
Package Level Cohesion Metric for Object-
Oriented Design

Sandip Mal1, Kumar Rajnish2, Sanjeev Kumar3

1Dept. of CSE, BIT, Mesra, Ranchi, India
Sandip.mal1987@gmail.com

2Dept. of IT, BIT, Mesra, Ranchi, India
krajnish@bitmesra.ac.in

3Dept. of IT, Siddhant College of Engineering,Pune, India
sksaisan@gmail.com

Abstract— This paper presents a new package cohesion metric (CohP), which is based on the properties
of elements of a package and dependencies with in the package elements. The proposed metric has been
validated theoretically against Briand properties as well as empirically using packages taken from two
open source software systems. An attempt has also been made to present a positive Spearman correlation
between CohP values and Average Effort require to extend the packages. The results indicate that
proposed metrics is used to predict extendibility of a software system.

Keyword- Object-Oriented, cohesion metric, package, quality factor, extendibility.

I. INTRODUCTION
Software engineering is an engineering discipline that is concerned with all aspects of software production.

Software products consist of developed programs and associated documentation. Essential product attributes are
modifiability, dependability, understandability and usability. Cohesion measures the degree of interaction and
relationships among modules, such as classes, methods, attributes, and packages within a block. Cohesion
measure has important applications in software development and maintenance. In another way coupling with in
a block is called cohesion. They are used to help developers, testers and maintainer’s reason about software
complexity and software quality attributes. One of the main goals behind OO analysis and design is to
implements a software system where elements of a package have good interaction among them. This paper
presents a package level cohesion metric (CohP) and shows how elements are dependent with each other. A
theoretical validation and empirical validation of the metric also present in this paper.

For OO systems, most of the cohesion metrics have been defined up to class level [1-9] and only a few
metrics exist for measurement of cohesion at the higher levels of abstraction in OO systems [10-11]. Other work
related to packages or other higher abstraction levels has been carried out in [12-16] [24].

The rest of the paper is organized as follows. Section 2 describes some basic definitions related to package.
New package cohesion metric (CohP) with a working example has been described in section 3. Section 4
provides theoretical validation of CohP against Briand properties. Section 5 presents a case study on open
source software system. Section 6 presents conclusion and future work.

II. BASIC DEFINITIONS
This section presents some basic definitions related to the packages and properties regarding package

structure. The measure of CohP is based on packages and their structure. These definitions and properties are
useful for theoretical validation and empirical evaluation.

Package: Packages may consist of classes, sub packages and interfaces (Java/C# application) as their
elements. Further, these sub-packages also may contain classes, sub packages and interfaces as their elements.
This leads to a hierarchical structure of packages in a software system. A package at a hierarchical level I
contains elements and relations with other packages. It can be represented as pi= (Ei+1, Ri+1). Where Ei+1
represents set of elements of package pi present at level i+ 1, which may be classes or sub-packages or interfaces,
and Ri+1 is a set of relationships on Ei+1 at hierarchical level i+ 1.

As shown in Figure1, for a package at hierarchical level i, pi is represented as (Ei+1, Ri+1). Where Ei+1
represents a set of elements of package pi present at level i+1, which are classes (C1

i+1, C2
i+1, C

3
i+1) and a sub

package (p1
i+1), and Ri+1 is a set of relationships on Ei+1 at hierarchical level i+1 which are the relationship

between C1i+1 and C3i+1 and relationship between p1
i+1 and C1

i+1.
Sub Package: For any package pi in a system, sub package of pi denotes an element of pi which is package

itself and is present at level i+ 1 in the hierarchy. From figure 1, the package p1
i+1 = (Ei+2, Ri+2) is said to be a sub

package of package pi = (Ei+1, Ri+1) if p1
i+1is the element of set Ei+1.

Disjoint Packages: For any two packages p1
i+1, p2

i+1 are present in the same level i+1 in figure 1. Then
packages p1

i+1, p2
i+1 are said to be disjoint packages if p1

i+1 ∩ p2
i+1 = Ø.

