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Abstract-The modern telecommunication systems require very high transmission rates, in this context,
the problem of channelsidentification is a challenge major. The use of blind techniquesisa great interest
to have the best compromise between a suitable bit rate and quality of the information retrieved.

In thispaper weareinterested to learn the algorithmsfor blind channel identification.
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1. Introduction

The actual progress in resolving systems became more important in the telecommunication systems,
especialy the blind identification channel, including the requirement of modern telecommunications systems
that seek to use very high transmission rates. In this context, the application of the method of higher-order
cumulants is a technique now commonly addressed by digital telecommunication systems. The use of blind
identification has a great interest to have a good estimate of the channel, and therefore a good quality of
information retrieved.

In this work we develop agorithms for blind identification based on four order cumulants [1]. The objective
is to make a comparative study of these algorithms, in order to have a better channel estimation by noisy white
Gaussian noise.

2. Problem statement

The channel ismodeled by aFIR filter whose impul se responses are H (t) according to the diagram of Figure 1.

emitted signal o reconstructed signal
e Bl e () e
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r(k)
Figure 1. Channel model
X(t) : represents the sample of the input signal to the channel.
y(t) : the response of the channel.

The problem is to determine h(t) from a statistical analysis of y(t) (the channel response) received no
information about the input signal x(t).

Higher order cumulants or equa to 3 for a Gaussian signal is zero, which justifies the use of statistical
analysis using higher order cumulants.

Often we take samples of finished size to reduce the execution time; however, the distribution is far from
Gaussian, where the higher-order cumulants are different from zero. Hybridization between algorithms reduces
this error to the size of the sample (see Figure 2.)
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Figure 2. Different samples of different sizes around the Gaussian distribution
According to the figure, note that the sample of the large size (100 000, blue) coincides perfectly with the
Gaussian distribution. In contrast, other distributions are far away.
3. Algorithm Based Cumulants

We would like to mention in passing that there are several models that are classified into several categories.
In thiswork, structure of the model is generally used single variable, discrete time, invariant in time.

3.1.Moment and Cumulant
In this section we present some definitions of higher order statistics, moments and cumulants.
Let {x(k), avec ke Z}, isarea process discrete stationary, so its moment of order mis given by [4] [5] [6]

(7112
M (t1, g, s tiymg) = E{x(B)x(k + t))x(k + t3) ..x(k + t,—1)} Q

With E{.} represents the mathematical expectation.
The cumulant of order n of anon-Gaussian stationary processis given by:

Cm,x(tl' tz' LR tm—l) = Mm,x(tlﬂ t2' "" tm—l) - Mm,G (t1: tZ' "" tm—l) (2)

With M, . (1, t,, ..., tn—q1) represents the moment of order m and M, ¢(ty,t, ..., tyy—1) iS the time of a
signal equivalent Gaussian which has the same function as the autocorrelation signal {x(k)}
3.2.Estimating moment and cumulants
3.2.1.Estimating moment

Let X = {x;},-,x arandom variable representing scalar centered N samples of a stationary signal.

The simplest estimator of order k appointed conventional estimator is given by:

M (b1, b, s teen) = 2 ZAL, 2(D2(E + 020 + ) (i + tyes) €)

3.2.2.Estimating cumulants
A detailed presentation of the theory of cumulants estimation can be found in [9], [4]. As cumulants are
expressed in terms of moments, the estimates of cumulants are obtained as follows:
Cox(ty) = Co(ty) = my(ty)
C3x(ty, tz) = my(ty, t;)
Caty, tyts) = my(ty, ty, ta) — my(t)my(t, — t3) — my(t)m,(t — t3) — my(t)m,(t; — ty) 4

Algorithm based on four order cumulant

Generdly, most of the methods use different order cumulants, in this work we develop algorithms based on a
single order cumulants.
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4.1 Algorithm Based on 3th Order Cumulant: Alg. 1

The m order cumulant of the system output may be expressed as a function of the coefficients of the impulse
response {h (i)} [4] by:

Cmy(tl' 'tm—l) = me Z?:Oioo h(l)h(l + tl) h(l + tm—l) (5)

Withy__isthe order cumulant m behind the input sequence.

