
 Practical System for Querying Encrypted
Data on the Cloud

Parul Upadhyaya1 Vimal Anjana2 Vivek Jain3 Marimuthu K.4 Ganesh Gopal D.5
School of Computing Science and Engineering, VIT University

Vellore, TamilNadu - 632014, India
parul.upadhyaya2009@vit.ac.in, vimaljkasp@ymail.com, vivek.jain@ymail.com, k.marimuthu@vit.ac.in,

ganeshgopal@vit.ac.in

ABSTRACT

This paper proposes, compares and analyses query optimization techniques to securely query encrypted
databases. Such querying capability is becoming increasingly relevant as individuals and enterprises
move their data to the cloud. The schemes discussed delve into various design issues like speed, scalability
and efficiency that are encountered in the context querying encrypted data that is on the cloud. We
determine the exact differences in terms of the nature, scenario and behavior amongst the different
approaches in between the existing probable solution and our solution that can be applied to the querying
problem.

KEYWORDS: cloud, security, speed, scalability, encryption, query

I. INTRODUCTION

In today’s era of data-driven computing, existence and usage of data management technology is inevitable. We
deal with ever increasingly amount of data and information every day. The amount of data and information is
increasing at an exponential rate [3]. Almost each and every sector involves data storage and processing over it.
Recently, cloud computing systems are gaining popularity mainly due to the huge benefits [5] they provide such
as ease of use, low upfront costs, low administration costs, high flexibility and very importantly the
virtualization of the present systems [6]. The cloud is being used as a platform for storage, some popular
examples being Dropbox [4] and Amazon S3 [7], and efforts are being made to use cloud-based resources for
querying, manipulating and processing relational data [2]. Many organizations host their databases on the cloud
and use cloud-based computing resources. But one important concern for organizations in adopting the cloud is
the security and privacy of their data, since they might want to keep the data private from the cloud not just to
keep it private from the database administrators of the cloud but to also prevent information leakage in case of a
security breach.
Formally, the existing technique of encryption at rest [4] explains that the working domain can be divided into
two parts: a trusted domain and an untrusted domain. Traditional security models assume that given a computer
system, any storage system (like hard disks) is an untrusted component while the other internal parts like main
memory and CPU are taken as trusted. The data is stored only after encryption in untrusted domain and when
any processing is required, the decryption is carried out in the trusted domain like main memory. Thus, although
the data is stored in the untrusted domain but since it is in an encrypted form and the processing is carried out in
the main memory (the trusted domain), the system becomes impenetrable for attackers from outside. But, in a
cloud computing context, even the main memory and CPU are untrusted since when it comes to administrators
or super privileged users, they can misuse their access rights of data. Thus, the only trusted domain is the data
owner’s local (non-cloud) machine.
In the current scenario, the querying technique that has been suggested requires shipping the entire encrypted
data to the client site, decrypting it and then processing over it. That is, on receiving a request for data retrieval
for the purpose of processing, the whole dataset is downloaded from the cloud instead of just the required subset
of data. The processing is then carried on the dataset and then the data is again stored back on cloud. But this is
very expensive and hence does not scale to large datasets [4][7]. To overcome these shortcomings we present a
new scheme that attempts to evaluate as much of the query as possible on the cloud without decrypting the
whole data. In practice, this scheme suggests shipping of partial data, querying on it and then shipping the
required data corresponding to the searched parameter back from the whole dataset. Our approach reduces the
expense of shipping the whole data while guaranteeing the security of data by encrypting the data in the
untrusted domain.
In this paper, we propose a new approach: Instead of shipping the whole data to the trusted domain, only that
subset should be shipped that is required to answer the query. According to the query, the relevant cells of the
database is first shipped and searched for the required parameter and then based on the result the required data is
retrieved from the database.

Parul Upadhyaya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1878

II. PRELIMINARIES

We now formally define the key components of our system:
Queries: Our queries are the standard SQL queries that declaratively specify the data to retrieve. In this paper,
we focus on the common case of Select-Project-Join queries.
Database: We only consider relational databases. This is a collection of organized as well as related relevant
real world data.
Encryption and Decryption: The process of encoding a given string of text into another (called the cipher text)
such that it is not easily understood by the eavesdroppers or hackers is known as encryption. Whereas
decryption is the reverse of encryption in which the encoded text can be decoded back. Also, a private key is
used to both encrypt and decrypt the text which is private for the owner and hence adds to the security. [1]
Scalability: It can be defined as the capability of a system, network or process to work with the growing amount
of work as efficiently as it does for small amount of work or adapting to the growth in an efficient manner. [8]
Also we suggest the use of Advanced Encryption Standard (AES) to encrypt the dataset that is to be queried. It
uses the plain text in block length of size 128 bits. Also the key can be of 128 bits or 192 bits or 256 bits. The
number of rounds for each key size varies from 10, 12 and 14 for 128 bits, 192 bits and 256 bits, respectively. In
each round, except for the last one, the following four steps are followed: substitute bytes, shift rows, mix
columns and add round key. In the last step “mix column” step is not performed. The basic structure of AES
looks like as shown in the figure 1 drawn below:

Figure 1 Basic Architecture of AES

The main reasons for using AES are as follows:
Structure: It does not follow a fiestal structure which is a symmetric structure used in making block ciphers. It
uses the entire block length for operations.
Security: It uses the block length of 128 bits. And generally larger block length is preferred for more security.
Robustness: It goes through multiple rounds of permutation and combination that makes it very strong.
Flexibility: It also provides different key lengths which make it much more flexible.

