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Abstract—Enhancement of stability of the power system has been achieved by the application of 
Unified power flow controller (UPFC) device with an additional supplementary controller. This 
supplementary damping controller can be installed on any control channel of the UPFC inputs to 
implement the task of power oscillation damping (POD) controller. We have presented a comprehensive 
assessment and performed analytical study through simulation of the damping function of the multiple 
damping controllers. Dual and triple-coordinated design among power system stabilizer (PSS) and 
different UPFC-POD controllers were considered in order to identify the design that provided the most 
robust damping performance in a single machine infinite bus (SMIB). The parameters of the damping 
controller were tuned in the individual and coordinated design by using a chaotic particle swarm 
optimization (CPSO) algorithm that optimized the given eigenvalue-based objective function. The 
simulation results demonstrate that the proposed dual and triple-coordinated designs provide higher 
damping of Low-frequency oscillations and improve the system damping over their individual control 
responses. 

Keyword-Power system stability, Transmission lines, Flexible ac transmission systems, Power system 
stabilizer, Coordinated design 

I. INTRODUCTION 

Electric power system becomes more heavily loaded over long distances because of economic and 
environmental pressures as a result, undesirable electromechanical oscillations happen more often than before 
[1], [2]. In absence of sufficient damping these oscillations may develop. The oscillations can cause system 
separation in the low frequency range of 0.1–2 Hz [3], [4]. 

In past decades, PSSs were appeared as an economic and effective technique to add damping to the power 
system oscillations for the nominal system parameters and nominal operating condition. However, the 
performance of the system deteriorated while the system operating conditions were varied in a large scale [5]-
[7]. Therefore, with these limitations the use of PSS alone cannot provide adequate damping for the low-
frequency oscillation problems [8].  

Flexible ac transmission system (FACTS) devices provide the controllability and flexibility for power system 
operations to achieve the full utilization of the existing power systems [9], [10]. Recently UPFC device has 
attracted more attention of the researchers than any other devices of the FACTS family because it can provide a 
full compensation. These compensations were provided in terms of voltage and phase shifting regulation, 
impedance and reactive compensation [11], [12]. Besides these primary control functions, it also is capable of 
enhancing the power system stability by the addition of a supplementary damping controller, which can be 
installed on any control channel of the UPFC inputs to implement the task of power oscillation damping (POD) 
controller [13]. 

To improve overall system performance, the technique that is most often used is to arrange multiple damping 
controllers, but the interaction among them may cause destabilization of the damping of the oscillations of the 
system. In order to overcome the problem of interactions among multiple damping controllers, a coordinated 
design is required to gain the benefits of multiple stabilizers, thereby enhancing the stability of the system and to 

A. N. Hussain et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 4 Aug-Sep 2013 3257



reduce any possible negative interactions among the different stabilizers. Many researches have proposed the 
coordination between PSSs and FACTS devices with POD controllers [14]-[16]. 

Parameter tuning is the key problem in the coordinated design, because the effectiveness of coordinated 
design in damping of oscillations is based on optimal parameters of the multiple damping controllers. Hence, the 
use of optimization techniques must be efficient and quick, and it must ensure the security of dynamic system in 
case of critical events. Many artificial intelligence techniques have been used to  provide the desired coordinated 
design and robustness of multiple stabilizers, including the application of artificial neural networks [17], [18], 
genetic algorithms  [8], [19], fuzzy logic control [20], [21], bacterial foraging algorithm [22], and various 
combinations of these approaches [23], [24]. 

In the last few decades, the particle swarm optimization (PSO) technique has appeared as a useful tool to 
produce excellent solutions in short time for solving optimization problem. Many researchers have been adopted 
PSO technique [25]-[27]. The simple PSO depends on the tuning parameters significantly. But it is not assured 
that it will be a global convergent. To improve the global searching ability and prevent a slide into the premature 
convergence to local minima, a chaotic particle swarm optimization (CPSO) technique by combining the PSO 
with chaotic sequence techniques. 

In this paper, we have presented the results of our comprehensive comparison and assessment of the damping 
function of multiple damping stabilizers using different coordinated designs in order to identify the design that 
provided the most effective damping performance. The two alternative designs we evaluated are listed below: 

• Dual-coordinated design between PSS and any one out from the four inputs controls channels of the series 
and shunt structure of UPFC device, because any control loop can superimpose a supplementary damping 
controller to implement the required damping. 

• Triple-coordinated design among PSS and any two different out from the four inputs controls channels of 
the UPFC device. 

The CPSO technique was used for tuning the parameters of the multiple damping stabilizers in the 
coordinated design based on an eigenvalue objective function. Simulation results for a SMIB equipped with 
UPFC device shows that, the dual and triple-coordinated design has better damping ability for low frequency 
oscillations (LFO) than their individual control responses, which improves the stability of the power system 
significantly. 

II. MATHEMATICAL MODEL FOR SMIB EQUIPPED WITH UPFC OF POWER SYSTEM 

Fig. 1 shows the application of UPFC device in SMIB power system to increase the controllability and 
flexibility. The UPFC is composed of two three-phase GTO based voltage source converters. One of the voltage 
source converters (VSC-1) is connected in shunt and the other one (VSC-2) is connected in series. These two 
voltage source converters are coupled by a common dc link and each converter is connected to the transmission 
line through an excitation transformer (ET) and a boosting transformer (BT) in order to maintain bi-directional 
power flow between the series and shunt converters. The four input control signals to the UPFC are the 
amplitude of modulation ratio and phase angle signals of each converter. These are denoted as mE, mB, δE and δB 
respectively. These parameters are considered as UPFC control inputs to provide synchronized power 
compensation in series line without external voltage   source [5], [28]. 

