
Incremental Mining for Regular Frequent
Patterns in Vertical Format

Vijay Kumar G.#1, Valli Kumari V.*2
#School of Computing, K L University

Guntur 522502, India
1 gvijay_73@yahoo.co.in

*Department of CS&SE, AU College of Engineering
Visakhapatnam 530003, India

2 vallikumari@gmail.com

Abstract—In the real world database updates continuously in several online applications like super
market, network monitoring, web administration, stock market etc. Frequent pattern mining is a
fundamental and essential area in data mining research. Not only occurrence frequency of a pattern but
also occurrence behaviour of a pattern may be treated as important criteria to measure the
interestingness of a pattern. A frequent pattern is said to be regular frequent if the occurrence behaviour
is less than or equal to the user given regularity threshold. In incremental transactional databases the
occurrence frequency and the occurrence behaviour of a pattern changes whenever a small set of new
transactions are added to the database. It is undesirable to mine regular frequent patterns from the
scratch. Thus proposes a new algorithm called RFPID (Regular Frequent Pattern Mining in Incremental
Databases) to mine regular frequent patterns in incremental transactional databases using vertical data
format which requires only one database scan. The experimental results show our algorithm is efficient in
both memory utilization and execution.

Keyword-Frequent patterns, Regular patterns, Transactional database, Incremental database, vertical
data format.

I. INTRODUCTION
Among several interesting patterns, frequent pattern mining [1, 2, 3] is one of the active research area in data

mining and knowledge discovery process. Mining frequent patterns basically depends upon the support count
(number of times a pattern appears in the database). The occurrence frequency of a pattern may not always
represent the significance of a pattern. The occurrence frequency along with occurrence behaviour may be
treated as an important measure in several online applications. In a super market the user may be interested in
frequently sold items which are sold at regular intervals. To improve web site design the website administrator
may be interested in more often hit web pages at regular intervals. Also, in stock market there may be a special
interest for stock brokers and traders where the set of high stocks indices rise at regular intervals. Such frequent
pattern regularity may also be a useful measure among other applications like network monitoring, dna sequence,
telecommunications or sensor networks. From the above examples we observed that the occurrence behaviour of
a frequent pattern at regular intervals plays an important role in a wide variety of applications.

In incremental databases, new transactions will add continuously to the transaction database. So the regular
frequent patterns change whenever database is updated. In order to make best decisions, users may be interested
on getting the latest regular frequent patterns from the updated database. Therefore, it has been an important
issue to search various efficient ways to find latest frequent patterns when the transactions are being updated the
database. There are several tree based applications to mine frequent patterns [4, 5, 6, 7] in incremental databases.
Similarly there are few tree based applications to mine regular patterns [8, 10] from incremental transactional
databases. Most of the above approaches were based on FP tree which requires continual adjustments of tree
nodes whenever the database updates. So in this paper we introduce RFPID-algorithm to mine regular frequent
patterns using vertical data format [11, 12] which performs better with large number of transactions and long
item sets with one database scan. The other advantage of vertical data format is, it uses simple operations like
unions, intersections, deletions, simple arrays etc., and also it judges non frequent and non regular item sets
before generating the candidate sets. To the best of our knowledge there is no algorithm that mines to find out
regular frequent patterns in incremental transactional databases using vertical data format.

The rest of the paper is organized as follows. In Section 2 we discuss about the related work. In Section 3 we
define the problem of regular frequent patterns in incremental transactional databases. In Section 4 we describe
the process of mining regular frequent patterns with RFPID-algorithm. In Section 5 we show our experiment
results and finally we conclude the paper in Section 6.