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2523

Empty Package: A package (p2
i+1) that have no elements in it and hence, there is no relations with other

packages. It is denoted by (Ø, Ø).

Fig. 1. Example of package

III. PACKAGE COHESION METRIC AND WORKING EXAMPLE
Package in an OO system have set of elements and relationships between these elements. These set of

elements are nothing but classes, sub packages or interfaces. The relationship between the elements of two
different elements of a package is denoted by r (ei, ej). It means there is a relation of an element ei to an element j
of a package. If an element ei is related to an element ej, then it is not necessary that element ej is also related to
element ei and there is a directional connection [18-21] between ei and ej and denoted by ei->ej. r (ei, ej) =1 if
there is a directional connection between ei and ej, otherwise 0. Four different type of connection have been
discussed below.

• Class-Class Connection: If one class (or interfaces) of a package is related with a class (or interfaces)
of same package, then there exists a class-class type of connection between them.

• Sub Package-Sub Package Connection: Packages may consist of sub-packages as its elements at the
next level. While elements of a sub package of a package is related with a element of a sub package of same
package.

• Class – Sub Package Connection: This type of connection exists between elements of a package with
the elements of a sub package of same package. That means elements (class) of level i+1 of a package p1

i is
related with the elements of level i+2 of a sub package p3

i+2 of same package p1
i.

• Sub Package-Class Connection: This type of connection exists between elements of a sub package a
package with the elements of same package. That means elements of level i+2 of a sub package p3

i+2 of a
package p1

i is related with the elements (class) of level i+1 of a package p1
i.

• Sub Package- Sub Package Connection: This type of connection exists between elements of a sub
package of a package with the elements of another sub package of same package. That means elements of level
i+2 of a sub package p3

i+2 of a package p1
i is related with the elements of a sub package p4

i+2 of level i+2 of a
package p1

i.
Proposed cohesion metric is defined as follows:

CohP (I) = (Number of relations between the elements of a package) / n (n-1)
Where n is the no of element of package I. So CohP value is between 0 and 1. A Package with high cohesive

value indicates that, CohP value near to one and low cohesive indicates that CohP value near to zero.
In figure 1, within a single package (Pi) 5 elements are there. So CohP (Pi) = 4/ (5*4) = 0.2

P1
i+1

C1
i+1

C2
i+1

C3
i+1

C4
i+2

P2
i+1

C4
i+1

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2524

Tool for measuring proposed cohesion metric:

We have developed a system using java named CohP, which takes a package as an input and fids out the

CohP value of the package. The tool is applied on two open source software system for our case study.

IV. THEORETICAL VALIDATION
The proposed cohesion measures are validated theoretically by analysing their mathematical properties. For

this purpose, five properties given by Briand et al. in [17] are used and these properties provide a useful
guideline in construction and validation of coupling measures in a precise manner and these properties are
necessary to prove the usefulness of a cohesion measure although not completely sufficient.

Property 1: Non-Negativity
The value of cohesion of a package as defined by our measures in an OO system will always be non-negative.
CohP (I) ≥0
Thus, CohP satisfy Property 1.
Property 2: Null Value
If the number of elements in a package is zero or there is no relationship between the elements of a package,

then cohesion will be null of the package, then the value of CohP will be null for that package. So CohP satisfies
property 2.

Property 3: Monotonicity
If an additional relationship is added between two elements of a package, then according to this property the

cohesion of the package must not decrease. If we add an additional relationship between the elements of a
package, then the CohP will increase or at least remain the same, but can never decrease in any case. So CohP
also satisfies property 3.

Property 4: Merging of Packages
This property states that merging of two elements of a package must not increase CohP value because some

of the relationships may disappear on merger. Let P be a package, and e1, e2, e3, e4.be the packages in P. Let
e5be the element that is obtained by merging of e1 and e2. Then, in any case, CohP (P) value before merging of
e1 and e2 ≥ CohP (P) value after merging of e1 and e2. Thus, CohP also satisfies Property 4.

