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Abstract— Surface finish is a vital factor in the performance of finished components. Nose ball end 
milling is being extensively used for finishing of free form surfaces. Aluminium alloys like LM6 find 
increasing applications in automobile and aerospace industries. This paper presents an investigation of 
surface finish of LM6 Al alloy using ball nose end mill. Box Behnken approach of the Response Surface 
Methodology was selected for the design of experiments and mathematical modelling. The developed 
model was statistically validated using Analysis of Variance with R-squared value obtained at 92.42 %. 
Cutting speed and feed rate were found to be the most significant parameters.  Machining parameters 
(cutting speed, feed and depth of cut) were optimised with consideration to surface roughness. The 
minimum optimised value of surface roughness predicted by GA was 0.45 microns (Ra). Validation 
experiments at optimal parametric settings showed an error of 8.88, which highlights the consistency of 
the developed model. Thus, this model helps manufacturers to select optimum settings for achieving 
desired surface quality of contoured finished products. 

Keyword- Surface Roughness, Ball Nose End Mill, LM6 Al Alloy, Response Surface Methodology,  

                  Genetic Algorithm. 

I. INTRODUCTION 

Surface roughness is a widely used index of product quality and in most cases a technical requirement for 
mechanical products. Achieving the desired surface quality is of great importance for the functional behaviour 
of a part [1]. Reducing surface roughness is a costly affair, but the surface quality of products is a must to 
survive in today’s markets [2, 3]. 

Surface roughness generated in machining operation is influenced by factors such as cutting parameters, 
cutting tool characteristics, work piece properties and cutting phenomena [1]. These numerous factors make it 
almost impossible to reach a comprehensive solution to the reduction of machined surface roughness [4]. The 
most common strategy involves the selection of conservative process parameters, which neither guarantees the 
achievement of the desired surface finish nor attains high metal removal rates [1]. Therefore, machine operators 
usually use “trial and error” approaches to set-up milling machine cutting conditions in order to achieve the 
desired surface roughness. Obviously, the “trial and error” method is neither effective nor efficient and the 
achievement of a desirable value is a repetitive and empirical process that can be very time consuming. The 
dynamic nature and widespread usage of milling operations in practice have raised a need for seeking a 
systematic approach that can help to set-up milling operations in a timely manner and also to help achieve the 
desired surface roughness [5]. 

The various approaches of experimental design and analyses provide the necessary tools to determine the 
optimum cutting conditions and mathematical models to predict the final objective, for example surface 
roughness. 

 Fuh and Wu [6] used RSM to study the influence of tool geometries and cutting parameters on surface 
roughness (Ra) in end milling of Al alloy. Mansour and Abdalla [7] studied the roughness (Ra) in end milling of 
EN 32 steel in terms of machining parameters using RSM. Benardos and Vosniakos [8] used Taguchi design to 
consider prediction of Ra in CNC face milling of Al alloy. Bagci and Aykut [9] used the Taguchi optimization 
method for low surface roughness value (Ra) in terms of cutting parameters in CNC face milling of cobalt based 
alloy. Hayajneh et al.  [10] developed a model, which includes the effect of spindle speed, cutting feed rate and 
depth of cut, and any two variable interactions, and predicted the surface roughness values of aluminium work 
pieces with an accuracy of about 12%. Thangarasu and Sivasubramanian [11] used RSM (Box Benkhen Method) 
to optimise surface finish and material removal rate with equal weightages. Kadirgama et al. [12] used Response 
Ant Colony Optimisation and Box Benkhen Method to predict surface roughness in end milling. Vakondios et al. 
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[13] developed and validated mathematical models for different milling strategies by ball end mill on Al7075-
T6. Daymi et al. [14] investigated the effect of inclination angle in ball end milling of a titanium alloy. Suresh et 
al. [15] used Genetic Algorithms to optimise a surface roughness model.In this study, central design runs of Box 
Behnken methodology were adopted which are essentially the fractions of 3 level factorial designs with 
additional centre points to preserve the design balance. As per this design, 30 experiments were conducted for 2 
levels (each) of speed, feed and depth of cut to obtain surface roughness values, expressed in terms of arithmetic 
means (Ra). Thereafter, a second order polynomial response surface mathematical model was developed to 
predict the surface roughness in terms of the said machining parameters and their interactions. Next, Genetic 
Algorithm was utilised for optimisation of the developed model to obtain the values of machining parameters at 
which the surface roughness is minimised. Validation experiments were carried out at the optimised values of 
speed, feed and depth of cut (as obtained from Genetic Algorithm output) and the resulting surface finish values 
were compared with those predicted by GA. 

