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Abstract—Due to the complexity and heterogeneity of systems, design and verification environments 
are widely requested. Such systems combine into continuous and discrete models. The main problem is 
the difference of algorithms between continuous and discrete simulators. The industrial tool 
Matlab/Simulink is widely used in modeling systems. The main advantage of this tool is its ability to 
model in a common formalism the software and its physical environment. Unfortunately, 
Matlab/Simulink still suffers from many limits in modeling and verification. Due to the multidisciplinary 
nature of advanced systems and to overcome these limits in modeling and verification, several tools based 
on combined language are adopted. This paper describes a novel verification technique for Control Units. 
A synchronization model between Matlab/Simulink and a real board is presented. 
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I. INTRODUCTION 
As the number and the complexity of mechatronics components increases, tools and technologies for 

developing and verification of the Control Units (CU) are required. Simulink presents the widely tool used for 
continuous/discrete systems and it is a good target for design and verification on the earlier stage of the design. 
Matlab/Simulink is not only used in all the steps of the cycle of development but also played a crucial role in the 
numerical simulation of CU. The cycle development based on Matlab/Simulink, especially in automotive 
industry, can be divided on three steps. 

First, the Model In the Loop (MIL) [1] refers to the kind of testing performed to verify the expected 
performance and robustness of a control algorithm in model form in a closed loop environment. This step 
concerns the definition of a mathematical model of the plant and the control law. This model is validated using a 
numerical simulation. 

Then, the Software In the Loop (SIL) [2] step concerns the implementation of the control algorithm in a low 
language such as C. 

Finally, the Hardware In the Loop (HIL) [3] step concerns the compilation of the controller implementation 
into an executable running on a particular hardware. 

HIL involves connecting the actual CU to the real time simulation models, in which the CU in hardware is 
integrated with virtual models of the devices and systems being controlled. 

The goal of this paper is to investigate the needs and the possibilities concerning a combined usage of 
Matlab/Simulink and a real architecture based on co-design development, implemented in the board. A 
Hardware Software In the Loop is announced in this paper.  

Section 2 presents the related works for design and verification method in Simulink. Section 3 presents the 
conventional approach and the synchronization scheme of the Hardware Software In the Loop technique. 
Section 4 describes the different steps for implementation and the experimental results. Section 5 concludes the 
paper with a discussion. 

II. RELATED WORK 
There are mainly tow ways in literature to combine Simulink with another environment. 

A. Integration 

 There have been several studies regarding the integration of different environments and enabling different 
modeling frameworks to interact with each other. [4] is made to integrate SystemC in Matlab/Simulink 
environment using the S-function bloc. Support the different abstraction layers for embedded systems in 
Simulink environment is the aim of the last work. 

The work [5] integrates the Processor Expert tool in Simulink to use different kinds of microcontroller. The 
integrated environment has to follow the Simulink solver. This fact is the major problem. Indeed, the discrete 
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simulation progresses with the respect of the integration step imposed by the solver in the continuous 
simulation. 
B. Co-simulation 

The co-simulation methodology is based on different simulation tools running simultaneously and 
exchanging information in a collaborative manner for verification reasons. We can cite especially 
Simulink/Modelsim, Simulink/SystemC and HIL. 

Simulink/Modelsim is adopted when the Hardware Description Language (HDL) is used to describe the 
behavior of the control algorithms. HDL Verifier automates verification by using Simulink to stimulate the HDL 
code and analyze its response [3]. 

