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Abstract—In the field of Wireless Communication, there is always a demand for reliability, improved 
range and  speed. Many wireless networks such as OFDM, CDMA2000, WCDMA etc., provide a solution 
to this problem when incorporated with  Multiple input- multiple output (MIMO) technology. Due to the  
complexity in  signal processing, MIMO is highly expensive in terms of area consumption. In this paper, a 
method of MIMO receiver design is proposed to reduce the area consumed by the processing elements 
involved in complex signal processing.  

In this paper, a solution for area reduction in the Multiple input multiple output(MIMO) Maximum 
Likelihood Receiver(MLE) using Sorted QR Decomposition and  Unitary transformation method is 
analyzed. It provides unified approach and also reduces ISI and provides better performance at low cost. 
The receiver pre-processor architecture based on Minimum Mean Square Error (MMSE) is  compared 
while  using Iterative SQRD and Unitary transformation method for vectoring. Unitary transformations 
are transformations of the matrices which maintain the Hermitian nature of the matrix, and the 
multiplication and addition relationship between the operators. This helps to reduce the computational 
complexity significantly. The dynamic range of all variables is tightly bound and the algorithm is well 
suited for fixed point arithmetic. 

Keyword- Spatial Multiplexing, Detection, MIMO, MMSE, MLE, SQRD, Unitary Transformation, Log-
likelihood ratio  

I. INTRODUCTION 
In wireless communications, the use of multiple antennas at both the transmitter and the receiver is a key 

technology to enable high data rate transmission without additional bandwidth or transmit power. Multiple-input 
multiple-output (MIMO) schemes are widely used in many wireless standards, allowing higher throughput using 
spatial multiplexing techniques. MIMO soft detection poses significant challenges to the MIMO receiver design 
as the detection complexity increases exponentially with the number of antennas.It offers increased data 
throughput and link range without additional bandwidth or the transmit power. MIMO technology leverages 
multipath behaviour with an added “spatial” dimension to dramatically increase range and performance in terms 
of minimization of errors and optimizing of data speed. Major function of MIMO is that it can be sub-divided into 
three main categories, precoding, spatial multiplexing or SM, and 

The MMSE is an equalizer method which aims at minimizing the variance of the difference between the 
transmitted data and the signal at the equalizer output. QR decomposition is a linear algebraic method in which a 
matrix A is decomposed into product matrices A=QR, where Q is orthogonal matrix and R is the upper triangular 
matrix. This is a basis for a particular Eigen value algorithm called the QR algorithm. QR decomposition is based 
on modified Gram Schmidt algorithm. In MIMO systems QR decomposition is used in pre-processors for 
estimation of pseudo- or non-linear detection methods such as successive interference cancellation or sphere 
decoding of the channel matrix. SQRD helps in improving bit error rate (BER). SQRD is a highly efficient 
algorithm as it comes very close to the error performance. MMSE is a method of obtaining minimum mean 
square error of all the ISI terms and the noise power at the output of the equalizer. Iterative sorted Minimum 
mean square error QR decomposition further helps in obtaining better terms. 

diversity coding. 

Maximum Likelihood Estimation (MLE) is an equalizer method estimating the parameters of a statistical 
model. MLE has many optimal properties in estimation: sufficiency (complete information about the para-meter 
of interest contained in its MLE estimator); consistency (true parameter value that generated the data recovered 
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asymptotically, i.e. for data of sufficiently large samples); efficiency (lowest-possible variance of parameter 
estimates achieved asymptotically); and parameterization invariance (same MLE solution obtained independent 
of the parameterization used).  
The two methods used in simulation of MIMO  receiver: 
A. QR decomposition is a linear algebraic method in which a matrix A is decomposed into product matrices 

A=QR, where Q is orthogonal matrix and R is the upper triangular matrix. This is a basis for a particular 
Eigen value algorithm called the QR algorithm. QR decomposition is based on modified Gram Schmidt 
algorithm. In MIMO systems QR decomposition is used in pre-processors for estimation of pseudo- or non-
linear detection methods such as successive interference cancellation or sphere decoding of the channel matrix. 
Sorted QR decomposition helps in improving bit error rate (BER). Sorted QR decomposition is a highly 
efficient algorithm as it comes very close to the error performance. 

B. Unitary transformation is defined as a transformation that preserves the inner product: the inner product of 
two vectors before the transformation is equal to their inner product after the transformation. More precisely, 
a unitary transformation is an isomorphism between two Hilbert spaces. In other words, a unitary 
transformation is a bijective function 

𝑈 ∶ 𝐻1 →  𝐻2          (1) 
WhereH1 and H2 are Hilbert spaces. 