II. BOX BEHNKEN DESIGN 

Box Behnken designs are experimental designs for response surface methodology devised by George E. P. 
Box and Donald Behnken in 1960. The design should be sufficient to fit a quadratic model, that is, it should 
contain squared terms and products of factors. The ratio of the number of experimental points to the number of 
coefficients in the quadratic model should be reasonable (in the range of 1.5 to 2.6). Each design can be thought 
of as a combination of a two-level (full or fractional) factorial design with an incomplete block design. In each 
block, a certain number of factors are put through all combinations for the factorial design, while the other 
factors are kept at the central values [11]. 

The Box-Behnken Design is normally used when performing non-sequential experiments. That is, performing 
the experiment only once. These designs allow efficient estimation of the first and second –order coefficients. 
Because Box-Behnken design has fewer design points, they are less expensive to run than central composite 
designs with the same number of factors. Box-Behnken Design do not have axial points, thus we can be sure 
that all design points fall within the safe operation. Box-Behnken Design also ensures that all factors are never 
set at their high levels simultaneously.  

III. GENETIC ALGORITHMS 

GAs are search algorithms for optimization, based on the Darwinian theory of evolution. The power of these 
algorithms is derived from a very simple heuristic assumption that the best solution will be found in the regions 
of solution space containing high proportion of good solution, and that these regions can be identified by 
judicious and robust sampling of the solution space. The mechanics of a GA are simple and involve the coding 
of solution states in chromosomes as series of binary elements (0 and 1). A set (i.e. population) of candidate 
solution states (i.e. chromosomes) is generated and evaluated. A fitness function is used to evaluate each of the 
solutions in the population. The chromosomes encoding the better solutions are broken apart and recombined 
through the use of genetic operators in succession to get a new solution (i.e. offspring) that is generally better in 
one generation or iteration. These operators are essentially mathematical models of genetic operations that take 
place in the human body. The simplest form of GA involves three types of operators: selection (copying of the 
strings into a ‘mating pool’ (in proportion to their fitness values), crossover (swapping parent strings partially, 
causing offspring to be generated) and mutation (occasional random alteration with a small probability of the 
value of a string position, in binary strings, this simply means changing 0 to 1 or vice versa [1].  GA provides 
alternate solutions to any optimisation problem for different generations and options of the algorithm, such as 
initial population size, selection function, elite count, crossover fraction, crossover and mutation options etc. 
Proper fine tuning of the various options in GA is quintessential to the successful minimisation of the objective 
function (in this case, surface roughness). In particular, decreasing the crossover function to 50% gives better 
flexibility for mutations to take place, which diversify the parent populations to increase the probability of better 
children in subsequent generations.   

IV. EXPERIMENTAL DETAILS 

A. Selection of Material, Process and Parameters 

Aluminium alloys are being preferred for auto and aerospace structural components. Reasons are: Abundant 
reserves of the ore, good ductility and malleability, strength to weight ratio, corrosion resistance, machinability 
and surface finish.  Significant scope was identified to optimise surface roughness for LM6 Al alloy. Ball nose 
end milling is extensively used for finishing of free form surfaces because the ball end cutter adapts well to the 
job contours [14]. Thus, it holds great importance especially in aerospace applications.  

Cutting speed, feed and depth of cut were selected as the most influencing machining parameters for 
investigation of surface roughness. Among the various available surface roughness parameters, the average 
surface roughness (Ra) is most commonly used. Hence, Ra was selected for this study. 
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B. Plan of Experiments 

Table I shows the levels of the cutting parameters selected for the experimental layout.  

TABLE I 
CUTTING PARAMETERS AND THEIR LEVELS 

Control Parameters 
Levels 

Observed Value 
Low High 

Cutting Speed, S (rpm) 1500 5000 
Surface Roughness 

(Ra), µm  Feed Rate, F (mm/min) 1000 2000 

Depth of Cut, d (mm) 0.5 1.0 

Table II shows the layout of the experimental design runs as per Box Behnken Approach, along with the 
response values (Ra) obtained for each run. A commercial software (MINITAB 16) was employed to obtain this 
layout and the resulting mathematical model. 