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1506

II. RELATED WORK
Association rule mining was first introduced by Agrawal et al., [1, 2] to find frequent itemsets which satisfies

the minimum support threshold to generate association rules from the frequent itemsets. The main disadvantage
of Apriori algorithm is, it requires k number of scans to generate k-itemset. Han et al., [3] introduced a highly
compact data structure, FP-tree and FP-growth algorithm to mine frequent patterns in support descending order
with only two database scans. Frequent pattern mining in incremental transactional databases have been studied
widely over the last decade in data mining research and is based only on support threshold. Periodic patterns [13]
are closely related to regular patterns but they differ with the type of data considered, time-series data or
sequence data. Recently, Tanbeer et al., [8] introduced the problem of mining regular patterns in incremental
transactional databases with a highly compact tree structure called IncRT-tree and a pattern growth approach
based on the occurrence behaviour of a pattern. They also constructed an item header table called IncRT table
consisting of five fields (i, r, tl, m, p): item name (i), the regularity of i (r), last tid where item i occurred (tl), a
modification indicator of i (m), and a pointer to the IncRT for i (p). After inserting all transactions into the
IncRT, r for all items is calculated in the table by traversing the tree once. Whenever the database is updated,
modification indicator m will modify the one bit field and tl changes to the recent tid where item i occurred. The
node traversal pointers only visit each tail-node of the item and accumulate tids available in its tid-list in
respective temporary arrays for every item from the tail node up to the root node. After traversal to the top-most
item in the table, the complete list of tids for i are obtained in their respective temporary arrays. Then the
periods of i are calculated to obtain regular itemsets.

Interestingness of a pattern may not always be measured only with support threshold or may not only with
periodicity threshold. Therefore Tanbeer et al., [9] proposed a new approach to mine periodic-frequent patterns
in transactional databases with the above two thresholds i.e., support and periodicity. In this paper PF-tree is
constructed using ordinary node and a tail node. Each node in the PF-tree maintains parent, children and node
traversal pointers. Irrespective to the type of node, they do not maintain the support count value in the PF-tree.
The support and periodicity are maintained by PF-list consisting of three fields: item name (i), total support (f)
and the periodicity of item i (p). In order to become periodic-frequent, an itemset must satisfy both the following
conditions (i) its support should not be less than a user given minimum support threshold value and (ii) its
periodicity should not be greater than a user given maximum periodicity threshold value. Regular patterns as
well as periodic frequent patterns satisfy the downward closure property i.e., if a pattern is found to be regular-
frequent, then all of its non-empty subsets will be regular-frequent. So, in this paper we consider the above two
papers [8, 9] to mine frequent patterns which occur at regular intervals in incremental transactional databases
using vertical data format [11, 12] that satisfy the downward closure property.

III. PROBLEM DEFINITION
In this section we describe the concepts of regular frequent pattern mining and define the basic definitions of

the problem to obtain complete set of regular frequent patterns in incremental transaction databases.
Let I = {i1, i2, . . . , in} be a set of items. A set X = {ij, . . . , ik} ⊆ I, where j ≤ k and j, k ∈ [1, n] is called a

pattern or an itemest. A transaction t = (tid, Y) is a couple where tid is a transaction-id and Y is a pattern. Let
size (t) be the size of t, i.e., the number of items in Y. A transaction database DB over I is a set of transactions T
= {t1, . . . ,tm}, m = | DB | is the size of DB, i.e., the total number of transactions in DB. If X ⊆ Y, which means
that t contains X or X occurs in t and denoted as tj

X, j∈[1, m]. Therefore, TX = {tj
X, . . . ,tk

X}, j ≤ k and j, k ∈[1, m]
is the set of all transactions where pattern X occurs in DB.
A. Definition 1 (frequent pattern X)

The total number of transactions in a DB that contains pattern X is called the support of X i.e., Sup(X). Hence
Sup(X) = | TX |, where | TX | is the size of TX. The pattern X is said to be frequent if its support is greater than or
equal to user given minimum support threshold i.e., Sup(X) ≥ minsup(δ).
B. Definition 2 (regularity of frequent pattern X)

Let tX
j+1 and tj

X, j∈[1, (m - 1)] be two successive transactions where frequent pattern X appears. The variation
between these two successive transactions can be defined as a period of X, say pX (i.e., pX = tX

j+1 – tX, j∈[1, (m -
1)]). For ease, to calculate the period of a pattern, we consider the first transaction in the DB as null i.e., tf = 0
and the last transaction is the mth transaction i.e., tl = tm. Let for a TX, PX be the set of all periods of X i.e., PX =
{p1

X, . . . , pr
X}, where r is the total number of periods in PX. Then the regularity of a frequent pattern X can be

denoted as Reg(X) = max{p1
X, . . . ,pr

X}. A frequent pattern X is said to be regular frequent if its regularity is less
than or equal to user given maximum regularity threshold i.e., λ.
C. Definition 3 (Regularity of a frequent pattern X in incremental databases)