II. MIMO SYSTEM 
The Multiple-Input Multiple-Output (MIMO) systems have been widely considered a viable solution to 

overcome the current limits in wireless communication. The application of Ultra-wideband (UWB) to indoor 
environments, with the rich energy scattering and large angular spreads of the multipath channel, provides an 
ideal scenario for MIMO. By unclosing additional degree of freedom for communication, multiple antennas can 
effectively turn multipath propagation, considered initially a drawback in wireless communications, into an 
advantage so as to linearly increase the capacity of the system, or improve its coverage and robustness in terms of 
error probability. 

Fig 1: MIMO system model  

 

III. MIMO CHANNEL MODEL 
We consider a MIMO channel with MT transmit and MR receive antennas. The time-varying channel impulse 

response between the jth (j=1,2,….MT ) transmit antenna and the ith (i=1,2,…MR

𝐻(𝜏, 𝑡) =

⎣
⎢
⎢
⎢
⎡ ℎ1,1(𝜏, 𝑡)ℎ1,2(𝜏, 𝑡) ⋯ ℎ1,𝑀𝑇(𝜏, 𝑡)
ℎ2,1(𝜏, 𝑡)   ℎ2,2(𝜏, 𝑡) ⋯ ℎ2,𝑀𝑇(𝜏, 𝑡)

⋮⋮ ⋱ ⋮
ℎ𝑀𝑅,1(𝜏, 𝑡)ℎ𝑀𝑅,2(𝜏, 𝑡) ⋯ ℎ𝑀𝑅,𝑀𝑇(𝜏, 𝑡)⎦

⎥
⎥
⎥
⎤
      (2) 

 ) receive antenna is denoted as 
hi,j( ,t)  . This is the response at time to an impulse applied at time. The composite MIMO channel response is 
given by the matrix with 

The vector is referred to as the spatio-temporal signature induced by the jth transmit antenna across the receive 
antenna array. Furthermore, given that the signal sj(t) is launched from the jth transmit antenna, the signal 
received at the ith receive antenna is given bywhich can be expressed as follows :- 

𝑦𝑖(𝑡) =  ∑ℎ𝑖,𝑗(𝜏, 𝑡)⨂𝑠𝑗(𝑡) + 𝑛𝑖(𝑡), 𝑖 = 1,2, …𝑀𝑅              (3) 
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IV. MINIMUM MEAN SQUARE ERROR (MMSE) 
The MMSE detection criteria reduce the expected value of the difference between the transmitted signal 

and a linear combination of the received signals [7]. 
The QR matrix decomposition also known as orthogonal matrix triangularisation is the decomposition of 

the given matrix A into an orthogonal matrix (Q) and an upper triangular matrix (R). The QR decomposition can 
be done using any one of the three methods: 

1. Gram Schmidt process 
2. Householder reflections 
3. Givens rotations 

The two basic operations for Givens rotations, vectoring and rotation, can both be implemented using 
conventional arithmetic or dedicated CORDIC circuits [8-9]. CORDICs are a well established method to 
implement Givens rotations in hardware. In short, the concept of the CORDIC algorithm is to decompose the 
rotation of a vector into a series of micro rotations by applying shift and add operations. This sequence of shift 
and add operations is first determined by the vectoring block, and afterwards executed similarly by the rotation 
block. 

 A more detailed analysis shows that CORDICs are particularly well suited for the area-efficient 
implementation of vectoring using iterative decomposition, while fast rotation can be realized more efficient by 
using conventional complex valued multipliers, but this implies the availability of the corresponding complex-
valued rotation coefficients. A solution to this problem is to attach an area-optimized slave CORDIC in rotation 
mode to the vectoring CORDIC as shown in fig.1  

       
Fig.2:To compute cos(x) and sin(x) directly using the Enhanced vectoring CORDIC for subsequent vector rotations using standard 

multiplications 

The input to this slave CORDIC is a unit vector, prescaled by the CORDICs constant scaling factor. The 
corresponding output values are the coefficients required for the multipliers which carry out the vector rotation.  