C. Experimental Setup and Procedure 

   The experiments were carried out on a 4-axis CNC vertical machining centre of Bharat Fritz Werner Ltd make, 
Agni BMV 45 TC 24 model as shown in Fig.1. LM6 aluminium alloy was used as work piece material with 
hardness of 50-55 BHN. Chemical composition of the work piece was 86.6% Al and 11.6% Si, as confirmed by 
SEM image (shown in Fig.2). SER 1M 12mm TiNamitite “A” coated ball nose end mill of solid carbide was 
used as cutting tool for this study (Ø12mm, 4 flutes, 30mm flute length, 70mm OAL). A slot of 20mm in length 
was machined for each designed run. The experimental setup is shown in Fig. 3.Finish of machined slots were 
measured using surface roughness tester, Surf test SJ-301 model of Mitutoyo make, and Ra was used for the 
characterization of surface roughness. 

 
Fig. 1 CNC Vertical Machine Centre 

 

Fig. 2 SEM Image 
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Fig. 3 Experimental Setup 

TABLE II 
Experimental Layout and Response: Box Behnken Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

V. RESULTS AND DISCUSSIONS 

A. Mathematical Modelling  

To formulate the effect of selected machining parameters on surface roughness, the design modeller software 
was given inputs of measured responses (Ra values) for all experimental runs. The surface roughness was 
modelled in terms of speed (S), feed (F) and depth of cut (D) as follows -   

Surface Roughness (Ra) = 9.01938 + 0.00194971*S - 0.0101682*F - 6.41036*D - 2.54626E-07*S2 + 4.08583e-
06*F2 + 5.92333*D2 - 3.42857E-07*S*F - 4.31429e-04*S*D - 2.00000e-04*F*D 

B. Statistical Validation 

Using Analysis of Variance (ANOVA), the effects of speed, feed, depth of cut and their second order 
interactions on surface roughness were calculated. (Table III).   

 

Sr. 
No. 

Cutting 
Speed 
(rpm) 

Feed Rate 
(mm/min) 

Depth of 
Cut (mm) 

Ra (µm) 

1 5000 2000 0.75 1.10 
2 5000 1500 0.50 1.00 
3 3250 1000 1.00 3.10 
4 1500 1500 0.50 2.10 
5 5000 1500 1.00 1.10 
6 3250 2000 0.50 3.70 
7 1500 1000 0.75 3.10 
8 1500 1500 1.00 2.50 
9 1500 2000 0.75 4.90 
10 3250 1500 0.75 1.90 
11 3250 1500 0.75 2.30 
12 3250 1000 1.00 3.70 
13 3250 2000 1.00 4.10 
14 3250 1000 0.50 3.20 
15 3250 2000 0.50 3.90 
16 5000 1000 0.75 1.30 
17 1500 1500 0.50 2.30 
18 5000 1000 0.75 1.10 
19 1500 1500 1.00 3.50 
20 1500 1000 0.75 2.40 
21 5000 2000 0.75 1.90 
22 3250 1000 0.50 2.80 
23 3250 2000 1.00 4.10 
24 3250 1500 0.75 2.20 
25 5000 1500 0.50 0.85 
26 3250 1500 0.75 2.20 
27 1500 2000 0.75 3.60 
28 3250 1500 0.75 2.40 
29 3250 1500 0.75 2.10 
30 5000 1500 1.00 0.84 
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TABLE III 
   ANOVA RESULTS  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S = 0.367331              PRESS = 6.7424  

R-Sq = 92.42%           R-Sq (pred) = 81.06%                           R-Sq (adj) = 89.01% 

In Table III, at 95% confidence level, cutting speed and feed rate were most significant parameters (at p-value 
< 0.05)  while depth of cut was less significant (at p-value = 0.05). Similarly, of all the interactions, only the 
interaction of speed and feed was found statistically significant. Other interactions were insignificant to the 
surface roughness. The obtained value of the coefficient of determination (R2) indicates that the developed 
model explains 92.42% of the surface roughness variation in the ball nose end milling of LM6 alloy.  The value 
of adjusted coefficient of determination (adjusted R2) at 89.01% shows that the data are fitted well. 

C. Optimisation   

   For minimising response (Ra), the developed mathematical model was converted into a Matlab (R2007a) 
function. This function was input to the GA Toolbox of Matlab as the objective function. Upper and lower 
bounds were specified as per the levels of the cutting parameters and the number of variables was set at 3. 
Multiple runs of the algorithm were carried out at different settings of the available options of GA Toolbox 
(Matlab) to fine tune the minimum response value. The best response is shown in Fig. 4. 

D. Experimental Validations  

  After optimisation, further experiments were carried out to gauge the accuracy of the developed model. This 
time, the optimised values of cutting parameters corresponding to the best responses (obtained from GA) were 
selected for experiments. The resulting surface roughness (experimental) was compared with that predicted by 
the GA and percentage error was calculated (Table V). 