Simulink/SystemC is adopted when the hardware description is modelled using SystemC. As we know, 
SystemC is a standardized modelling language intended to enable system level design and intellectual property 
integration at multiple abstraction layers, for systems containing both software and hardware components. As an 
example, CODIS (COntinuous DIscrete Simulation) [6] is a tool which can automatically produces co-
simulation instances for continuous/discrete systems simulation using SystemC and Simulink simulators. This is 
done by generating and providing co-simulation interfaces and the co-simulation bus. To evaluate the 
performances of simulation models generated in CODIS, they measured the overhead given by the simulation 
interfaces [7].  
Hardware In the Loop:  

The more traditional application of the HIL concept is controller design and testing, in which a CU in 
hardware is integrated with virtual models of the devices and systems being controlled. Most famous techniques 
of HIL are MathWorks’ solution xPC Target [8] [9] and Real-Time Windows Target [10], where the model is 
executed on a dedicated system or on a windows system, respectively. The last consists of synchronizing the 
clocks of the virtual subsystems with the clocks of the real subsystems and achieving determinism in the overall 
system. 

The HIL is adopted in verification and testing for many advantages: 
• Control and regulation functions can be tested in early stages of development, even before a test 

carrier. 
• Typical test drives under low conditions (ambient, snow, ice) can be performed repeatedly. 
• Failures and errors that could have devastating effects in a real system can be simulated and tested 

systematically. 
• The experiments performed in the HIL system can be reproduced precisely, and automatically 

repeated as often as required. 
However, the modeling language provided and the different advantages of the HIL, these solutions have not 

been designed for hardware/software co-design purposes. There are several weaknesses that motivate us to 
develop a new standard target based on FPGA board [11]. 

• Only few targets exist and therefore far from all CU families and derivates are supported. 
• Each CU target has its own block set. This fact prevents the reusability and the portability of the 

model using these HW specific blocks. 
• The way in which the peripheral HW is handled by the generated code is predefined by the target 

developers and it can not be changed by the user. 
• Wiring harness HIL simulation platform needs to be redone each time the hardware interface of a 

CU changes. 
The next section presents the Hardware Software In the Loop (HSIL) as the proposed verification technique. 

III. CONVENTIONAL APPROACH 
Control embedded systems are mostly heterogeneous devices. Their design is based on hardware and 

software components. Each part needs to be aware of the characteristics of other parts, in order to provide 
optimized components. The best strategy adopted is co-design, since it allows us to develop HW/SW 
components concurrently. The main idea is to set the HSIL to overcome the limits of the HIL. 
 

Our method described in the next section, improves the HIL, and has many advantages such: 
 Expand the HIL to attend the Co-design strategy. 
 Use of one and same S-function for every CU. This fact lets the reusability and the portability of the 

model. 
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 Able to verify multiple CU in the same system and to modify one without modify the architecture. 
Figure 1 describes the global idea of HSIL. 

Two issues are essential for the HSIL architecture: the communication and the synchronization models. 
A. Communication model 

This section gives a brief introduction to the communication model. A USB link is used in the 
communication between Simulink and FPGA because this kind of communication has better speed than PCI 
which it adopted in emulation [12].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. Hardware Software In the Loop architecture 

This communication is based on packets which are constructed by the communication interface using S-
Function between Simulink and board. An S-Function is a computer language description of a Simulink block. 
It uses syntax of call allowing us to interact with Simulink solvers. 

A Data packet, figure 2, is used to perform the synchronization scheme between the Simulink simulator and 
the emulator. 
 
 
 
 
 

Figure 2: Communication packet 

Data packet comprises a header and the Body. The header contains the routine number and the data size. The 
routine number corresponds to the CU that will be executed in the target architecture. The body is composed 
with data and the time stamp to synchronize when it is necessary. 

Note that any packet received by the board side generates an USB interruption that can be exploit in the 
implementation phase to interrupt the target processor each time a packet is received.    
B. Synchronization model 

Because the heterogeneity of systems, analog-digital (AD) and digital-analog (DA) converters are used. 
These converters are integrated in synchronization bloc (S-function), see figure 3. 