 

Fig. 1. SMIB power system equipped with UPFC.   

A. Nonlinear Dynamic Model of UPFC 

The dynamic model of the UPFC is required to investigate the effect of the UPFC to enhance the small signal 
stability of the power system. By applying Park’s transformation and neglecting the resistance and transients of 
the ET and BT transformers, the UPFC can be modeled as [1]: 
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ቈݒா௧ௗݒா௧௤቉ ൌ ቈ 0 െݔாݔா 0 ቉ ቈ݅ாௗ݅ா௤቉ ൅ ቈ݉ாݒௗ௖ ݏ݋ܿ ாߜ 2⁄݉ாݒௗ௖ ݊݅ݏ ாߜ 2⁄ ቉                                                                                                  (1) 

                ቈݒ஻௧ௗݒ஻௧௤቉ ൌ ቈ 0 െݔ஻ݔ஻ 0 ቉ ቈ݅஻ௗ݅஻௤቉ ൅ ቈ݉஻ݒௗ௖ ݏ݋ܿ ஻ߜ 2⁄݉஻ݒௗ௖ ݊݅ݏ ஻ߜ 2⁄ ቉                     (2) 

 

ሶௗ௖ݒ  ൌ ሺ3݉ா ⁄ௗ௖ܥ4 ሻሾcos ாߜ sin ாሿߜ ൤݅ாௗ݅ா௤൨ ൅ ሺ3݉஻ ⁄ௗ௖ܥ4 ሻሾcos ஻ߜ sin ஻ሿߜ ൤݅஻ௗ݅஻௤൨          (3) 

where ݒா௧, ݅ா and ݔா are the excitation transformer voltage, current and reactance, respectively; ݒ஻௧, ݅஻ and ݔ஻ 
are the boosting transformer voltage, current and reactance, respectively; ݒௗ௖ and ܥௗ௖ are the DC-link voltage 
and capacitance, respectively. 

From Fig. 1, we can have: 
ҧ௧ݒ  ൌ ௧ாଓҧݔ݆ ൅  ҧா௧                                                    (4)ݒ

ҧா௧ݒ  ൌ ҧ஻௧ݒ ൅ ஻௩ଓҧ஻ݔ݆ ൅  ҧ௕                                               (5)ݒ
    ଓҧ ൌ ଓҧா ൅ ଓҧ஻                                                              (6) 
 
where ݅, ݒ௧ and ݒ௕ are the armature current, generator terminal voltage and infinite bus voltage, respectively; ݔ௧ா and ݔ஻௩ are transmission line reactance’s, respectively. Equations (4) and (5) can be expressed in the d-q 
axis reference frame as 
௧ௗݒ  ൅ ௧௤ݒ݆ ൌ ௧ா൫݅ாௗݔ݆ ൅ ݆݅ா௤ ൅ ݅஻ௗ ൅ ݆݅஻௤൯ ൅ ா௧ௗݒ ൅ ா௧௤ݒ݆ ൌ ௤൫݅ா௤ݔ ൅ ݅஻௤൯ ൅ ௤ܧ̀ൣ݆ െ ௗሺ݅ாௗݔ̀ ൅ ݅஻ௗሻ൧            (7)   
ா௧ௗݒ                     ൅ ா௧௤ݒ݆ ൌ ஻௧ௗݒ ൅ ஻௧௤ݒ݆ ൅ ஻௩݅஻ௗݔ݆ െ ஻௩݅஻௤ݔ ൅ ௕ݒ sin ߜ ൅ ௕ݒ݆ cos  (8)                                 ߜ
 

From equations (1), (2), (7), and (8) can be obtained the equation's current injection: 
 ݅ாௗ ൌ ሺݔ஻௓ ⁄ௗ௓ݔ ሻ̀ܧ௤ െ ሺݔ஻ௗ ⁄ௗ௓ݔ ሻሺݒௗ௖݉ா ݊݅ݏ ாߜ 2⁄ ሻ ൅ ሺݔௗா ⁄ௗ௓ݔ ሻሾݒ௕ cos ߜ ൅ ሺݒௗ௖݉஻ sin ஻ߜ 2⁄ ሻሿ         (9)   
             ݅ா௤ ൌ ൫ݔ஻௤ ⁄௤௓ݔ ൯ሺݒௗ௖݉ா cos ாߜ 2⁄ ሻ െ ൫ݔ௤ா ⁄௤௓ݔ ൯ሾݒ௕ sin ߜ ൅ ሺݒௗ௖݉஻ cos ஻ߜ 2⁄ ሻሿ            (10) 
 ݅஻ௗ ൌ ሺݔா ⁄ௗ௓ݔ ሻ̀ܧ௤ െ ሺݔௗா ⁄ௗ௓ݔ ሻሺݒௗ௖݉ா ݊݅ݏ ாߜ 2⁄ ሻ െ ሺݔௗ௧ ⁄ௗ௓ݔ ሻሾݒ௕ cos ߜ ൅ ሺݒௗ௖݉஻ sin ஻ߜ 2⁄ ሻሿ       (11) 
 ݅஻௤ ൌ ൫ݔ௤ா ⁄௤௓ݔ ൯ሺെݒௗ௖݉ா cos ாߜ 2⁄ ሻ ൅ ൫ݔ௤௧ ⁄௤௓ݔ ൯ሾሺݒ௕ sin ሻߜ ൅ ሺݒௗ௖ ݉஻ cos ஻ߜ 2⁄ ሻሿ       (12)  
 