 
TABLE IV 

Accuracy Test of Prediction Model 

 
 

 
   
 
 
 
 
 
 
 

Source 
D
F 

Seq 
SS 

Adj 
SS 

Adj 
MS 

F P 

Regression 9 32.89 32.89 3.65 27.09 0.00 
Linear 3 17.77 17.77 5.92 43.92 0.00 
S 1 14.45 14.45 14.45 107.2 0.00 
F 1 2.72 2.72 2.72 20.18 0.00 
D 1 0.59 0.59 0.59 4.42 0.05 
Square 3 14.10 14.10 4.70 34.85 0.00 
S*S 1 5.77 4.49 4.49 33.28 0.00 
F*F 1 7.32 7.70 7.70 57.10 0.00 
D*D 1 1.01 1.01 1.01 7.50 0.01 
Interaction 3 1.01 1.01 0.33 2.50 0.08 
S*F 1 0.72 0.72 0.72 5.34 0.03 
S*D 1 0.28 0.28 0.28 2.11 0.16 
F*D 1 0.01 0.01 0.01 0.04 0.85 
Residual 
Error 

20 2.69 2.69 0.13   

Lack of Fit 3 0.27 0.27 0.09 0.64 0.59 
Pure Error 17 2.42 2.42 0.14   
Total 29 35.59     

Run 
No. 

Cutting 
Speed 
(rpm) 

Feed 
Rate 
(mm/ 
min) 

Depth 
of Cut 
(mm) 

Ra 
(µm) 
Pred
icted 

Ra 
(µm) 
Actual 

% 
Error 

3 3250 1000 1.00 3.38 3.10 8.28 
10 3250 1500 0.75 2.18 1.90 12.84 
15 3250 2000 0.50 3.82 3.90 2.09 
20 1500 1000 0.75 2.66 2.40 9.77 
26 3250 1500 0.75 2.18 2.20 0.91 
30 5000 1500 1.00 0.83 0.84 1.51 

Average 5.9 
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 The model was experimentally validated at other parameter settings as well. Table V shows the verifications 

of the model predictions for surface roughness. A good agreement is observed among the predicted and actual 
results. To assess the accuracy of the model, percentage errors and average percentage error were calculated. 
The maximum prediction error was 12.84% and the average percentage error of this validation was 5.9%, 
underlining the satisfactory performance of the prediction model. 

TABLE V 
Optimum Conditions and Comparison of Results 
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Fig.4 GA Output (Best Response) 

VI. CONCLUSIONS 

In this work, effect of cutting speed, feed rate and depth of cut on surface roughness was investigated in ball 
nose end milling of LM6 Al alloy. Box Behnken approach was utilised for the design of experiments. A second 
order mathematical model was developed to predict surface roughness in terms of the selected machining 
parameters. Genetic Algorithm was employed for the optimisation of this model and the results were validated 
by further experiments. Best values of parameters for lowest surface roughness (Ra = 0.45 microns) are: cutting 
speed, 5000 rpm; feed rate, 1463 mm/min and depth of cut, 0.73 mm. 

    Comparisons of experimental and predicted results at optimum conditions (Table IV) show errors less than 
10 percent. This establishes the reliability of Genetic Algorithms as one of the most accurate optimisation 
approaches. The results also validate the consistency of the mathematical model developed by following Box 
Behnken methodology.     

   LM6 Al alloy is an important new-age material of    immense value to the automobile and aerospace 
industry. It is necessary for the concerned manufacturing industries to have systematic and quick systems to 
customise parameter settings. The developed model will enable the manufacturers to cater to newer demands of 
improved finished surface quality, especially in case of free form contoured jobs. This conclusion may be very 
useful for mass production. Optimal values for spindle speed, feed rate and depth of cut can be set to reduce the 
manufacturing time without losing surface finish. 

   The developed model proves to be statistically significant for the description of the process with the 
necessary accuracy (p-value of each significant term is less than or equal to 0.05 at 95% confidence level). Thus, 
the model was statistically validated and experimentally verified and can be used for the expected surface 

Parameters  Optimum values 

Speed (rpm)  5000.00 
Feed (mm/min) 1462.82 
Depth of Cut (mm)  0.73 

Roughness values  (Ra - µm)  

Predicted from  GA  0.45 

Experimental  0.49 

% Error 8.88 
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quality, while ball end milling of Al LM6 alloy, within the limits of the investigated cutting parameters at 95% 
confidence level. 
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