The overall VLSI architecture of the QR decomposition unit is shown in below Fig. The dedicated 
vectoring and rotation circuits (using CORDIC and conventional arithmetic, respectively) are extended to 
handle complex valued matrix entries. The memory which stores the original and intermediate matrices Z(i) is 
shown as QR Cache and is realized using RAMs with a dedicated read and write port. To satisfy the high 
memory bandwidth requirements of the rotation block (two read and two write accesses per cycle), the cache is 
split into two independent memory banks. One bank holds the even rows, the other holds the odd rows of Z(i). 
Since the rotation block always requires the full memory bandwidth, the vectoring block is fed by a separate 
FIFO and an additional shadow memory. This solution prevents the rotation block from being stalled by 
memory access conflicts. 
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Fig.3: Low latency VLSI architecture for  iterative sorted MMSE QR decomposition with super-scalar vectoring and vector rotation. 

4.1. Unitary Transformation 
Matrix methods that are based upon unitary transformations have been proven to be both useful and 

important in many application areas including signal processing. They offer stability and are able to handle ill-
conditioned problems gracefully [10]. Unitary matrices, they comprise a class of matrices that have the 
remarkable properties that as transformations they preserve length, and preserve the angle between vectors. 
For real matrices, unitary is the same as orthogonal. In fact, there are some similarities between orthogonal 
matrices and unitary matrices. The rows of a unitary matrix are a unitary basis. That is, each row has length one, 
and their Hermitian inner product 

U

is zero. Similarly, the columns are also a unitary basis [11]. In fact, given any 
unitary basis, the matrix whose rows are that basis is a unitary matrix. It is automatically the case that the 
columns are another unitary basis. The definition of a unitary matrix guarantees that 

H

where I is the identity matrix. 
U=I                             (4) 

Unitary transformations are transformations of the matrices which maintain the Hermitian nature of the 
matrix, and the multiplication and addition relationship between the operators. They also maintain the eigen 
values of the matrix. Due to these advantages benefits of unitary matrices unitary transformation help in 
processing faster with more accuracy. 
4.2. Procedure of Unitary Transformation 

Consider a general Hermitean matrix A. This matrix has eigen values ai and eigen vectors |A, i›.  Now 
we  want to do some transformation of the matrix A such that the new matrix Ã is Hermitean and has the same 
eigen values as A does. This new matrix will have eigenvectors | Ã, ai

|Ã, a

›. Let us assume that the transformation is 
linear i.e, the transformation of a sum is the sum of the transformed vectors. Then it can write the transformation 
as 

i› = U|A, ai

where U is some matrix. Now, we want that a unit vector be taken to a unit vector. Thus, 
›        (5) 

‹Ã,ai||Ã,aj› = ‹A,ai|U†U|A,aj

But we want 
›          (6) 

‹Ã,ai||Ã,aj› = ‹A,ai||A,aj

This implies that 
›           (7) 

UH

There is an argument that the requirement that U leave the eigen values of all Hermitean operators the same 
gives us in addition that 

 U=I                    (8) 

U UH= I         (9) 

Sabitha Gauni et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 6 No 1 Feb-Mar 2014 132



Thus, in order to preserve the Hermitian character and the eigen values of an arbitrary matrix A, we need that 
the transformation be of the form UAU† and that U be Unitary i.e, 

 U†

Heisenberg's dynamic equations should preserve the eigen values of the matrix A since we are simply looking at 
the same attribute at different times. Thus, we should have that 

U = 1. 

A(t) = U(t)A0U†

There is an alternative way of finding the time dependence. Instead of having the matrices change with 
time, one can have the state change with time. 

 (t)   (10) 

In the Heisenberg representation, the matrices and in particular their eigenvectors change in time 
|A(t),ai  =  U(t)|A0,ai

The inner product between the state of the system |Ψ› and any eigenvector, which determines the 
probabilities is given by ‹A(t),a

›   (11) 

i

‹A(t),a

||Ψ›. However, we get the same amplitude if instead of having the eigenvectors 
evolve, we have the state evolve. 

i,|,Ψ|›=(U(t)|A0,ai›)†|Ψ›=‹A0,ai|U(t)†

i.e., all of the amplitudes and probabilities remain the same if, instead of having the operators depend on time, 
we instead have the state evolve as U(t)

|Ψ›                               
 (12) 

†

The term U
| Ψ›.  

†

This equation is the Schrodinger for for the evolution of the system. In this case the matrices 
representing the attributes of the system remain constant, and the state changes with time. Especially for 
complex systems, this equation is often more easily solved than are the Heisenberg equations of motion. 

HU is the Schrodinger Hamiltonian. If H and U commute, which they will do if H is 
independent of time, then the Heisenberg and Schrodinger Hamiltonian’s are the same. 