Let db+ denotes the set of newly added transactions to the database DB. The updated database is denoted as
UDB (DB ∪ dbi+), i be the number of newly added transactions to the DB. Whenever the database is updated
with i transactions the first transaction-id i.e., null transaction tf = 0 will be replace to tf = tf + i (tf = 0 + i) at the

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1507

front end of the transactional database and tl = tl + i at the rare end of DB. For example, in db+ (Table 5) two
transactions 10 and 11 are added to DB. So i value is 2, the null transaction for the updated UDB is tf = 2 and the
last transaction is tl = 11. After replacing the values of first transaction (tf) and last transaction (tl) the process
continues to find support and PX for every TX to obtain latest regular frequent patterns from the UDB.

IV. MINING REGULAR FREQUENT PATTERNS
 In this section we describe the mining process of regular frequent patterns in incremental transactional

databases using vertical data format requires only one database scan. To generate length-1 itemset our algorithm
constructs an item header table called RFPID-table consists of four fields (Itemset, Tid, Sup, Reg). Itemset is an
item name, Tid is the transaction list where the item occurs in various transactions, Sup is the support of the
itemset and Reg is the regularity of an itemset. Each itemset consists of its own array to accommodate Tids and
other intermediate results.

 Let Table 1 be the transactional database DB in horizontal format which is somewhat similar to the database
in [9]. Convert the above horizontal database into vertical database with one database scan to store all length-1
items with respective tids, support and regularity. For example, Let us consider the minimum support threshold
value, δ = 5 and maximum

TABLE I
Transactional Database DB

Tid Transaction

1 a, d, e, c
2 d, e, f, a, c
3 a, e, c
4 d, e, c
5 e, c, a, f
6 b, f
7 d, c, e, b
8 b, c, d, e
9 a, d, c, b

RFPID-Algorithm

 Input : DB, λ, δ
 Output : Complete set of regular frequent Patterns
 Procedure :

 Let Xi ⊆ I be a k-itemset
 PX

i = 0 for all Xi

 For each Xi
 Update Sup

 If Sup(Xi) > = δ
 Find the period of Xi

 PX
i = PX

i+1 - PX
i

 reg (Xi) = max(PX
i)

 If reg(Xi) < = λ
 Xi is a regular frequent itemset
 Else

 Delete Xi

 Else

 Delete Xi
 Repeat
Find if any db+ exist
 If db+ exist
 Repeat the procedure recursively
 Else

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1508

 Increase the k value using ‘and operation’ until no candidate is generated.
regularity threshold value, λ = 4. Itemset {a} occurs in (1, 2, 3, 5, 9) transactions in the DB. Since item {a}
occurs in five transactions so the support of item {a} i.e., Sup(a) = 5. RFPID-table is generated to store all
length-1 itemsets, satisfies both support and regularity thresholds. From the above transactional database DB the
length-1 itemsets {(a), (c), (d), (e)} satisfied both support and regularity threshold values. Itemset (b) did not
satisfy support threshold as well as regularity threshold and item set (f) did not satisfy support threshold so the
itemsets b and f will be deleted, see Table 2. Once the RFPID-table is generated we remove the itemsets from it
that do not satisfy the user given support and regularity thresholds. The RFPID-algorithm will repeat the
procedure recursively whenever the database is incremented, by replacing the new values into first transaction tf
and last transaction tl to obtain the latest regular frequent patterns. In the process some of the irregular or
infrequent patterns may become regular or frequent in updated database.

