
An Improvised DNA Sequence Compressor
Using Pattern Recognition

Panneer Arokiaraj S1, Robert L2

1Department of Computer Science, Periyar EVRCollege, Trichy, TN, India
2 Computer Science & Info. System Department, Community College in Al-Qwaiya, Shaqra University, KSA

1 panksop@gmail.com
2robert_lourdes@yahoo.com.

Abstract – Genome contains the hereditary information of biological organisms. Currently, there are large
number of DNA sequences are stored in DNA databases. This paper presents an improvised version of
(PRDNAC) Pattern Recognition based DNA Sequence Compression algorithm which compresses the
DNA sequences. The development takes place in the area of time complexity factor and compression
ratio.
Key Words - Compression Ratio, DNA Sequence Compression, PRDNAC, Time Complexity.

I. INTRODUCTION TO DNA, COMPRESSION AND PATTERN RECOGNITION

DNA (Deoxyribonucleic Acid) contain the complete set of information required for the functioning of all
living organisms. The DNA of all organism have four components in common. They are the four nucleotide
bases; namely Adenine, Cytosine, Guanine, and Thymine. They are crisply represented using the first character
of their names; namely A, C, G and T respectively [1, 2]. There is another unknown base element represented by
the letter N. Therefore the DNA sequence is represented as a set of {A, C, G, T, N}. The first four elements are
represented as a double helix with A & T in one helix and C & G in another helix. These two helix are held
together by hydrogen bonds. The element N is still remains unknown and is yet to have a pictorial
representations but participates in the functionalities of a DNA. The DNA sequences are characterized as
follows. i) They contain oft-repeated substrings, ii) Many of the strings are palindromes, iii) Some of them are
reverse palindromes [3].

The National Center for Biotechnology Information (NCBI) maintain a repository of DNA data and is called
GenBank. So also the other two repositories maintain similar data. They are European Molecular Biology
Laboratory (EMBL) and DNA Database of Japan (DDJB). Since the data occupies large space it becomes
necessary to compress and store the DNA data.

Pattern recognition concepts help to improve the prevailing situation by identifying patterns and to reduce
memory space thereby improving compression ratio. This paper presents an improved algorithm of an earlier
research paper [4] by using certain characteristics that are inherent in DNA sequences. This improvisation has a
positive implications in terms of time complexity and compression ratio.

II. REVIEW OF LITERATURE

Human being possess an implicit information processing system due to the fact that they have an excellent
pattern recognition capabilities. The problem of pattern recognition is about finding difference of attributes, not
between individual patterns but between populations using feature search of variant or invariant attributes
among the population.

Many algorithms used to compress the DNA sequences met with success, but with varying levels of
compression ratio. Some of the obtained better results and some of them with lesser compression ratio.

Grumbach and Tahi [5], [6] proposed compression algorithms called Biocompress and Biocompress2 with
the spirit of Ziv and Lempel data compression method. They used the idea of finding replica of sequences, such
as repeats, palindromes and complementary palindromes. Biocompress2 used the order-2 arithmetic coding
technique whereas Biocompress didn’t use the technique.

Cfact, a two pass algorithm, was proposed by E.Rivals et al. [7] which extracted the longest repeat using
Suffix Tree data structure. Substitution based compression algorithm, called GenCompress was proposed by
Chen et al. [8], that is a widely patronized algorithm among the scientific community, which handled
approximate and inexact repeats also.

Context-tree weighting [9] method was used in the algorithm ‘CTW’, that was proposed by Matsumoto et al.
[10] that successfully handled the short repeats and LZ77 scheme handled the long exact or approximate repeats.

Another two-phase compression tool that used the Lempel and Ziv compression scheme was designed by
Chen et. al [11] called DNA Compress. This algorithm finds all approximate repeats in the I-phase which used a
special software called Pattern Hunter. The next phase encodes a sequence by a pointer to the earlier

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5017

occurrences. Behshad Behzadi et al. [12] used Dynamic Programming techniques to identify the repeating
sequences called DNAPack.