Property 5: Merging of Unconnected Packages
This property states that merging of two unconnected elements of a package must not increase CohP value of

the package. When two or more elements having no relationships between them are merged, cohesion cannot
increase because apparently unconnected elements are being encapsulated together in a single element. Let
e1and e2be two elements of a package P. Let e1+e2 be the element, which is the union of e1and e2. If no
relationships exist between elements e1 and e2, then CohP value before merging is always greater than CohP
value after merging. Thus, CohP satisfy this property.

V. CASE STUDY OF COHP ON OPEN SOURCE SOFTWARE SYSTEM

Two open source software projects have been chosen for case study. XGen [22] Source Code Generator, that
creates Java source code from a simple XML document and its main function is to generate JDBC compliant
beans that allow object level persistence to relational databases and The Byte Code Engineering Library
(Apache BCEL) [23] is intended to give users a convenient way to analyse, create, and manipulate (binary) Java
class files (those ending with .class).The basic data about these two projects are given in Table 1. For CohP
analysis 4 package of BCEL and 7 package of XGen have been taken. BCEL have 367 classes in 4 packages and

Input a
package into
th t

Count
number of
elements

Number of related
elements from an element

Count total relation in
the package by adding
relations of each
element

CohP value of
the package

Total relation /
(element*(eleme
nt-1))*

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2525

XGen have 73 classes in 7 packages. Table 2 and Table 3 list the names of packages of BCEL, XGen and the
number of classes contained in each package.

TABLE 1: Information about Project Taken for Case Study

Software Project BCEL 5.1 XGen 0.5.0
No of Package 4 7
No of Classes 367 73

A. Results

The CohP has been applied to seven packages taken from XGen and four packages taken from BCEL
software systems. The CohP value of packages is given in Table 2. It may not be always true that a package with
the large number of classes have more connections with in the package, as an example, package
org.apache.bcel.generic and workzen.xgen.ant. Three teams of three members each have been set up and
assigned these packages to three teams. These members are well experienced of Java programming. First,
calculate the effort required to fully understand the functionality and extend of these packages by these three
teams and rank the effort from 1 to 10. A higher rank indicates that more effort spent on extending the package.
Table 2 shows the effort required by each team and average effort. Then all the packages have been given to
most experienced team to modify the package. The teams add some classes to extend the packages.

TABLE 2: Effort and CohP values of seven packages Taken from two open source system

Sl. No. Name of Package Team Average
Effort

No. of
Classes

No. of Classes
added

1 workzen.xgen.ant 7 6 6 6.33 5 3
2 workzen.xgen.engine 1 2 1 1.33 2 2
3 workzen.xgen.loader 4 3 5 4.00 7 0
4 workzen.xgen.model 2 2 1 1.67 17 1
5 workzen.xgen.test 2 3 1 2.00 23 4
6 workzen.xgen.type 1 1 1 1.00 15 0
7 workzen.xgen.util 4 6 5 5.00 4 2
8 org.apache.bcel.classfile 4 5 4 4.33 51 3
9 org.apache.bcel.generic 2 1 3 2.00 225 6
10 org.apache.bcel.util 4 5 5 4.67 28 0
11 org.apache.bcel.verifier 2 4 3 3.00 63 4

TABLE 3: Number of classes and COP values of four packages Taken from Apache BCEL

Sl. No. Name of Package CohP
1 workzen.xgen.ant 0.65
2 workzen.xgen.engine 0.00
3 workzen.xgen.loader 0.12
4 workzen.xgen.model 0.01
5 workzen.xgen.test 0.04
6 workzen.xgen.type 0.00
7 workzen.xgen.util 0.25
8 org.apache.bcel.classfile 0.20
9 org.apache.bcel.generic 0.01

10 org.apache.bcel.util 0.15
11 org.apache.bcel.verifier 0.08

B. Empirical Validation

This study shows a positive Spearman correlation (0.072) between Average Effort and the number of classes
added to extend the system. It is also observed that number of classes added and CohP gives a positive
Spearman correlation (0.067). From this transitive relation we can say that, CohP value is the good predictor of
the effort require for extending software system. This property of CohP indicates the usefulness of the proposed
metrics.