 

 

 

 
Figure 3: Synchronization bloc 

The ADC is used to transform the analog input to digital signal based on equation (1). 
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X(t) = Analog input 
X[k] = Digital output code  
N = Number of digital input bits (resolution) 
k∈{1,…..,N} 
The DAC is used to transform the digital signal after the processing step to analog output based on the 

transfer function shown in (2). 
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kY
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Where:  
Y(t) = Analog output 
Y[k] = Digital input code  
N = Number of digital input bits (resolution) 
X(t) = Reference Value (full-scale ) 
A key issue of the proposed approach is the time synchronization between the Simulink simulator and the 

processor emulated on the FPGA board. The verification method is based on the following synchronization 
scheme which respects the interaction style that can be involved between continuous and discrete model, figure 
4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Synchronization scheme for HSIL 

 The Continuous model waits the end of the hardware/software task. 

When a hardware/software components is emulated by the board, the continuous model uses a waiting loop 
for data (see figure 4). Once controller task is finished, the emulator sends data to the simulator and a switch 
context from the board to Simulink simulator is taken. At this time, the continuous model receives data and 
resumes the execution. Note that the Simulink and the emulator need to usually exchange information about the 
time. 

The next section drafts the implementation and her details. 

IV. EXPERIMENTAL RESULTS 
This section describes the two applications used for environment validation: DC Motor Speed Controller and 

Closed-Loop Engine Speed Control. 
1st Application: DC Motor Speed Controller 

The first application example, figure 5, consists in a DC Motor Speed Modeling in Simulink with a PID 
regulator. The following equation (3) in open-loop transfer function is: 
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Where: 
The rotational speed is considered the output and the armature voltage is considered the input. 
(J)      moment of inertia of the rotor     
(b)      motor viscous friction constant     
(Ke)   electromotive force constant        
(Kt)    motor torque constant               
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(R)     electric resistance                 
(L)     electric inductance      
Then, a PID regulator is added to control the DC motor speed. Figure 6 shows the diagram of the global 

system. 
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Figure 5: DC motor speed regulator 

 

 

 

 

 

 

 

 

  

 
Figure 6: Diagram of DC motor speed regulator 

 2nd Application: Closed-Loop Engine Speed Control 

This example shows how to model a four-cylinder spark ignition internal combustion engine from the throttle 
to the crankshaft output. We used well-defined physical principles supplemented, where appropriate, with 
empirical relationships that describe the system's dynamic behavior without introducing unnecessary 
complexity. 

This example describes the concepts and details surrounding the creation of engine models with emphasis on 
important Simulink modeling techniques. The basic model uses the enhanced capabilities of Simulink to capture 
time-based events with high fidelity. Within this simulation, a triggered subsystem models the transfer of the 
air-fuel mixture from the intake manifold to the cylinders via discrete valve events. This takes place 
concurrently with the continuous-time processes of intake flow, torque generation and acceleration. A second 
model adds an additional triggered subsystem that provides closed-loop engine speed control via a throttle 
actuator. These models can be used as standalone engine simulations [15]. 

Figure 7 shows the different elements of the engine model. 
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Closed-Loop Engine Speed Control

Copyright 1990-2005 The MathWorks Inc.

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

30/pi

rad/s
to rpm

Load

drag torque

Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

trigger

mass(k+1)

Throttle & Manifold

Speed
Setpoint

?

Engine 
Speed (rpm)

Desired rpm

N

Throttle Ang.

Controller

mass(k+1)

mass(k)

trigger

Compression

Air Charge

N

Torque

Combustion

Engine 
Speed

Throttle
Degrees

 
Figure 7: DC motor speed regulator 

Throttle 

The first element of the model is the throttle body. The control input is the angle of the throttle plate. The rate 
at which the model introduces air into the intake manifold can be expressed as the product of two functions: (1) 
an empirical function of the throttle plate angle only (2) a function of the atmospheric and manifold pressures. 

Intake Manifold 

The simulation models the intake manifold as a differential equation for the manifold pressure. The difference 
in the incoming and outgoing mass flow rates represents the net rate of change of air mass with respect to time. 
This quantity, according to the ideal gas law, is proportional to the time derivative of the manifold pressure.  

Intake Mass Flow Rate 

The mass flow rate of air that the model pumps into the cylinders from the manifold is described by an 
empirically derived equation. This mass rate is a function of the manifold pressure and the engine speed. 