Tabus [13] proposal of an algorithm, Normalized Maximum Likelihood (NML) model, combines
substitution and statistical styles. Korodi and Tabus [14] proposed an improved model of NML having
capabilities of splitting the sequence into fixed size blocks and encoding them using the history of a
subsequence and manipulating the same with Hamming distance called GeNML.

Minh Due Cao et al. [15] produced another sequence compression algorithm called Expert Model (XM)
using statistical methods. Raja Rajeswari et al. [16] developed GenBit Compress, an algorithm that compresses
repetitive and non-repetitive sequences using the ideas of extended binary tree. “LCA”, a Lossless Compression
Algorithm was given by Taysir Soliman et al. [17] for handling several approximate repeats and complimentary
palindromes. An algorithm, “DNASC”, that combines statistical and substitution methods, was proposed by
Kamta Nath Mishra et al [18].

III. METHODOLOGY

The five bases of DNA sequences {A, C, G, T, N} cannot be represented using 2 binary bits. A regular
compression tool may not be able to achieve appreciable compression due to the fact that such regular
compressors are designed for normal texts. The patterns of English text are different from the patterns of DNA
sequences. The regularity of patterns available in DNA sequences can be taken advantage for better
compression. To demonstrate the above claim, consider a sequence of given below having 128 bases.

AGTCAGTCCTGAAAGCACCTAAGCCGAATCCANTACNTACCCGTCCGTANTTTTTAATTTTTNA
CCGTTGCCTCCACTGACTGACGAACGTNCGAACTGATNGTATNGCTAAATNGCTAAAATCGNTN.

Repeatedly, scan the given input sequence and identify the repeating patterns. Once the repeating patterns
are identified, then they are coded based on their uniqueness. For the above given sequence, the following basic
patterns are identified: AG, AA, AC, AT, AN, CA, CC, CT, CG, GT, GA, GC, TC, TG, TA, TT, TN, NT, AGT,
AAA, AAG, AGC, ACC, AAT, ATC, ANT, CCT, CTG, CAC, CTA, CCG, CGA, CCA, CGT, GTC, GAA,
GCC, GTA, TCC, TGA, TAA, TAC, TTT, NTA, AGTC, AAGC, AATC, CTGA, CTAA, CGAA, CCGT,
GTCC, TCCA, TTTT and TTTTT. In order to achieve a compression ratio, this compressor finds the longest
repeating patterns and their reverse are identified. For example, TTTTT is the longest pattern and palindrome;
AGTC is reverse of CTGA, ACCT is the reverse of TCCA and CGAA is reverse of AAGC and etc. are

identified and coded in the following way: if the pattern is not an existing one from
n

i
i=1

p∏ then it is coded as Pi+1

and the symbol table is generated. Table I represents the symbol table with 3 bytes required for coding the above
mentioned sequence after eliminating the redundant patterns. The number of bits required to represent a pattern
is determined by satisfying the condition that for any ‘n’, number of pattern formation ≤ 2n, possible cases. An
additional bit is used for indicating the reverse or regular pattern apart from the required bits. The following are
some sample symbol tables for the better understanding of this paper.

TABLE I
 Symbol Table for Storing the Identified Patterns of Size 3 Bytes (Sequence Code 000)

Pattern
Id

Pattern

Bit
Patterns

used
(MSB=0)

Reverse

Bit
Patterns

used
(MSB=1)

P0 CCT 0x00 TCC 0x10
P1 GCC 0x01 CCG 0x11
P2 ANT 0x02 TNA 0x12
P3 CGA 0x03 AGC 0x13
P4 AAA 0x04 --- ---
P5 CCC 0x05 --- ---
P6 TTT 0x06 --- ---
P7 GGG 0x07 --- ---
P8 GTA 0x08 ATG 0x18

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5018

TABLE II
 Symbol Table for Storing the Identified Patterns of Size 4 Bytes (Sequence Code 001)

Pattern
Id

Pattern

Bit
Patterns

used
(MSB=0)

Reverse

Bit
Patterns

used
(MSB=1)