Input Text

Add Round Key

Substitution

Shift Rows

Mix Columns

Add Round Key

Substitution

Shift Rows

Add Round Key

Output (Cipher Text)

Parul Upadhyaya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1879

III. METHODOLOGY

Our idea is to provide a more speedy method that would reduce overall cost of operation too. Our method has
two main benefits: first, it reduces the latency of answers received; second, it reduces the monetary cost of using
the cloud by reducing the amount of downloaded data. In our proposal, for accessing the data, the query is put
forward in the usual way just like one does in the already existing proposition. The real difference lies in the part
of the database that is worked on. Because of this our solution can transparently replace existing solutions with
no change from user point of view. Unlike the already existing proposition where the whole dataset is shipped,
decrypted and then queried, in this scheme, a particular column or field of the dataset (table) is accessed,
shipped and matched against the keyword mentioned in the query. If a match is found, the dataset is again
visited back and searched for the row that has that particular entry. The corresponding values are then retrieved.
The whole process is diagrammatically represented in figure 2.
Say for an instance, we have 1000 entries in our local system database that we wish to store on the cloud using
AES encryption we encrypt the data and store. Now we wish to access the data for carrying out some processing
over it. With the proposed scheme, on the access command, particular column of the dataset is fetched and
decrypted.

Figure 2 Diagrammatic representation of the proposed scheme

The following steps describe the steps as mentioned in the figure drawn above-
1. User enters a query
2. The query is transferred to SQL server
3. The Server queries the encrypted dataset present in the database.
4. The server decrypts the column according to the parameters present in the query
5. The query is again run over the decrypted column to find match for the corresponding required

encrypted rows.
6. The required encrypted rows are fetched
7. The encrypted rows are transferred to the server.
8. SQL server returns the result in encrypted form.
9. The result is decrypted.
10. The decrypted result is transferred to the user at local system

USER

SELECT
QUERY

DECRYPTED
RESULT

ENCRYPTED
RESULT SQL SERVER

DECRYPTED
COLUMN

ENCRYPTED
ROW

ENCRYPTED
DB

1

2

3

5

7

4

6

8
9

10

SQL SERVER

Parul Upadhyaya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1880

IV. ANALYSIS

In the most obvious solution to our problem of querying for the purpose of processing, the whole dataset needs
to be downloaded for any kind of processing whether it is a big computational problem or small-scale
computation. Even for making changes in just 1 entry, the whole dataset needs to be shipped. Whereas in the
proposed scheme instead of shipping the whole dataset, initially just a part of it i.e. a particular chosen column is
downloaded, searched against the keyword mentioned by user and accordingly, the corresponding row entries
(records) are brought to the client system. In this way the overhead involved in shipping the data is spared and
workload surely is cut down, that ultimately contributes to a more speedy system.
In terms of scalability if we take a very small dataset and employ the most obvious solution the time taken to
transfer the whole dataset will be less but if we go on increasing the load by increasing the size of dataset, the
time taken to ship data will get significantly increased. As a result of this the system will take more time for
processing. In the proposed scheme we are just importing a column; even if size is increased load on the system
is any time quite less in comparison to the importing of the whole dataset. To be more precise even if we go on
increasing the number of fields (columns) there is no significant change in the taken to ship the data and hence
the processing time does not get greatly increased. In short we always deal with 1 column irrespective of the
number of columns present in the dataset. So we can conclude that the proposed scheme is far more scalable
than the most obvious solution.
The efficiency of any system largely depends on the various above-mentioned factors like speed and scalability.
So we have seen that the speed of the system with the newly proposed scheme is far more than that of the most
obvious solution. Also the system using the proposed scheme is more scalable than that of the system using the
most obvious solution. One more factor which leads to better efficiency is that there is less data transfer which
leads to lesser data transfer time and more of computation time and also lesser system idle time and hence more
system utilization. So these all factors lead to a more efficient system.
As clearly deducible cost of downloading a portion of dataset is far lesser than downloading the whole dataset,
the system using the proposed scheme is cheaper than the one using the most obvious solution.

V. CONCLUSION

By looking at the whole scenario and the analysis part, we can hereafter conclude that the proposed scheme is
more scalable and faster with lesser downloading cost than the existing solution of querying encrypted data
present in cloud.

REFERENCES

[1] H. Lee Kwang, Basic Encryption and Decryption, Department of Electrical Engineering & Computer Science, KAIST
[2] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan, ”CryptDB: Protecting Confidentiality with

encrypted Query Processing”, MIT CSAIL
[3] Fuxiong Wang, Ziqian Xiao, Jingyou Chen, “ Research on Security of Trusted Network and Its Prospects”, Department of Software

Engineering, Hainan Software Profession Institute
[4] Arvind Arasul, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi Ramamurthy, Ramaratnam Venkatesan, “

Orthogonal Security With Cipherbase”, Microsoft Research, UW-Madison, ETH-Zurich
[5] Benefits of cloud computing available on :http://www.salesforce.com/uk/socialsuccess/cloud-computing/why-move-to-cloud-10-

benefits-cloud-computing.jsp
[6] Importance of system virtualization available on: http://www.2x.com/blog/2013/02/news/advantages-of-cloud-computing/
[7] Amazon Web Services: http://aws.amazon.com/s3
[8] Details about scalability: http://en.wikipedia.org/wiki/Scalability

Parul Upadhyaya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1881