 Fig 2: Transitive relation of CohP and Average Effort.

VI. CONCLUSION AND FUTURE WORK

Average
Effort

Classes required
extending the system

CohP

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2526

In this paper, an attempt has been made to propose a new package cohesion metric, which is based on formal
definitions, properties and relations of elements of a package. The proposed metrics has been validated
theoretically as well as empirically. The theoretical validation of CohP satisfies all the properties presented by
Briand. In addition to the proposal and theoretical validation, this paper has also presented empirical data on
CohP from two open source software system (Apache BCEL, XGen 0.5.0). Both systems developed in java. So,
this study clearly provided that CohP is the valid indicator of external quality attributes of the software such as
extendibility. This firmly believes us that this work will encourage other researchers and developers to use the
results obtained from this study to predict and measure several other software quality attributes.

The future scope includes some fundamental issues
• To analyze the nature of proposed metric with performance indicators such as design, maintenance,

effort and system performance.
• Another interesting study would be together different coupling metric at various intermediate stages of

the project. This would provide insight into how application reusability, maintainability, testability evolves and
how it can be managed and controlled through the use of metrics.

REFERENCES
[1] S. R. Chidamber, C. F. Kemerer, “Towards a metrics suite for object oriented design.” In Proc. the 6th ACM Conf. Object- Oriented

Programming: Systems, Languages and Applications (OOPSLA), Phoenix, AZ, Oct. 6-11, 1991, pp.197-211.
[2] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 1994, 20(6):

476-493.
[3] J. Eder, G. Kappel, M. Schrefl “Coupling and cohesion in object-oriented systems.” Technical Report, University of Klagenfurt, 1994.
[4] K. Rajnish and V. Bhattacherjee, “Class Cohesion: An Empirical and Analytical Approach”, International Journal of Science and

Research (IJSR), Victoria, Australia, Vol.2, No. 1, 2007, pp.53-62, http://www.international.au.in.
[5] S. Mal, K. Rajnish, Applicability of Weyuker’s Property 9 to Inheritance Metric. International Journal of Computer Applications,

Foundation of Computer Science, USA, Volume 66– No.12, March 2013.
[6] B. H. Sellers, L. L. Constantine, I. M. Graham, “Coupling and Cohesion towards a valid metrics suite for object oriented analysis and

design”, Object oriented systems, vol. 3, 143-158, 1996.
[7] Y. S. Lee, B. S. Liang, S. F. Wu, F. J. Wang “Measuring the coupling and cohesion of an object-oriented program based on information

flow”. In Proc. International Conference on Software Quality, Maribor, Slovenia, Nov. 6-9, 1995, pp.81-90.
[8] B. Xu, Z. Chen, J. Zhao, “Measuring cohesion of packages in Ada95”. In Proc. Annual ACM SIGAda International Conference on Ada:

The Engineering of Correct and Reliable Software for Real-Time &Distributed Systems Using Ada and Related Technologies, San Diego,
California, USA, Dec. 7-11, 2003, pp.62-67.

[9] G. Gui, P D. Scott, “Coupling and cohesion measures for evaluation of component reusability”. In Proc. International Workshop on
Mining Software Repositories, Shanghai, China, May 22-23, 2006, pp.18-21.

[10] S A. Ebad, and M. Ahmed,”An Evaluation Framework for Package-Level Cohesion Metrics”, International Conference on Future
Information Technology, Singapore vol.13 (2011), pp-239-243.

[11] E Allen, T Khoshgoftaar. “Measuring coupling and cohesion of software modules: An information theory approach.” In Proc. the Seventh
International Software Metrics Symposium, London, UK, April 4-6, 2001, pp.124-134.

[12] T Xu, K Qian, X. He. “Service oriented dynamic decoupling metrics.” In Proc. the 2006 International Conference on Semantic Web and
Web Services (SWWS'06), Las Vegas, USA, June 26-29, 2006, pp.170-176.