P0 AGTC 0x00 CTGA 0x10
P1 ACCT 0x01 TCCA 0x11
P2 ATGA 0x02 AGTA 0x12
P3 AAAA 0x03 --- ---
P4 CCCC 0x04 --- ---
P5 TTTT 0x05 --- ---
P6 GGGG 0x06 --- ---
P7 ACTG 0x07 GTCA 0x17

TABLE III
Symbol Table for Storing the Identified Patterns of Size 5 Bytes (Sequence Code 010)

Pattern
Id

Pattern

Bit
Patterns

used
(MSB=0)

Reverse

Bit
Patterns

used
(MSB=1)

P0 AAAAA 0x00 --- ---
P1 CCCCC 0x01 --- ---
P2 GGGGG 0x02 --- ---
P3 TTTTT 0x03 --- ---

The symbol tables generated with a unique sequence code for the identified repeating patterns of varying
sizes are shown in Table II and Table III. The sequence code 111 is used for representing the uncompressed data
and to instruct the file header to read the next short integer to obtain the information about the uncompressed
bytes.

The work file is updated with the following bits “000000000010000” to represent the 4 byte pattern called
“AGTCAGTCCTGA” and the entries of variable length file header for the above mentioned sequence is “ 001
001 001”. From this example, the 12 bytes of data is represented as “0000000000100000 01001001”in 3 bytes
form. Similarly, the construction of the file is formed in the same way till to the end of the file is encountered.

With an intention to achieve a higher compression ratio, the compressed file is organized as: a) set of all
blocks representing the bit patterns of compressed and uncompressed data in a contiguous form, b) variable
length file header representing the sequence code of identified patterns c) 4 bytes long unsigned integer to
represent the length of the file header and d) end of the file marker – which contains the offset and the EOF. The
Fig. 1 shows the components of the compressed file.

Blocks of Compressed Patterns Variable Length File Header
Size of the
File Header

End of
File Marker ….

Fig. 1. Components of the Compressed File.

The following is the pseudo code incorporating all the above ideas. Steps to compress the DNA sequence.
1. Read the Sequence repeatedly and form the symbol tables with sequence codes.
2. Determine the number of bits required for representing the patterns identified.
3. Using the symbol tables generated in step 1, Construct the work file to represent the compressed and

uncompressed sequences.
4. Repeat the step3 till the end of the file is encountered.
5. Update the work file with the indices required to retrieve the patterns without any loss.

Steps to decompress the compressed DNA sequence file.
1. Read the compressed file from the end to obtain the size of the file header.
2. Locate the starting point of the file header through the offset found at the end of the file.

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5019

3. Recollect the size of the blocks to be read, bit patterns and the sequence code to recollect the patterns.
4. Read the blocks of compressed patterns and explode it from the beginning to the end of the file.

IV. EXPERIMENTAL RESULTS

Performance comparison of this algorithm against many other standard algorithms presented in Table IV.
The standard algorithms used for comparison are BioCompress2, Genome Compress, CTW, DNACompress,
GeNML and DNASC and the widely used general compression software WinRAR. The following 11
benchmark standard data set of DNA sequences are used in this paper for the purpose of analysis:
 Two chloroplast genomes (CHMPXX and CHNTXX)
 Five human genes (HUMDYSTROP, HUMGHCSA, HUMHDABCD, HUMHBB and HUMHPRTB),
 Two mitochondria genomes (MPOMTCG and MTPACG) and
 Two virus genomes (HEHCMVCG and VACCG).
The above data sets are used by many authors who work in DNA sequence compression. The DNA

sequences are made available in FASTA file format in DNA databases which can also retrieved by any text
processor such as Notepad of Microsoft. A typical DNA sequence is in the form of a single word having no
white spaces, soft return or an end of line marker, with a constraint that a nucleotide may appear only nine
consecutive times. Efficiency of PRDNAC is measured in terms of bits per base (BPB), the bits required to store
a nucleotide. The time complexity measures [19] such as the time required to compress and decompress are
dealt in Table V. The following inferences are drawn from Table IV and Table V.

 PRDNAC algorithm compresses the data set much better than the other compression algorithms.
 PRDNAC algorithm excels in compression over the list of six techniques as evident from Table IV. It

is observed that, in all cases, a better compression gain in terms of the percentage of storage space
saved by PRDNAC is 88.73 at the maximum and 80.81 as an average.