where: 
஻௓ݔ   ൌ ஻ݔ ൅ ௗ௓ݔ   ,஻௩ݔ ൌ ሺ̀ݔௗ ൅ ௧ாݔ ൅ ஻ݔாሻሺݔ ൅ ஻௩ሻݔ ൅ ௗݔாሺ̀ݔ ൅   ௧ாሻݔ
஻ௗݔ  ൌ ஻ݔ ൅ ஻௩ݔ ൅ ௗݔ̀ ൅ ௗாݔ   ,௧ாݔ ൌ ௗݔ̀ ൅ ஻௤ݔ   ,௧ாݔ ൌ ஻ݔ ൅ ஻௩ݔ ൅ ௤ݔ ൅  ௧ாݔ
௤௓ݔ   ൌ ൫ݔ௤ ൅ ௧ாݔ ൅ ஻ݔா൯ሺݔ ൅ ஻௩ሻݔ ൅ ௤ݔா൫ݔ ൅ ௗ௧ݔ   ,௧ா൯ݔ ൌ ሺ̀ݔௗ ൅ ௧ாݔ ൅   ாሻݔ
௤ாݔ  ൌ ௤ݔ ൅ ௤௧ݔ ,௧ாݔ ൌ ௤ݔ ൅ ௧ாݔ ൅             .ாݔ
 
where ݔௗ, ̀ݔௗ and ݔ௤ are the d-axis reactance, d-axis transient reactance and q-axis reactance, respectively. 
B. Nonlinear Model of the Power System 

The nonlinear model equations of the SMIB system as shown in Fig. 1 is described by [29]: 
ሶߜ  ൌ ߱௕ሺ߱ െ 1ሻ                                          (13) 

 ሶ߱ ൌ ሾ ௠ܲ െ ௘ܲ െ ሺ߱ܦ െ 1ሻሿ/(14)                                               ܯ 
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ሶ௤ᇱܧ ൌ ௙ௗܧൣ െ  ௤൧/ܶ̀௢                                          (15)ܧ
 
where ߱௕ is the synchronous speed; ߱ and ߜ are the rotor speed and angle, respectively; Pm and Pe are 
mechanical input and electrical output power of the generator, respectively; M and D are the machine inertia and 
damping coefficient, respectively; ܧ௙ௗ, ܧ௤ and ̀ܧ௤ are the generator field voltage, generator internal voltage and 
transient generator internal voltage, respectively; ܶ̀௢ is the time constant of excitation circuit. 

The excitation system is represented by a first order (IEEE type – ST1) [30]. 
ሶ௙ௗܧ  ൌ ௥௘௙ݒ௔൫ܭൣ െ ௧൯ݒ െ /௙ௗ൧ܧ ௔ܶ                           (16) 

 
where ݒ௥௘௙ is the reference voltage, ܭ௔is the gain and ௔ܶ is the time constant of excitation system respectively.  

The generator output power in terms of the d-axis and q-axis components of the terminal voltage ݒt and the 
armature current ݅ is represented as follows: 

 ௘ܲ ൌ ௧ௗ݅ௗݒ ൅   ௧௤݅௤                                        (17)ݒ
௧ݒ  ൌ ௧ௗݒ ൅  ௧௤                                         (18)ݒ݆
௧ௗݒ   ൌ ௧௤ݒ  ;௤݅௤ݔ ൌ ௤ܧ̀ െ   ௗ݅ௗ                                        (18a)ݔ̀
              ݅ ൌ ݅ௗ ൅ ݅௤                                      (19) 
 ݅ௗ ൌ ݅ாௗ ൅ ݅஻ௗ;  ݅௤ ൌ ݅ா௤ ൅ ݅஻௤                                                        (19a) 
௤ܧ    ൌ ௤ܧ̀ ൅ ݅ௗሺݔௗ െ  ௗሻ                                            (20)ݔ̀
C. Linearized Model of the Power System Equipped with UPFC 

Linear dynamic model of the power system is obtained by linearizing the nonlinear equations (3-20) around 
nominal operating point. The linearized model of the power system as shown in Fig. 1 is given as follows:  
ሶߜ∆  ൌ ߱௕∆߱                                                    (21) 
 ∆ ሶ߱ ൌ ሺെ∆ ௘ܲ െ  (22)                        ܯ/ሻ߱∆ܦ
ሶ௤ᇱܧ∆   ൌ ൫െ∆ܧ௤ ൅  ௙ௗ൯/ܶ̀ௗ௢                       (23)ܧ∆
ሶ௙ௗܧ∆  ൌ ൫െܭ௔∆ݒ௧ െ /௙ௗ൯ܧ∆ ௔ܶ                (24) 
ሶௗ௖ݒ∆  ൌ ߜ∆଻ܭ ൅ ௤ܧ̀∆଼ܭ െ ௗ௖ݒ∆ଽܭ ൅ ௖௘∆݉ாܭ ൅ ாߜ∆௖ఋ௘ܭ  ൅ ௖௕∆݉஻ܭ ൅  ஻                   (25)ߜ∆௖ఋ௕ܭ
 