[13] F B Abreu, G Pereira, P Sousa. “A coupling-guided cluster analysis approach to reengineer the modularity of object-oriented systems. “ In
Proc. the 4th European Conference on Software Maintenance and Reengineering (CSMR'2000), Zurich, Switzerland, Feb. 29-March 3,
2000, p.13.

[14] X Franch, J P Carvallo. “A quality-model-based approach for describing and evaluating software packages”. In Proc. IEEE Joint
International Conference on Requirements Engineering (RE'02), Essan, Germany, Sept. 9-13, 2002, pp.1-8.

[15] H Washizaki, H Yamamoto, Y Fukazawa. “A metrics suite for measuring reusability of software components”. In Proc. the Ninth
International Software Metrics Symposium (METRICS'03), 2003.

[16] Li W, Henry S. “Object-oriented metrics that predict maintainability”. Journal of Systems and Software, 1993, 23(2): 111-122.
[17] Briand L, Morasca S, Basili V. Property-based software engineering measurement. IEEE Transactions of Software Engineering, 1996,

22(1): 68-86.
[18] Northcott M, Vigder M. “Managing dependencies between software products. Lecture Notes in Computer Science 3412”, Franch X, Port

D (eds.), ICCBSS 2005, Springer-Verlag, Berlin/Heidelberg, 2005, pp.201-211.
[19] Martin R. “Object oriented design quality metrics: An analysis of dependencies”. ROAD, 1995, 2(3).
[20] L Grunske, B Kaiser. “An automated dependability analysis method for COTS-based systems”. Lecture Notes in Computer Science 3412,

Franch X, Port D (eds.), ICCBSS 2005, Springer-Verlag, Berlin/Heidelberg, 2005, pp.178-190.
[21] K K Aggarwal, Y Singh, J K. Chhabra, “Complete dependency matrix for object-oriented software”. International Journal of

Management and Systems (IJOMAS), 2003, 19(1): 43-54.
[22] http://sourceforge.net/projects/xgen/
[23] http://jakarta.apache.org/
[24] V. Gupta, J. K. Chhabra “Package coupling measurement in object-oriented software”. Journal of computer science and technology 24(2):

273-283 Mar. 2009.

About Authors:

Mr. Sandip Mal received B.Tech degree in the department of Computer Science and Engineering from West
Bengal University of Technology in the year 2008. He has also Completed ME (Software Engineering) from
Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India in the year of 2012. Currently, he is pursuing
Ph.D. on Software Quality Metrics from Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India. His
Research area is Object-Oriented Metrics, Software Engineering, Database System, and Image Processing.

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2527

Dr. Kumar Rajnish is an Assistant Professor in the Department of Information Technology at Birla Institute

of Technology, Mesra, Ranchi, Jharkahnd, India. He received his PhD in Engineering from BIT Mesra, Ranchi,
Jharkhand, India in the year of 2009. He received his MCA Degree from MMM Engineering College,
Gorakhpur, State of Uttar Pradesh, India. He received his B.Sc Mathematics (Honours) from Ranchi College
Ranchi, India in the year 1998. He has 23 International and National Research Publications. His Research area is
Object-Oriented Metrics, Object-Oriented Software Engineering, Software Quality Metrics, Programming
Languages, and Database System.

Sanjeev Kumar is an Asst. Professor in Department of Information Technology at Siddhant College of

Engineering, Pune. He did his B.Tech. in Information Technology and Masters in Quality Engineering in the
Department of Management at the Birla Institute of Technology, Mesra, Ranchi, India. He has 4 International
Journal publications. He has 2 years of teaching experience and did his masters project at ITR, DRDO,
Chandipur, Orissa.

Sandip Mal et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 3 Jun-Jul 2013 2528

	Package Level Cohesion Metric for Object-Oriented Design
	Abstract
	Keyword
	I. INTRODUCTION
	II. BASIC DEFINITIONS
	III. PACKAGE COHESION METRIC AND WORKING EXAMPLE
	IV.THEORETICAL VALIDATION
	V. CASE STUDY OF COHP ON OPEN SOURCE SOFTWARE SYSTEM
	VI.CONCLUSION AND FUTURE WORK
	REFERENCES
	About Authors