 The proposed PRDNAC algorithm achieves a compression of below 1 bit to represent a base of DNA
sequence for HUMGHCSA.

 As PRDNAC performs both compression and decompression at a very short span, whereas the GZIP
executed only for compression process.

 PRDNAC algorithm does the compression process, 4 times faster than GZIP for the sequence
CHNTXX, shown in Fig. 2.

Fig. 2. Chart Showing Time Efficiency of PRDNAC with GZip.

0

50

100

150

200

250

T
im

e
(i

n
 m

s)

Gzip

PRDNAC

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5020

TABLE IV
Efficiency Comparison of PRDNAC with Other DNA Compressors (Bits Per Base).

SEQUENCE
Size in
Bytes

Compressed
File size by
PRDNAC
in bytes

W
in

R
A

R

B
io

-
C

om
pr

es
s2

G
en

om
e

C
om

pr
es

s

C
T

W

D
N

A

C
om

pr
es

s

G
e-

N
M

L

D
N

A
SC

P
R

D
N

A
C

Percentage
of Space
Saved by
PRDNAC

BPB (Bits Per Base)

CHMPXX 121024 22240 2.25 1.68 1.67 1.67 1.67 1.66 1.50 1.47 81.62

CHNTXX 155844 29050 2.24 1.62 1.61 1.61 1.61 1.61 1.51 1.49 81.36

HUMHBB 73323 14673 2.22 1.88 1.82 1.84 1.79 --- --- 1.60 79.99

HUMDYSTROP 38770 8170 2.37 1.93 1.92 1.92 1.91 1.91 1.89 1.69 78.93

HUMGHCSA 66495 7495 1.38 1.31 1.10 1.10 1.03 1.01 0.91 0.90 88.73

HUMHDABCD 58864 11712 2.19 1.88 1.82 1.82 1.80 1.71 1.61 1.59 80.10

HUMHPRTB 56737 11501 2.23 1.91 1.85 1.84 1.82 1.76 1.71 1.62 79.73

MPOMTCG 186608 38497 2.30 1.94 1.91 1.91 1.89 1.88 1.88 1.65 79.37

MTPACG 100324 20506 2.23 1.88 1.86 1.86 1.86 1.84 1.80 1.64 79.56

HEHCMVCG 229354 46758 2.32 1.85 1.85 1.84 1.85 1.84 1.80 1.63 79.61

VACCG 191737 38621 2.23 1.76 1.76 1.76 1.76 1.76 1.70 1.61 79.86

Average bits per base (BPB) 2.19 1.78 1.74 1.74 1.72 1.70 1.63 1.54 80.81

TABLE V
Comparison of Compression Time of PRDNAC with Gzip

SEQUENCE Size in Bytes GZIP (S)
PRDNAC

Compress (S) Decompress (S) Total time taken (S)

CHMPXX 121024 0.105 0.063 0.031 0.094
CHNTXX 155844 0.135 0.032 0.047 0.079
HUMHBB 73323 --- 0.047 0.031 0.078
HUMDYSTROP 38770 0.037 0.015 0.016 0.031
HUMGHCSA 66495 0.055 0.046 0.047 0.093
HUMHDABCD 58864 0.050 0.039 0.070 0.109
HUMHPRTB 56737 0.049 0.031 0.016 0.047
MPOMTCG 186608 0.100 0.078 0.094 0.172
MTPACG 100324 0.088 0.062 0.078 0.140
HEHCMVCG 229354 0.198 0.093 0.062 0.155
VACCG 191737 0.164 0.094 0.188 0.282

V. CONCLUSION

An improved compression ratio and lesser compression time have been achieved thru this improvised
version of PRDNAC algorithm. Further development may be made by introducing any newer techniques drawn
from various paradigms that have not been used. The authors hope that this algorithm will be appreciated by the
scientific community of genomic data.

REFERENCES

[1] Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Cross chromosomal similarity for DNA sequence compression”,
Bioinformation 2(9), pp. 412-416, 2008.