TABLE II
RFPID-table with support (δ = 5) and regularity (λ = 4) for 1-itemset

Itemset Tid Sup Reg

a 1, 2, 3, 5, 9 5 4
b 6, 7, 8, 9 4 6
c 1, 2, 3, 4, 5, 7, 8, 9 8 2
d 1, 2, 4, 7, 8, 9 6 3
e 1, 2, 3, 4, 5, 7, 8 7 2
f 2, 5, 6 3 3

TABLE III
Calculating Regularity of an Itemset

Itemset PX Reg

a 1, 1, 1, 2, 4 4
c 1, 1, 1, 1, 1, 2, 1, 1 2
d 1, 1, 2, 3, 1, 1 3
e 1, 1, 1, 1, 1, 2, 1, 1 2

TABLE IV
RFPID-table with support (δ = 5) and regularity (λ = 4) for 2-itemset

Itemset Tid Sup Reg

a, c 1, 2, 3, 5, 9 5 4
a, d 1, 2, 9 3 7
a, e 1, 2, 3, 5 4 4
c, d 1, 2, 4, 7, 8, 9 6 3
c, e 1, 2, 3, 4, 5, 7, 8 7 2
d, e 1, 2, 4, 7, 8 5 3

TABLE V
Increment Database db+

Tid Transaction

10 a, d, c, b
11 d, e, f, c, b

Table 3 shows how the regularity of a pattern is calculated. The itemsets (a), (c), (d), (e) are regular frequent
itemsets and eligible to obtain length-2 itemsets which are shown in Table 4. The procedure continues for
length-3 and so on until no candidates are generated for mining regular frequent patterns. As in our problem
definition let us consider for ease the first transaction tf is a null transaction i.e., tf = 0 and the last transaction is tl
= 9. Itemset {c, d, e} occurs in (1, 2, 4, 7, 8) transactions, so its support is 5 which satisfies the user given
minimum support threshold. So, itemset {c, d, e} is frequent and it can be processed to find these frequent
pattern are regular or not. In order to find out regularity we need to find the periods of this pattern. The periods
of this pattern are (1 – tf =)1, (2 – 1 =)1, (4 – 2 =)2, (7 – 4 =)3, (8 – 7 =)1 and (tl – 8 =)1. The periods of the
pattern {c, d, e} are (1, 1, 2, 3, 1, 1) and the regularity of this pattern is maximum (1, 1, 2, 3, 1, 1). Therefore the
regularity of {c, d, e} is 3 which satisfies the user given regularity threshold. So itemset {c, d, e} is a length-3
regular frequent itemset. As our algorithm satisfies downward closure property, the itemsets which are not
regular frequent will not update in the RFPID-table.

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1509

TABLE VI
Updated Database UDB (DB ∪ db+)

Tid Transaction

3 a, e, c
4 d, e, c
5 e, c, a, f
6 b, f
7 d, c, e, b
8 b, c, d, e
9 a, d, c, b

10 a, d, c, b
11 d, e, f, c, b

TABLE VII
RFPID-table with support (δ = 5) and regularity (λ = 4) for 1-itemset (tf = 2 and tl = 11)

Itemset Tid Sup Reg

a 3, 5, 9, 10 4 4
b 6, 7, 8, 9, 10, 11 6 4
c 3, 4, 5, 7, 8, 9, 10, 11 8 2
d 4, 7, 8, 9, 10, 11 6 3
e 3, 4, 5, 7, 8, 11 6 2
f 5, 6, 11 3 5

Whenever the database is updated RFPID-algorithm updates the support count and regularity of an itemset.
Let Table 5 is the increment database (db+) to the transactional database DB containing two transactions 10 and
11. From these two transactions itemset {b} turn into frequent itemset which is infrequent and irregular in the
previous mining process. By changing the values of first transaction and last transaction we can obtain latest
regular patterns from the incremental transactional databases. Our RFPID-table maintains all the transactions i.e.,
from transaction-id one to nth transaction. For ease we are showing the transactions from 3 to 11 in Table 6. The
above Table 7 showing {b, c, d, e} are the most recent length-1 regular frequent patterns obtain from UDB. The
mining process repeats the procedure recursively whenever the database is incremented.

V. EXPERIMENT RESULTS
We performed our experimental results over synthetic dataset (T1014D100K) and real datasets (mushroom

and Kosorak) which are often used in frequent pattern mining and other interesting measures which are
developed at IBM Almaden Quest research group and obtained from
http://cvs.buu.ac.th/mining/Datasets/synthesis_data/. We compare the results of RFPID’s with the existing PF-
tree [9]. RFPID-algorithm requires only one database scan compared to PF-tree basically requires two database
scans to construct PF-tree and PF-list. We also did experiments on updating database with different sizes. All
experiments are done in java on windows XP contains 2.66 GHz with 2 GB of main memory.