 ∆ ௘ܲ ൌ ߜ∆ଵܭ ൅ ௤ܧ̀∆ଶܭ ൅ ௗ௖ݒ∆௣௖ܭ ൅ ௣௘∆݉ாܭ ൅ ாߜ∆௣ఋ௘ܭ  ൅ ௣௕∆݉஻ܭ ൅  ஻           (26)ߜ∆௣ఋ௕ܭ
௤ܧ̀∆  ൌ ߜ∆ସܭ ൅ ௤ܧ̀∆ଷܭ ൅ ௗ௖ݒ∆௤௖ܭ ൅ ௤௘∆݉ாܭ ൅ ாߜ∆௤ఋ௘ܭ ൅ ௤௕∆݉஻ܭ ൅  ஻          (27)ߜ∆௤ఋ௕ܭ
௧ݒ∆  ൌ ߜ∆ହܭ ൅ ௤ܧ̀∆଺ܭ ൅ ௗ௖ݒ∆௩௖ܭ ൅ ௩௘∆݉ாܭ ൅ ாߜ∆௩ఋ௘ܭ ൅ ௩௕∆݉஻ܭ ൅  ஻         (28)ߜ∆௩ఋ௕ܭ  
 
where the linearization constants K1 − K9, Kpc, Kpe, Kpδe, Kpb, Kpδb, Kqc, Kqe, Kqδe, Kqb, Kqδb, Kvc, Kve, Kvδe, Kvb, 
Kvδb, Kce, Kcδe, Kcb and Kcδb are functions of the system parameters and the initial operating conditions. The state 
space model of power system is given by: 
 ∆ ሶܺ ൌ ܺ∆ܣ ൅  (29)                                        ܷ∆ܤ
 
where the state vector ∆ܺ and control vector ∆ܷ are: ∆ܺ ൌ ̀  ௤ܧ∆  ߱∆  ߜ∆ൣ ∆  ௙ௗܧ∆ ௗܸ௖ ൧T

,        ∆ܷ ൌ ሾ∆݉ா ாߜ∆  ∆݉஻  ஻ሿTߜ∆
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The structure of the matrices A and B are: 
 

ܣ ൌ
ێێۏ
ێێێ
ێێێ
ێێێ
ۍ 0 ߱௕ 0 0 0

െ ܯଵܭ െ ܯܦ െ ܯଶܭ 0 െ ܯ௣௖ܭ
െ ସௗܶ௢ᇱܭ  0 െ ଷௗܶ௢ᇱܭ  1ܶௗ௢ᇱ െ ௤௖ௗܶ௢ᇱܭ

െ ௔௔ܶܭହܭ 0 െ ௔௔ܶܭ଺ܭ െ 1ܶ௔ െ ଻ܭ௔௔ܶܭ௩௖ܭ 0 ଼ܭ 0 ଽܭ ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

, ܤ ൌ
ێێۏ
ێێێ
ێێێ
ێێێ
ۍ 0 0 0 0

െ ܯ௣௘ܭ െ ܯ௣ఋ௘ܭ െ ܯ௣௕ܭ െ ܯ௣ఋ௕ܭ
െ ௤௘ௗܶ௢ᇱܭ െ ௤ఋ௘ௗܶ௢ᇱܭ െ ௤௕ௗܶ௢ᇱܭ  െ ௤ఋ௕ௗܶ௢ᇱܭ

െ ௔௔ܶܭ௩௘ܭ െ ௔௔ܶܭ௩ఋ௘ܭ െ ௔௔ܶܭ௩௕ܭ െ ௖௘ܭ௔௔ܶܭ௩ఋ௕ܭ ௖ఋ௘ܭ ௖௕ܭ ௖ఋ௕ܭ ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې
 

 

D. Eigen Value of the System without Stabilizer 

From equation |ܫߣ െ |ܣ ൌ 0, the eigenvalues of the system are computed and given as: 
ଵߣ  ൌ െ19.752,   ߣଶ,ଷ ൌ 0.0484 ൅ 3.4508і,   ߣଷ,ସ ൌ െ0.13878 േ 0.30433і  
 
  The eigenvalues of the matrix A shows that the system is unstable. A supplementary stabilizer is certainly 

required for stability of the power system. 

III. CONTROLLER STRUCTURE FOR DAMPING OF POWER OSCILLATION 

In order to overcome the LFO problem, supplemental control action applied to generator excitation in form of 
PSS or UPFC device in form of power oscillation damping POD controller. In order to generate appropriate 
damping torque the parameters of the four main control loops of the UPFC (݉ா,ߜா, ݉஻ and ߜ஻) must be 
modulated. This is illustrated in Fig. 2. 

The POD controller has a structure that is similar to that of the PSS controller. Fig. 3 presents a sample block 
diagram of a POD controller. It contains three main blocks, i.e., the gain block, the washout filter block, and a 
double stage lead-lag phase compensators. The washout filter block serves as a high-pass filter to eliminate the 
DC offset of the POD output and prevent steady-state changes in the terminal voltage of the generator. From this 
perspective, the washout time Tω should have a value in the range of 1 to 20 seconds defined to the 
electromechanical oscillation modes and two blocks (lead-lag) phase compensators [3]. 

In this study, the time constants, Tω, T2, and T4, were assigned specific values of 10s, 0.1s, and 0.1s, 
respectively,  while the parameters of the controller, i.e., KN, T1, and T3 had to be determined. 

The speed deviation Δω used as an input signal to the POD, and UN is the controller output. 
 

 
 

Fig. 2. UPFC with damping controller. 

 

 

 
Fig. 3. Structure of power oscillation damping POD. 

∆߱ 

N୰ୣ୤ 
KS1 ൅ S TS 

POD 
Controller 

� 

UN 

+

+

N 

ሺ1 ൅ ݏ ଵܶሻሺ1 ൅ ݏ ଶܶሻݏ ఠܶሺ1 ൅ ݏ ఠܶሻ ሺ1 ൅ ݏ ଷܶሻሺ1 ൅ ݏ ସܶሻܭே 
∆߱ ∆ܷேGain Washout

Phase 
Compensation 1&2

A. N. Hussain et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 4 Aug-Sep 2013 3261



A. Design of Optimal  controllers PSS and UPFC-POD 

Improving dynamic stability of the power system against disturbances at different loading condition is the 
main objective of the coordinated design method. It can be achieved by suitable tuning of the parameters of 
multiple power system damping controllers between PSS and any one out from the four inputs controls channels 
of the series and shunt structure of UPFC device.  