[2] Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Analysis of cross sequence similarities for DNA multiple sequence
compression”, International journal of Computer Aided Engineering and Technology, 2009.

[3] Manzini, G. and Rastero, M., “A simple and fast DNA Compressor, Software: Practice and Experience”, MIUR support projects
(ALINWEB), Vol. 34(14), pp.1397-1411, 2004.

[4] PanneerArokiaraj, S. and Robert, L., “Pattern based DNA sequence Compressor”, Proc. of IEEE International conference on
Computational Intelligence and Computing Research (ICCIC’12), Coimbatore, India. pp. 1-5, 2012.

[5] Grumbach, S. and Tahi, F., “Compression of DNA Sequences”, In Proc. IEEE Symp. On Data Compression, pp. 340-350, 1993.
[6] Grumbach, S. and Tahi, F., “A new challenge for compression algorithms: Genetic Sequences”, Journal of Information Processing &

Management, Vol. 30, pp. 875-886, 1994.

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5021

[7] Rivals,E., Jean Paul Delahaye, M., Dauchet and Delgrange,O.,“A Guaranteed Compression Scheme for Repetitive DNA Sequences”,
In Proc. Data Compression Conf. (DCC-96), Snowbird, UT. p453, 1996.

[8] Chen, X., Kwong, S. and Li, M., “A compression algorithm for DNA sequences and its applications in genome comparison”, The
10thworkshop on Genome Informatics (GIW-99), pp.51–61, Tokyo, Japan, 1999.

[9] Williems, Shtarkov and Tjalkens, “The context tree-weighting method: Basic properties”, IEEE Trans. Info. Theory, pp.653-664, 1995.
[10] Matsumoto, T., Sadakane, K., Okazaki, T. and Imai, H., “Implementing the context tree weighting method by using conditional

probabilities”, Proc. of 22ndSymposium on Information Theory and its Applications, pp. 673–676, SITA, December 1999.
[11] Chen, X., Li, M., Ma, B. and Tromp, J., “DNACompress: Fast and effective DNA sequence compression”, Bioinformatics, Vol. 18(12),

pp. 1696–1698, 2002.
[12] Behzadi, B. and Le Fessant, F., “DNA Compression Challenge Revisited”, Symposium on Combinatorial Pattern Matching

(CPM2005), pp.190-200, June 2005.
[13] Tabus, Korodi and Rissanen, “DNA sequence compression using the normalized maximum likelihood model for discrete regression”,

DCC, p253, 2003.
[14] Koradi and Tabus, “An efficient normalized maximum likelihood algorithm for DNA sequence compression”, ACM Trans. Info.

Systems, Vol. 23(1), pp.3-34, 2005.
[15] Minh Due Cao, Dix and Lloyed Allison, “A simple statistical algorithm for biological sequence compression”, In Proc. Data

Compression Conf. (DCC-07), Snowbird, UT. pp. 43-52, March, 2007.
[16] Raja Rajeswari and Dr.AlamApparao, “GenBit Compress-Algorithm for repetitive and non repetitive DNA sequences”, Journal of

theoretical and applied information technology, pp. 25-29, 2010.
[17] Soliman, T., “A Lossless Compression Algorithm for DNA sequences”, International Journal of Bioinformatics and Applications,

Vol. 5(6), pp. 593, 2009.
[18] Kamnath Mishra, Dr.Anupam Agarwal, Dr.EdriesAbdelhadi and Dr. Prakash C. Srivasatava, “An Efficient Horizontal and Vertical

Method for Online DNA Sequence Compression”, IJCA, Vol. 3(1), pp.39-46, June, 2010.
[19] Jie Liu, Sheng Bao, Zhiqiang Jing and Shi Chen,” A fixed length coding algorithm for DNA sequence compression”, Journal of

Bioinformatics, Vol (0), pp.1-3,2005.

Panneer Arokiaraj S et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 5022

	An Improvised DNA Sequence CompressorUsing Pattern Recognition
	Abstract
	Key Words
	I. INTRODUCTION TO DNA, COMPRESSION AND PATTERN RECOGNITION
	II. REVIEW OF LITERATURE
	III. METHODOLOGY
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	REFERENCES