Compression Stroke 

In an inline four-cylinder four-stroke engine, 180 degrees of crankshaft revolution separate the ignition of 
each successive cylinder. This results in each cylinder firing on every other crank revolution. In this model, the 
intake, compression, combustion, and exhaust strokes occur simultaneously (at any given time, one cylinder is 
in each phase). To account for compression, the combustion of each intake charge is delayed by 180 degrees of 
crank rotation from the end of the intake stroke. 

Torque Generation and Acceleration 

The final element of the simulation describes the torque developed by the engine. An empirical relationship 
dependent upon the mass of the air charge, the air/fuel mixture ratio, the spark advance, and the engine speed is 
used for the torque computation. 

The aim as mentioned bellow is to verify the controller units. For the first application, the model has two 
integrators and one PID that will be considered as SW applications. For the second, the controller and the 
compression are considered as control units.  Three steps are essential for the implementation. 

Step 1: Target architecture  

The verification idea is based on combined tools to satisfy continuous and discrete models. For the discrete 
model an FPGA type ALTERA DE2-70 is used as a board and QuartusII, NIOSII IDE as tools.  
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Figure 8: Architecture target 

The first step is to set the architecture model. Figure 8 shows the architecture chosen. It contains the NIOSII 
processor [13], Avalon bus, memory and the ISP1362 USB controller [14]. The control units are considered as 
SW applications that will be executed in the last architecture. 

Step 2: Integration of synchronization bloc 

A C++ S-function bloc is used to implement the synchronization scheme between Simulink simulator and the 
target architecture in the FPGA board. 

The Synchronization bloc is an interface that creates break points which must be reached accurately by a 
solver. These points are the time stamps of the input signal from continuous model. When a signal is received, 
this interface blocks the solver and makes a switch context to the board. At first, the last activates the USB link 
with interruption mode and sends the data packet. After resuming execution the interface Synchronization sets 
the next activation time. 

Step 3 : Simulation results 

The simulation was performed using the synchronization scheme, since the continuous model generates state 
events and the signals update events are not periodic. 

1st Application: DC Motor Speed Controller 

At first, the new DC motor speed scheme, figure 9, is described using the following parameter: J=0.01; 
b=0.1; K=0.01; R=1; L=0.5. 
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Figure 9: New DC motor speed model 
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Figure 10 shows the whole operation between Simulink and the NIOSII IDE environment. 

 
Figure 10: Simulink/NIOSII simulation/emulation 

To verify the efficiency of the synchronization model, three figures issued by each synchronization bloc are 
used as shown in figure 11.  

For this sample the Simulink simulator performs 24 switch contexts to the board. The simulation time is 1 
second calculated by the simulator. 

a) Signal of motor speed b) Signal of current i 

c) Signal of the regulator output 

Figure 11: critical signal 

2nd Application: Closed-Loop Engine Speed Control 

The novel scheme of the closed-loop engine speed control, figure 12, is described using synchronization bloc. 
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Closed-Loop Engine Speed Control
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Figure 12: New closed-loop engine speed control 

To validate the Hardware Software In the Loop technique, three figures that describe the throttle, the angular 
throttle and the mass flow rate issued by the model, are used as shown in figure 13. The simulation time is 2 
second calculated by the simulator. 

 
a) Signal of throttle  b) Signal of angular throttle 

c) Mass flow rate 

Figure 13: critical signal for closed-loop engine speed control 

V. CONCLUSION 
This paper proposed a Hardware Software In the Loop technique using a simulation/emulation framework for 

continuous/discrete systems, based on generic interface. The simulation / emulation integrated currently in this 
framework is based on FPGA board (for the discrete parts) and Simulink (for the continuous parts). The HSIL 
architecture improves not only the HW/SW design in CU but also ensure the reusability and the portability of 
CU. Two applications are used to evaluate the proposed technique. Simulation/emulation results shows that the 
simulation time is reduced with comparison of the SIL technique based on simulation only.  
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