Note that there is no classical analog for these two approaches. In classical physics, the state, the values 
which are associated with some attribute of the system are assumed to change in exactly the same way as do the 
variables which represent those attributes. Thus x(t) = Acos(ωt) for a harmonic oscillator means that the 
attribute which is the position is a function of time in the same way as are the values which are actually ascribed 
to an attribute. 

V. MAXIMUM LIKELIHOOD ESTIMATION 
The method of maximum likelihood selects the set of values of the model parameters that maximizes the 

likelihood function and gives a unified approach to estimation, which is well-defined in the case of the normal 
distribution and many other problems. For example, one may be interested in the heights of adult female penguins, 
but be unable to measure the height of every single penguin in a population due to cost or time constraints. 
Assuming that the heights are normally (Gaussian) distributed with some unknown mean andvariance, the mean 
and variance can be estimated with MLE while only knowing the heights of some sample of the overall 
population. MLE would accomplish this by taking the mean and variance as parameters and finding particular 
parametric values that make the observed results the most probable (given the model). 
A. The principle of maximum likelihood estimation (MLE), states that the desired probability distribution is the 

one that makes the observed data ‘‘most likely”, which means that one must seek the value of the parameter 
vector that maximizes the likelihood function.  

 
Fig 4: MLE Approach 

The MIMO system model we consider here is with MT transmit and MR receive antennas. The matrix H 
describes the MIMO channel.   The MT- dimensional transmit signal vector is denoted by s = [s1 . . . . . .  sMT ]T, 
and the MR -dimensional vector n represents the additive zero-mean. Gaussian noise with variance σn2 per 
complex dimension. The energy of the transmitted symbol vector is normalized such that E{ssH}=IMT, where IMT 
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is MT x MT – dimensional Identity matrix. The corresponding MR

 y = [y

 –dimensional   receive signal vector is given 
by 

1 . . . . . yMR] T

  y = Hs + n          (13) 
 is given by 

and the signal to noise ratio is defined as SNR = MT/σn2

 

. 

Fig 5: Proposed Model architecture 

5.1 MIMO DETECTION BASED ON MLE SQRD 
The QRD for MIMO detection starts by decomposing H into a unitary matrix Q and an upper-triangular 
matrix R with real-valued non-negative elements on the main diagonal. In order to improve the detection 
performance, the SQRD algorithm efficiently computes H = QRPT such that the sorting Ri,i ≤ Rj,j for i <j is 
approximated. The MT × MT -dimensional permutation matrix PT

H� = �
H

σIMT
� =  �Qa

Qb
�R�PT         (14) 

 accounts for the sorting induced by the 
SQRD algorithm. The basic idea underlying regularized SQRD is to reduce the probability of ill-conditioned 
channel matrices by computing the SQRD of the matrix. 

Where𝑄� =  [𝑄𝑎𝑇 𝑄𝑏𝑇]andR�is upper-triangular with real- valued elements on the maindiagonal. The dimensions 
of matrices 𝑄𝑎����,𝑄𝑏,����R� are MR ×MT, MT ×MT, and MT ×MT

5.2 MIMO DETECTION BASED ON MLE UNITARY TRANSFORMATION 
 respectively. 

Matrix methods that are based upon unitary transformations have been proven to be both useful and important in 
many application areas including signal processing. They offer stability and are able to handle ill-conditioned 
problems gracefully. Unitary matrices, they comprise a class of matrices that have the remarkable properties that 
as transformations they preserve length, and preserve the angle between vectors. For real matrices, unitary is the 
same as orthogonal. In fact, there are some similarities between orthogonal matrices and unitary matrices. The 
rows of a unitary matrix are a unitary basis. That is, each row has length one, and their Hermitian inner product is 
zero. Similarly, the columns are also a unitary basis. In fact, given any unitary basis, the matrix whose rows are 
that basis is a unitary matrix. It is automatically the case that the columns are another unitary basis.  

An important example of these matrices, the rotations, have already been considered. In case of unitary 
matrices it is been proved for its various properties as 

i. Every set of orthonormal vectors is linearly independent. 
ii. Let U ∈ Mn. The following are equivalent. 

iii. If U ∈ Mn is unitary, then it is diagonalizable. 
iv. If B and A are unitarily equivalent.  