The problem of selecting damping controller’s parameters independently and also through the simultaneous 
dual and triple-coordinated designs is solved by a CPSO optimization technique. This technique is dependent on 
eigenvalue–based objective function, which is formulated to recognize the minimum value of the damping ratio 
among all modes of the closed matrix. The POD controller is a lead-lag type. It can be described mathematically 
as: 
 ܷሺݏሻ ൌ  ሻ                            (30)ݏሻܻሺݏሺܩ
 
where G(s), Y(s) and U(s) are the POD controller transfer function, the POD input (measurement signal) and the 
POD output signal respectively. This output of the POD controller will provide additional damping by shifting 
modes to the left side. The Equation (30) can be expressed in state–space form as: 
 ∆ ሶܺ஼ ൌ ஼∆ܺ஼ܣ ൅  ஼∆ܷ                                (31)ܤ
 
where ΔXC is the controller state vector. Equation (29) describes a linear model of the power system extracted 
around a certain operating point, combining equation (29) with equation (31), we obtained a closed-loop system. ∆ ሶܺ஼ℓ ൌ  ௖ℓ∆ܺ஼ℓ                                         (32)ܣ
 ∆ܺ஼ℓ ൌ ൤ ∆ܺ∆ܺ஼൨                                             (33) 

௜ߞ                                       ൌ െܴ݈݁ܽሺߣ௜ሻ/|ߣ௜|                                     (34) 
ܬ  ൌ ݉݅݊ሺߞ௜ሻ                                            (35) 
 
where ∆ܺ஼ℓ  is the state vector of the closed loop system, ߣ௜ is the ith eigenvalue (mode) of the closed loop 
matrix ܣ௖ℓ, ߞ௜ the damping coefficient of the ith eigenvalue. It is clear that the objective function ܬ will identify 
the minimum value of the damping coefficient among modes. 

The goal of optimization process is to maximize  ܬ in order to realize appropriate damping for all modes 
including electromechanical mode eigenvalue, by moving the dominant poles to the desired location, which 
enhance the system damping characteristics, and maximum ܬ is searched within the limited range of control 
parameters. 

௅௠௜௡ܭ  ൑ ௅ܭ  ൑ ௅௠௔௫ ,       ௅ܶі௠௜௡ܭ  ൑  ௅ܶі ൑  ௅ܶі௠௔௫ 
 

where:    ܮ ൌ ܲܵܵ, ݉ா, ,ாߜ   ݉஻, ஻    and   іߜ  ൌ 1, 3  
Typical ranges of ܭL is 0.1– 100 and  ௅ܶі is 0.01–1. 

IV. OPTIMIZATION ALGORITHM 
The problem of tuning the parameters for individual and coordinated design for multiple damping controllers, 

which would ensure the maximum damping performance was solved via a PSO optimization procedure. This 
promising technique appears as an effective solution of handling optimization problems. The PSO is a 
population-based, stochastic-optimization technique that was inspired by the natural characteristics of flocks of 
birds and schools of fish [31]. 
A. Classical PSO Technique 

In PSO algorithm, every possible solution is represented as a particle. A group of particles comprises a 
population. Every particle keeps its position in hyperspace, which is related to the fittest solution.  

These positions of the particles are saved in a special memory named pbest. Additionally, the change in the 
position of the particles is followed by the best value obtained at each iteration by any particle in the population 
is named gbest. For each iteration of the PSO algorithm, the pbest and gbest values are updated, and each 
particle changes its velocity toward them randomly. This concept can be described mathematically as follows: 
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і௞ାଵݒ ൌ і௞ݒݓ ൅ ܿଵݎଵ൫ݐݏܾ݁݌і െ і௞൯ݔ ൅ ܿଶݎଶ൫ܾ݃݁ݐݏ െ  і௞൯       (36)ݔ
і௞ାଵݔ                               ൌ і௞ݔ ൅ і௞ାଵ ,  іݒ ൌ 1,2, … , ݊,                             (37) 
  
where ݔ and ݒ are the position and the velocity of the particle respectively, ݓ is the inertia weight factor, ݇ is 
the number of iterations, ܿଵ and ܿଶ are the cognitive and asocial acceleration factors respectively, ݊ is the 
number of particles, and ݎଵ and ݎଶ are the random numbers, which are uniformly-distributed within the range   of 
0 to 1 [32]. 

Fig. 4 shows the flowchart of the PSO algorithm for the tuning parameters of an individual and coordinated 
design. 

 

 
Fig. 4. PSO algorithm for the tuning parameters of an individual and coordinated design. 

B. Chaotic Particle Swarm Optimization (CPSO) 

Dependence of the simple PSO algorithm performance  on its control parameters is one of the major  
disadvantages for achieving accurate optimization because it  is not guaranteed to be global convergent. PSO 
and chaotic sequence techniques are combined to form a chaotic particle swarm optimization (CPSO) technique 
to increase the global searching ability of PSO algorithm. This combined method will help simple PSO to 
prevent premature convergence to local minima. The logistic equation, which is applied for hybrid PSO 
algorithm described as [33]. 

௞ାଵߚ  ൌ ௞ሺ1ߚߤ െ ௞ሻ,       0ߚ ൑ ଵߚ ൑ 1                        (38) 
 
where ߤ is the control parameter in the range value between 0 to 4.  Equation (38) is deterministic, it displays 
chaotic behavior when 4 = ߤ and ߚଵ ב ሼ0, 0.25, 0.5, 0.75, 1ሽ. This prevents the dependence on initial conditions. 
The initial conditions are considered as the basic characteristic of chaos. The inertia weight factor in (36) is 
calculated by using the following equation: 
ݓ  ൌ ௠௔௫ݓ െ ሾሺݓ௠௔௫ െ ݎ݁ݐ௠௜௡ሻሺ݅ݓ ⁄௠௔௫ݎ݁ݐ݅ ሻሿ                      (39) 
 

Start 

ሺn, cଵ, cଶ, ,௠௜௡ݓ ௠௔௫ݓ and iter୫ୟ୶ሻ 
Select PSO parameters 

Generate initial population 

Linearization and eigenvalue 
analysis 

Calculate fitness of particles         
in the current population 

Update pbest and 
 gbest values 

Iter. ≥ ter.max?