And q isthe number of channels
If m= 4, equation (5) becomes:

Cay(ty, t2,t3) = Vax Dt o h(DhG + t)h( + t3) (6)
Similarly, if m = 2, the equation (5) becomes:
Cay(t1) = Vox Xit o h(DG + t,) )
Applying the Fourier transform of (6) and (7) we obtain:

Say(@) = 0*H(w)H(~w) )
S4y(001: 07, W3) = YaxH(w)H(w,)H(wz)H(—w; —w,—w3) ©

By applying the inverse Fourier transform [1] we have:
i h(DCay(ty =t —j,ts =) = €Ny h(Dh( + t; — 1) h(ts — t;)Cay (ty — 1) (10)

With e = X2

Yze
Fort; = t, and t; = 2q(with h (0) =1)
The autocorrelation function of a system to FIR vanishes for al values as: |t|>q
Asthe system is supposed causal (h (i) =0 for i<0 and i>Q).
L’ équation (10) devient :

?:0 h(i)C4y(2q —j,t2 —j,2q —j) = eh(g)h(t; — Q)CZy(Q) (11)

The choice of t, requiresthat (t, > 2q) thenq < t, < 2q, andfor t; = t, = —q in equation (10).
And if we use the cumulants proprieties [4] [11]. We have:
_ Cay(a0,0)

€= m (12)

So we can present the system in matrix form:

Cy(2q9—129—-1,q~ 1)’ _ Cy(a.q0) . e azan
Cy(q—129—-1,9) —¢ Ciy(q,q,1) : ) _ : “
: : | " ;
0 cee C4y(q’ q, O) —€ ( ) 0
With ¢ = Sr(@0.9C/(@00)
Cay(a,9,0)

We can also write the system in the following form:
g =d (14)
The resolution of the system in the sense of least squaresis given by:

hq = (MTM)"*MTd (15)
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4.2 Algorithm Based on 4th Order Cumulants: Alg. 2

From the Eq. (3), the m" and n™ cumulants of the output signal, {y(n)}, and the coefficients { h(i)}, where
n > m, are linked by the following relationship:

yne

oo R Cry G+ by, e J + bty by e bpeg = P o hO[ITRZg h( + ) Coy (i + t, e, T + iy ] (16)

yme

If wetake n =4 and m = 3into Eqg. (16), we find the basic relationship developed in [12], [13]. If we taken =
3and m =2 into Eq. (16), we find the basic relationship of the algorithms developed in [14] asfollows:

7:0 h(])[ 2:1 h(i + tk)]Cny(ﬁlf "-'.Br'j + 0.’1, S an—r 1~ Zl 0 h(l)[ =1 h(l + Bk] ny(tlﬂ L] tr'i +
S 17

Where1<r <n-2.
From the equation (17), and for n=4 we obtain the relationship :

Loh(@h( +t) h( + t2)Cay(B1, Basi + 1) = ?:o h(GOAG + BRG + B2Cay(tr, t + a1)  (18)
Ift, =t, =q andpB; = B, =0 thereationship (18) becomes:
RO (@)Cay (00, + 3) = Tl B¥() Cay (4,0, + @) (19

As the system, RIF is supposed causal with order g, so thej + a; will necessarily be in the interva [0, q]. So,
to determine the range of variation of the parameter @, is proceeded as follows:

Wehave0<j+a; <q ==>—-i<a, <q—]j.
In other handwehave: 0 <j < q
From the tow last inequalities we obtain:
—qs=a; =q
If we suppose h(0)=1 h(p) 6= 0 and the cumulant Cy, (13, . . . ,tm-1) = 0, if one of the variables t, > p, wherek =
1,...,m-1; the system of Eq. (19) will be written asfollows:

0 1
: w0 Cy@a0) / hZ(q>\ C4y(0,0,—0q)
0 : 2 i
Cay(9,9,9) :2 ((:) =| C4y(0,0,0) (20)
Cay(q,q,0) .. 0 :
E . h3(Q) C4-y(0:0; q)
Cy(a a9 - 0 h2(q)

We can also write the system in the following form:

q=d (21)

The resolution of the system in the sense of least squaresis given by:
hy = M™)*MTd (22)

()

This solution give us an estimation of the quotient of the parametersh; (i) and h;(q), i.e,, b,, (i) = [h @l
3

i=1...q.
So, in order to obtain an estimation of the parametersh(i), i = 1... p, we can use the following equation:

R(D)=sign[B,, (D) by, (1) [{abs([By, () by, (YD} (23)
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1 if x>0
Where:sign(x) =4 0 if x=0

-1 if x<0
And abs(x) = |x| means the absolute value of x.
The h(p) parametersis estimated as follows :

(p) = Lsigniby, @) {abs G, ) () | @4

bp, (1)
4.3 RLSalgorithm

The objective of this algorithm is the estimation of h parameters of the adaptive filter by using the criterion
least squares:

e(n) =X, A" e(d) = Yo A" H(d(@) — hT(n). x(1)) (25)
oA d(@) — AT (n).x (D)) =0 (26)

A isaweighting factor that always takes apositivevalue 0 <A< 1.