∑ |𝑛
𝑖,𝑗=1 𝑏𝑖,𝑗|2 =  ∑ |𝑎𝑖,𝑗|2𝑛

𝑖,𝑗,=1   (15) 
Unitary transformations are transformations of the matrices which maintain the Hermitian nature of the matrix, 
and the multiplication and addition relationship between the operators. They also maintain the eigenvalues of the 
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matrix. Due to these advantages benefits of unitary matrices unitary transformation help in processing faster with 
more accuracy. 
STEPS FOLLOWED: 

1. While receiving input from the Transmitter, Error Component will check possibilities of error using greater 
component method. 

2. Using Error Component we construct the internals of unitary matrix combination. So that Unitary matrix 
should compute the value using only correct set of inputs. 

3. Log-likelihood ratio (LLR) computation for MLE is achieved by instantiating the unitary transform in a 
parallel manner to get 8 bit inputs at single clock edge. 

VI. SIMULATION RESULTS 
The two methods have been coded using Verilog hardware descriptive language and simulated using Altera 
Quartus II for Area Simulation and block synthesis. 
6.1 MIMO MMSE SQR DECOMPOSITION 

The two MMSE CORDIC methods have been coded using Verilog hardware descriptive language and 
simulated using ModelSim 6.6 and Altera Simulation using Quartus II for Area simulation and block synthesis. 
The QR decomposition reference design includes the following key features such as Runtime parameterizable 
support for QRD and QRD–RLS implementation—uses systolic array, with each cell in the array performing 
Givens rotations, different input matrix size decompositions, Single matrix decomposition or parallel multiple 
matrix decompositions, one or more output columns of data—can output the inverse Q matrix explicitly. 

This also supports several formats such as Fixed-point mode (data in and out) for real or complex data when 
data is always real, the synthesis time parameter allows optimization of resources and throughput and Floating-
point mode. This method gives a highly optimized solution. 

TABLE 1 
Comparison of Area by the MMSE blocks 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2.MIMO MLE SQR DECOMPOSITION: 
The SQR decomposition reference design includes the following key features: 
Runtime parameterizable support for: 
• QRD and QRD–RLS implementation—uses systolic array, with each cell in the array performing 

Givens rotations. 
• Different input matrix size decompositions. 
• Single matrix decomposition or parallel multiple matrix decompositions. 
• One or more output columns of data—can output the inverse Q matrix explicitly. 

Support for several formats: 
• Fixed-point mode (data in and out) for real or complex data when data is always real, the synthesis time 

parameter allows optimization of resources and throughput. 
• Floating-point mode for Time-shared, single processing element, which processes all cells in the systolic 

array.This gives a highly optimized solution. 

List of 
parameters 

MMSE SQRD 
block 

MMSE Unitary 
transformation 
block 

Top-level 
entity name 

QRD_MMSE MMSE_Unitary 

Family Cyclone IV GX Cyclone IV GX 
Total logic 
elements 

2,108/21,280 
(10%) 

694/21,280 
(3%) 

Total 
combinational 
functions  

2,080/21,280 
(10%) 

693/21,280 
(3%) 

Dedicated 
Logic 
registers 

136/21,280 
(<1%) 

137/21,280 
(<1%) 
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Fig 8: Altera Simulation flow Summary of MLE receiver using Sorted QR Decomposition 

 
Fig 9: Altera Simulation Flow Summary of MLE recfeiver using Unitary Transformation 

TABLE 2 
Comparison of MIMO MLE Receiver using SQRD method and Unitary Transformation 

 
PARAMETERS 

MIMO MLE receiver using SQRD 
method 

MIMO MLE receiver using 
Unitary Transformation 

AREA 2284/149760 (2%) logic elements used 580/149760 (<1%) logic 
elements used 

THERMAL POWER 
DISSIPATION 

276.39 mW 244.02 mW 

Fmax 69.95MHz 171.29MHz 
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VII.CONCLUSION 
The main objective of an area efficient, high throughput VLSI architecture involves both algorithmic and 

VLSI implementation aspects. The MMSE SQRD algorithm employs CORDIC circuits to evaluate the matrices 
rotations using Givens rotations and applied through complex multipliers. This complexity is reduced by using 
the Unitary transformation to substitute the SQRD in the MIMO MMSE block as the area is reduced almost by 7% 
as shown in the above results.  
Unitary Transformation can be used for SQRD as they have an advantage that vector rotations can be employed 
as atomic operations which preserve the total power of operations. Hence the dynamic range of all variables is 
tightly bounded and the algorithm is well suited for fixed point arithmetic. Hence by using Unitary 
Transformation in place of SQRD in the MIMO MLE block helps in area reduction shown in the above results 
successfully. 
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