Update the position and velocity for a 
particle according to PSO equations 

Stop Iter.=iter.+1 
Yes 

No 
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where ݓ௠௔௫ and ݓ௠௜௡ are maximum and minimum values of the inertia weight factor, ݅ݎ݁ݐ௠௔௫ is the maximum 
number of iterations and ݅ݎ݁ݐ is the current iteration number. The new weight parameter ݓ௡௘௪ is defined by 
multiplying weight parameter ݓ in (39) and logistic equation (38): 
ݓ =௡௘௪ݓ  ൈ  ௞ାଵ                            (40)ߚ
 
To improve the global searching ability of PSO, we have introduced a new velocity update equation as follows: 
і௞ାଵݒ  ൌ і௞ݒ௡௘௪ݓ ൅ ܿଵݎଵ൫ݐݏܾ݁݌і െ і௞൯ݔ ൅ ܿଶݎଶ൫ܾ݃݁ݐݏ െ   і௞൯        (41)ݔ
 

We have observed and found that the weight in simple PSO algorithm decreases uniformly from ݓ௠௔௫ to ݓ௠௜௡. However, the proposed new weight decreases and oscillates simultaneously for the total number of 
iterations. The final choice of a parameter was considered to be the optimal choice: swarm size, ݅ݎ݁ݐ௠௔௫, ܿଵ, ܿଶ, ݓ௠௜௡, ݓ௠௔௫, ߤ and ߚଵ are chosen as 30, 100, 2, 2, 0.3, 0.9, 4 and 0.3 respectively.  

V. SIMULATION AND COMPARISON RESULTS 

In this section, the abilities of the proposed dual and triple coordinated designs are investigated in order to 
improve the dynamic stability of the power system through the damping of the LFO. 

Figures 5-14 show the effect of applying the individual controllers and coordinated designs (dual/triple) for 
PSS and different UPFC-POD controllers in a SMIB of speed deviation with 10% step change in mechanical 
input power. The maximum overshoot as well as the settling time of the system responses should be studied to 
be compared to the capability of the simulated coordinate approaches in oscillation damping. 

Figures 5, 6 demonstrate great improvement in damping system response while using the dual coordinated 
designs ሺPSS & mEሻ and ሺPSS & ݉Bሻ over their individual control responses.  Fig. 7 show an improvement in 
damping and deterioration in settling time of the system response while using the dual coordinated design ሺPSS & δBሻ over their individual control responses. Fig. 8 shows the best response in dual coordinated design 
while using the coordinated control ሺPSS & ߜEሻ over their individual control responses because it improved both 
damping parameters overshoot and settling time.  

From figures 9, 10 and 11 it is clear that the triple coordinated designሺPSS & mB& δEሻ, (PSS & mE & δEሻ and 
(PSS & mE & m஻) improves the system damping compared to the dual coordinated designs ሺPSS & mBሻ and ሺPSS & δாሻ; ሺPSS & mEሻ and ሺPSS & δEሻ; ሺPSS & mEሻ and ሺPSS & mBሻ, respectively. Fig. 12 shows great 
improvement in settling time and deterioration of overshoot of the system response while using the triple 
coordinated design (PSS & δE & δB) over the dual coordinated design responses ሺPSS & δEሻ and ሺPSS & δBሻ. 
Fig. 13 and Fig. 14 show improvement in overshoot and deterioration of settling time of the system response 
while using the triple coordinated designs (PSS & mE & δBሻ and (PSS & mB& δEሻ over the dual coordinated 
design responses (PSS & mE) and (PSS & δB); (PSS & mB) and  (PSS & δE).  

 

 

             Fig. 5. Speed variation responses for multiple damping controllers individual and dual coordinated design (PSS, mE, PSS & mE). 
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Fig. 6.  Speed variation responses for multiple damping controllers individual and dual coordinated design (PSS, mB, PSS & mB).  

  

 

 

Fig. 7. Speed variation responses for multiple damping controllers individual and dual coordinated design (PSS, δB, PSS & δB).  

  

 

 

Fig. 8. Speed variation responses for multiple damping controllers individual and dual coordinated design (PSS, δE, PSS & δE). 
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Fig. 9. Speed variation responses for dual and triple coordinated design with multiple damping controllers (PSS, mB, δE). 

 

 

 

Fig. 10. Speed variation responses for dual and triple coordinated design with multiple damping controllers (PSS, mE, δE).  

 

 

 

Fig. 11. Speed variation responses for dual and triple coordinated design with different damping controllers (PSS, mE, mB). 
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Fig. 12. Speed variation responses for dual and triple coordinated design with multiple damping controllers (PSS, δE, δB). 

 

 

Fig. 13. Speed variation responses for dual and triple coordinated design with multiple damping controllers (PSS, mE, δB). 