This factor is aso called forgetting factor because it forget the data corresponding to a remote past. The special
case L = 1 corresponds to an infinite memory. Minimizing the cost function ¢ (n) allows us to determine the
coefficients h (n), this amounts to calculate the partial derivative relative to h (n). Finaly the following
expression for w (n) is obtained (Bellanger 1989):

AR I (n-1)x(n)

h(m) = h(n =D + o i s €M @7)

with
e(n) =dmn) —xT(m)h(n—1) (28)

4.4. Zhang algorithm
Using equation (3), Zhang and Al. [10] developed an equation based on the cumulants of order m given by:

Loh(DCR (i —t,q,...,0) = Cyy (1,0, ...,0)Ch3(, 0, ...,0)Cry (4, G, --.,0) (29)

For n=4 we obtain from equation (16) the following equation:

ino h(DC3y (i — £,q,0) = C4y(t,0,0)C4y(q, 0,0)Cay(q, 9, 0) (30)
For t=-q, -g+1, ..., g
The system can be represented in the following matrix form:

Cy(+a90) C(29,90) h(0) / Cay(—q,0,0)
Cyi+a-1a0  Ca-140 |(7 ) _ [ ca-a+100) -
: " : h q :
\ CyG-a9q0 - C3,(0,q0) —¢ @ C4y(q,0,0)
With e = C4y(q,0,0)Cy4y(q, g, 0).
The system can be represented in a simplified form as follows:
Mzhy =d (32
To estimate the parameters h(i);-,, 4 We can use the method of least squares:
hy = (Mz™™z)"*Mz"d (33)

5. Simulation

In this section we will make a comparative study between five algorithms(Algl, Alg2, Zhang, Zhang_Alg1,
RLS), the Zhang Algl is an hybridation between tow agorithms previously cited (ALG1, Zhang) [1], we
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showed that the ALG2 algorithm is better than other algorithms in terms of wandering (M SE), which implies, of
course, agood estimate of the channel.
5.1. Order channd 2

To validate this agorithm, we applied it to different channels of a different order; remember that this
algorithm is based on cumulants of order 4 that means that the Gaussian noise vanishes at cost on.

20
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Normalized Frequency (xx rad/sample)

Figure 3. Estimation of the impulse responses in amplitude and phase algorithms for N=100 samples.

According to Figure 3, it's obvious that the shape of the channel estimated using RLS algorithm is nearer to
the look of the desired channel, because it’s a supervised algorithm, nevertheless, the algorithm Alg2 is better
than other algorithms.

Table 1. Channel estimation by the different algorithms

N Algorithme EQM Canal estimé
Canal désiré ~ --------- 1.0000 -0.8500 1.0000
Algl 0.1970 1.0000 -0.6724 0.6027
100 Alg2 0.1592 1.0000 -0.4525 0.7793
Zhang 0.2064 1.0000 -0.4229 0.3920
RLS 0.0136 1.0426 -0.8268 0.8449
Algl 0.0494 1.0000 -0.7542 0.8129
400 Alg2 0.0151 1.0000 -0.4898 0.6791
Zhang 0.1138 1.0000 -0.4516 0.6982
RLS 0.0038 0.9964 -0.8397 0.9948
Algl 0.0102 1.0000 -0.8080 0.8830
800 Alg2 0.0046 1.0000 -0.6171 0.8231
Zhang 0.0422 1.0000 -0.8279 0.9807
RLS 1.3372e-04 1.0019 -0.8466 1.0003
Algl 0.0077 1.0000 -0.7894 0.8903
1200 Alg2 0.0024 1.0000 -0.7610 0.9401
Zhang 0.0272 1.0000 -0.6896 0.9819
RLS 8.2613e-04 0.9985 -0.8486 1.0007

Table 1 groups the estimated values of the channel of the five algorithms, for different sample sizes, i.e. N = 100,
N =400, N =800 and N = 1200.

According to the comparative table, we note that the algorithm AL G2 gives a good estimation of the parameters
of the studied channel, other algorithms give good results, but with alarger error compared to algorithm ALG2,
thislast gives better performance for different sample sizes.
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We note that the mean squared error decreases when the sample size increases, then we get an error of order
10-4 with the proposed algorithm.

6. Conclusion

In this paper, we have cited the characteristics of higher order cumulants with their properties that has a great
interest in the field of signal processing with and without noise. The use of higher-order cumulants gives more
detailed analysis of signals, the success of these techniques is that they can solve the problem of blind
identification without any information about the input RIF systems.

In this paper we made a comparative study between four algorithms, we have shown the algorithm ALG2 is
better than other agorithms in terms of the mean square error, as it gives a good estimation of system
parameters RIF for channel order two and for different sample sizes.
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