In the first experiment we compared the results with PF-tree on T1014D100K which contain 100K
transactions, 870 number of items and an average transaction length is 10.10 and on mushroom dataset
containing 8124 transactions, 119 items and an average and maximum transaction length is 23. From the graphs
in Fig 1 we can notice that RFPID-algorithm relatively takes equal time for low value thresholds and less time

 Fig. 1. (a) Execution time over T1014D100K Fig. 1. (b) Execution time over mushroom

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1510

 Fig. 2. (a) Execution time over Kosarak on different DB sizes Fig. 2. (b) Memory usage over Kosorak on different DB sizes

for high value thresholds compared to PF-tree because of its RFPID-table compactness. The time and memory
specify the total execution time and required memory with the increase in database size. Overall scalability of
our algorithm is shown in Fig 2 out performs the scalability of PF-tree with different sizes of database. The
performance of our algorithm is more efficient when the database is incremented.

VI. CONCLUSION
In this paper, we propose a new algorithm RFPID which mines to obtain the complete set of latest regular

frequent patterns in incremental transactional databases using vertical data format requires only one database
scan. It is efficient over PF-tree because it is very simple and easy when compared with PF-tree. Our algorithm
uses the advantages of vertical data format that needs simple calculations. Our experimental results show the out
performance of our algorithm.

REFERENCES
[1] R. Agrawal, T. Imielinski, A. Swamy. Mining association rules between sets of items in large databases. In ACM SIGMOD Int.

Conference on Management of Data, pp. 207 – 216 (1993).
[2] R. Agrawal, R. Srikanth. Fast algorithms for mining association rules. In Proceedings (1994) International conference on very large

databases. (VLDB’94). pp. 487-499.
[3] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Generation. In Proc ACM SIGMOD International Conference on

Management of Data. pp. 1-12 (2000).
[4] Y. Chen, J. Guo, Y. Wang, Y. Xiong, Y. Zhu. Incremental Mining of Sequential Patterns Using Prefix Tree. In proc of PAKDD 2007,

Springer. pp. 433-440 (2007).
[5] Md. M. Rashid, Md. R. Karim, B. S. Jeong, H. J. Chai. Efficient Mining Regularly Frequent Patterns in Transactional Databases.

Springer Lecture Notes in Computer Science, vol 7238, pp. 258-271 (2012).
[6] S. J. Yen, Y. S. Lee, Y. T. Guo, J. Y. Gu. International Conference on Machine Learning and Cybernetics. ICMLC’2011. pp. 73-79

(2011).
[7] F. A. Anour et al., IMTAR: Incremental Mining of General Temporal Association Rules. Journal of Information Processing Systems.

Vol 6 no.2 pp. 163-176. (2010).
[8] S. K. Tanbeer et al., Mining Regular Patterns in Incremental Transactional Databases. 12th International Asia-Pacific web conference,

(2010) IEEE, DOI 10.1109/APWeb.2010.68, pp. 375-377.
[9] S. K. Tanbeer et al. Discovering Periodic-Frequent Patterns in Transactional Databases. Springer PAKDD, pp. 242-253 (2009).
[10] M. Y. Eltabakh et al. Incremental Mining for Frequent Patterns in Evolving Time Series Databases. Prudue University, prudue-e-pubs,

Computer Science Technical Reports. pp-1-37 (2008).
[11] G. Y. Ming, W. Zhi-jun. A Vertical format algorithm for mining frequent itemsets. IEEE Transactions, pp. 11-13 (2010).
[12] M. J. Zaki, G. Karam. Fast Vertical Mining Using Diffsets, ACM SIGKDD. pp. 24-27 (2003).
[13] M. G. Elfeky, W. G. Aref, A. K. Elmagarmid. Periodicity Detection in Time Series Databases. IEEE Transactions on Knowledge and

Data Engineering 17(7), pp. 875-887 (2005).

Vijay Kumar G. et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1511

	Incremental Mining for Regular FrequentPatterns in Vertical Format
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORK
	III. PROBLEM DEFINITION
	IV.MINING REGULAR FREQUENT PATTERNS
	V. EXPERIMENT RESULTS
	VI.CONCLUSION
	REFERENCES