 

 

 

Fig. 14. Speed variation responses for dual and triple coordinated design with multiple damping controllers (PSS, mB, δE). 
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VI. CONCLUSION 

In this paper, we have focused on damping of LFO via PSS and UPFC-based POD applied independently and 
also through the simultaneous dual and triple-coordinated designs of the multiple damping controllers in a 
SMIB power system. To improve the ability of global searching and avoiding a slide into the premature 
convergence to local minima, CPSO is formed by combining the chaos theory and a simple PSO. For the 
proposed damping controller design problem, a CPSO algorithm was used as the optimization technique to 
search for the optimal damping controller parameters in both the individual and the coordinated designs. The 
simulation results showed the dual/triple coordinated designs ( PSS & δE),ሺPSS & mEሻ, ሺPSS & ݉Bሻ, 
( PSS & mB & δE), (PSS & mE & δE) and (PSS & mE& mBሻ  provide robust damping effects over their individual 
control responses. The dual/triple coordinated designs (PSS & δBሻ, (PSS & δE & δB), (PSS & mE & δBሻ and  
(PSS & mB & δBሻ demonstrate an unbalance improvement in the damping parameters in terms of overshoot and 
settling time system responses by improving one and deteriorate the other. Finally, the  best triple-coordinated 
designs ( PSS & mB& δE), (PSS & mE & δE) and (PSS & mE & mBሻ provide superior performance in comparison 
with the best dual-coordinated design ሺPSS & δEሻ. 

APPENDIX  

Power system parameters (resistance, reactance, capacitance and voltage are in p.u. and time constants are in 
seconds): 

Generator: ܯ ൌ 8, ௗܶ௢′ ൌ 5.044, X୯ ൌ 0.6, ܺௗ ൌ 1, ܺ̀ௗ ൌ 0.3, D=0.          
Excitation: ܭ௔ ൌ 10, ௔ܶ ൌ 0.05. 
Transmission line: ܺ௧ா ൌ 0.1, ܺ஻௏ ൌ 0.3. 
Operating condition: ௘ܲ ൌ 0.8 p. u, ௧ܸ ൌ 1, ௕ܸ ൌ 1. 
UPFC Transformers: ܺா ൌ 0.1, ܺ஻ ൌ 0.1. 
DC link parameter: ௗܸ௖ ൌ ௗ௖ܥ ,2 ൌ 1. 
UPFC: ݉஻ ൌ 0.0789, ݉ா ൌ ஻ߜ ,0.4013 ൌ െ78.217଴,  ߜா ൌ െ85.3478଴, ܭௌ ൌ 1, ௌܶ ൌ 0.05. 

REFERENCES 

[1] H. Shayeghi, H. A. Shayanfar, S. Jalilzadeh, and A. Safari, “Design of output feedback UPFC controller for damping of 
electromechanical oscillations using PSO,” Energ. Convers. Manage., vol. 50, no. 10, pp. 2554–2561, Oct. 2009. 

[2] C. Guo, and Q.-Z. Li, “Simultaneous coordinated tuning of PSS and FACTS damping controllers using improved particle swarm 
optimization,” in Proc. 2009 Asia-Pacific Power and Energy Engineering Conf. (APPEEC 2009), Wuhan University, 2009. pp. 1-4. 

[3] P. Kundur, Power System Stability and Control. India, McGraw-Hill Education, 1994, pp. 699-717. 
[4] H. A. F. Almurib, L. H. Hassan, and M. Moghavvemi, “Design of robust power system stabilizers for Iraqi power network,” in Proc. 

SICE Annual Conf., Tokyo, 2011, pp. 1426-1429. 
[5] P. Kumkratug, “Power system stability enhancement using unified power flow controller,” Amer. J. Appl. Scien.,vol. 7, no. 11, pp. 1504 

– 1508, Dec. 2010. 
[6] A. Safari, “Multi-objective design of damping controllers with regional pole placement,” Int. J. Adv. Ren. Energy Res., vol. 1, no. 7, pp. 

409-418, Aug. 2012. 
[7] L. H. Hassan, M. Moghavvemi, H. A. F. Almurib, K. M. Muttaqi, and H. Duc, “Damping of low-frequency oscillations and improving 

power system stability via auto-tuned PI stabilizer using Takagi–Sugeno fuzzy logic,” Int. J. Elect. Power Energy Syst., vol. 38, no. 1, 
pp. 72-83, Jun. 2012. 

[8] Y. L. Abdel-Magid, and M. A. Abido, “Robust coordinated design of excitation and TCSC-based stabilizers using genetic algorithms,” 
Electr. Pow. Syst. Res., vol. 69, no. 2-3, pp. 129–141, May 2004. 

[9] S. A. Taher, R. Hemmati, A. Abdolalipour, and S. Akbari, “Comparison of different robust control methods in design of decentralized 
UPFC controllers,” Int. J. Elect. Power Energy Syst., vol. 43, no. 1, pp. 173-184, Dec. 2012. 

[10] D. Rasolomampionona, and S. Anwar, “Interaction between phase shifting transformers installed in the tie-lines of interconnected 
power systems and automatic frequency controllers,” Int. J. Electr. Power Energy Syst., vol. 33, no. 8, pp. 1351-1360, Oct. 2011. 

[11] M. Nayeripour, M. R. Narimani, T. Niknam, and S. Jam, “Design of sliding mode controller for UPFC to improve power oscillation 
damping,” Appl. Soft. Comput., vol. 11, no. 8, pp.4766-4772, Dec. 2011. 

[12] M. R. Qader, “Evaluation of UPFC and ASVC applied to nonlinear load model,” Compel-Int. J. Comp. Math. Electr. Electron. Eng., 
vol. 25, no. 4, pp. 1019 – 1030, Dec. 2006. 

[13] H. F. Wang, and H. Z. Xu, “FACTS-based stabilizers to damp power system oscillations - a survey,” in Proc. The 39th  Int. Universities 
Power Engineering Conf. (UPEC 2004), Bristol, UK, 2004. 

