, total flow time, inter-stage transport times, release dates and due dates 
incorporate with missing operations. 
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