[14] S. Panda, and N. P. Padhy, “Optimal location and controller design of STATCOM for power system stability improvement using PSO,” 
J. Frankl. Inst.-Eng. Appl. Math., vol. 345, no. 2, pp. 166-181, Mar. 2008. 

[15] XP. Zhang, C. Rehtanz, and B. Pal, Flexble AC Transmission system: Modeling and Control. Springer, 2006, ch. 10. 
[16] A. Aghazade, A. Kazemi, and M. M. Alamuti, “Coordination among FACTS POD and PSS controllers for damping of power system 

oscillations in large power systems using genetic algorithm,” in Proc. 2010 45th Int. Universities Power Engineering Conf. ( UPEC 201 
0), 2010, pp. 1-6. 

[17] R. Segal, A. Sharma, and M. L. Kothari, “A self-tuning power system stabilizer based on artificial neural network,” Int. J. Electr. Power 
Energy Syst., vol. 26, no. 3, pp. 423–430, Jul. 2004 

[18] T. T. Nguyen, and R. Gianto, “Neural networks for adaptive control coordination of PSSs and FACTS devices in multimachine power 
system,” IET Gener. Transm. Distrib., vol. 2, no. 3, pp. 355–372, Mar. 2008. 

[19] L. Rouco, “Coordinated design of multiple controllers for damping power system oscillations,” Int. J. Electr. Power Energy Syst., vol. 
23, no. 7, pp. 517-530, Oct. 2001. 

A. N. Hussain et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 4 Aug-Sep 2013 3268



[20] V. Mukherjee V, and S. P. Ghoshal, “Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR 
system,” Int. J. Electr. Power Energy Syst., vol. 29, no. 9, pp. 679-689, Nov. 2007. 

[21] A. Kazemi, and V. M. Sohrforouzani, “Power system damping using fuzzy controlled facts devices,” Int. J. Electr. Power Energy Syst., 
vol. 28, no. 5, pp. 349-357, Jun. 2006. 

[22] S. M. Abd-Elazim, and E. S. Ali, “Coordinated design of PSSs and SVC via bacteria foraging optimization algorithm in a multimachine 
power system,” Int. J. Electr. Power Energy Syst., vol. 41, no. 1, pp. 44-53, Oct. 2012. 

[23] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Optimal neuro-fuzzy external controller for a STATCOM in the 12-bus 
benchmark power system,” IEEE Trans. Power Deliv., vol. 22, no. 4, pp. 2548-2558, Oct. 2007. 

[24] H. E. A. Talaat, A. Abdennour, and A. A. Al-Sulaiman, “ Design and experimental investigation of a decentralized GA-optimized 
neuro-fuzzy power systemstabilizer,” Int. J. Electr. Power Energy Syst., vol. 32, no. 7, pp. 751-759, Sep. 2010. 

[25] H. E. Mostafa, M. A. El-Sharkawy, A. A. Emary, and K. Yassin, “Design and allocation of power system stabilizers using the particle 
swarm optimization technique for an interconnected power system,” Int. J. Electr. Power Energy Syst., vol. 34, no. 1, pp. 57-65, Jan. 
2012. 

[26] W. Du, X. Wu, H. F. Wang, and R. Dunn, “Feasibility study to damp power system multi-mode oscillations by using a single FACTS 
device,” Int. J. Electr. Power Energy Syst., vol. 32. no. 6, pp. 645-655, Sep. 2010. 

[27] R. Hemmati, S. M. S. Boroujeni, E. Behzadipour, and H. Delafkar, “Supplementary stabilizer design based on STATCOM,’’ Indian J. 
Scien. Technol., vol. 4, no. 5, pp. 525-529, May 2011. 

[28] A. T. Al-Awami, Y. L. Abdel-Magid, and M. A. Abido, “A particle-swarm-based approach of power system stability enhancement with 
unified power flow controller,” Int. J. Electr. Power Energy Syst., vol. 29, no.3, pp. 251-259, Mar. 2007. 

[29] Y. Yao, Electric Power System Dynamics, NY: Academic Press, 1983, pp. 256. 
[30] I. Kamwa, G. Trudel, and L. Gérin-Lajoie, “Robust design and coordination of multiple damping controllers using nonlinear constrained 

optimization,” IEEE Trans. Power Syst., vol. 15, pp. 1084–1092, Aug. 2000. 
[31] J. Kennedy, and R. C. Eberhart,“Particle swarm optimization,” in Proc. of the IEEE Int.Conf. on Neural Networks, 1995, pp. 1942–

1948, 1995. 
[32] E. Babaei, and V. Hosseinnezhad, “A QPSO based parameters tuning of the conventional power system stabilizer,” in Proc. of 2010 9th 

Int. Power and Energy Conf. (IPEC 2010), Singapore, 2010, pp. 467 – 471. 
[33] M. Eslami, H. Shareef, A. Mohamed, and M. Khajehzadeh, “Coordinated design of PSS and SVC damping controller using CPSO,” in 

Proc. 5th Int. Power Engineering and Optimization Conf., Selangor Malaysia, 2011, pp. 11-16. 

A. N. Hussain et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 4 Aug-Sep 2013 3269


	Performance Improvement of PowerSystem Stability by Using MultipleDamping Controllers Based on PSS and theUPFC
	Abstract
	Keyword
	I. INTRODUCTION
	II. MATHEMATICAL MODEL FOR SMIB EQUIPPED WITH UPFC OF POWER SYSTEM
	III. CONTROLLER STRUCTURE FOR DAMPING OF POWER OSCILLATION
	IV.OPTIMIZATION ALGORITHM
	V. SIMULATION AND COMPARISON RESULTS
	VI.CONCLUSION
	APPENDIX
	REFERENCES




