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Abstract---IO Virtualization allows multiple virtual machines to share the underlying hardware resources; 
it has some challenges to I/O performance. The single-root I/O virtualization (SR-IOV) is a new PCI-SIG 
standard which allows an I/O device to be shared by multiple Virtual Machines (VMs), without losing 
runtime performance. We propose common virtualization architecture for SR-IOV devices; SR-IOV 
capable network devices support direct I/O Throughput and reduced CPU utilization. SR-IOV uses direct 
I/O assignment of a network device to shared VM’s for using the maximum bandwidth capabilities of a 
network device. We carried out experiments to compare SR-IOV and paravirtualized network driver. 
Experiments shows that SR-IOV claims good line rate and can scale up to 64 VMs with less CPU 
overhead.  
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I INTRODUCTION 
         In high performance computer systems I/O performance is critical. According to Moore’s Law CPU 
computing capabilities and memory volumes will gradually increase to support multi core technology and 
different Memory Architectures, but I/O performance is affected by slow PCI Express (PCIe)[1] link and 
scalability limitation in hardware devices, like PCIe slots integrated to hardware device. Generally CPU cycles 
are wasted by I/O intensive servers and clients to fetch available data on regular cycles. It affects overall 
performance and scalability of system. Multiple OS’s are allowed to share a single physical interface through 
Virtualization; it offers effective utilization of underlying system resources, such as I/O devices, RAM, etc. 
There are two ways to enable virtualization.       
         Paravirtualization (PV)[2] requires OS modification to work with hypervisor. Full virtualization requires 
no modification, using hardware supports like Intel® Virtualization Technology. ESXi is a hypervisor which 
supports both full virtualization and paravirtualization. ESX Server installs directly on the server hardware, or 
“bare metal”, and inserts a robust virtualization layer between the hardware and the operating system. The 
privileged part of the guest, the Virtual Machine Monitor (VMM), runs in the VMkernel. The different types of 
virtual Ethernet adapters available for virtual machines are Vmxnet, Vlance and e1000. Vmxnet is a 
paravirtualized device that works only if VMware tools are installed in the guest operating system. Vlance is a 
virtual device that provides strict emulation of the AMD Lance PCNet 32 Ethernet adapter. e1000 is a virtual 
device that provides strict emulation of the Intel e1000 Ethernet adapter.  
         To handle virtualization effectively I/O performance and scalability needs to be improved. When a guest 
OS access the I/O device hypervisor is intervened in data transfer activities to share the physical device 
securely, it leads to additional IO overhead for a virtual machine. Existing driver such as Xen PV driver suffers 
from hypervisor intervention in data transfer activities [3].  The overhead caused by the intervention could 
saturate the CPU in a high throughput scenario such as fast Ethernet and thus affects the overall system 
performance. Some solutions are proposed to reduce the hypervisor intervention like Virtual Machine Device 
Queue (VMDq)[4] and Direct I/O. VMDq is technique that classifies the packet based on network adapter and 
delivers the packet in the guest buffer. However, it needs hypervisor intervention for address translation and 
memory protection. 
         The second is Direct I/O which assigns a dedicated device to each virtual machine with I/O Memory 
Management Unit (IOMMU). IOMMU translates the device DMA addresses to the appropriate physical 
machine addresses[5]. Direct I/O reduced the hypervisor intervention in address translation and memory 
protection. However it sacrifices lack of scalability and device sharing which are important virtualization 
functionalities. 
         Single Root I/O Virtualization (SR-IOV)[1] is a new PCI-SIG industry standard which defines a 
methodology to share native devices amongst virtual machines. It relies on hardware virtualization, by-passes 
the hypervisor involvement in packet processing almost entirely and gives the guest control over the physical 
network device. SR-IOV overcomes the scalability limitations of direct pass through allowing each network 
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device to be exposed as multiple virtual functions to the guest VMs. SR-IOV relies on Intel's VT-d or AMD-Vi 
and requires BIOS and system or hypervisor support as well as a SR-IOV capable NICs. Similarly to direct pass 
through the SR-IOV technology allows by-passing the hypervisor involvement in packet processing saving CPU 
cycles and providing low response time.  
         SR-IOV introduces the notion of PF (physical function) which has all the capabilities of a typical PCIe 
function (configuration space, BARs etc.) and VF (virtual function) which is a "lightweight" function which 
only has data movement capability. Any activity not related to data movement needs to be communicated and 
handled by the PF driver. Each virtual function has its own PCI configuration space, dedicated transmit and 
receive queues, interrupts and its own DMA engine. Each VM can be allocated one or multiple VFs. The VF 
driver in the VM programs the configuration registers of the VFs allocated to it specifying the memory address 
space from where the data will be copied in and out. When a packet arrives it is dispatched to the VF queue 
where it belongs from which it is DMA-ed into the guest VM's machine physical memory space with the help of 
the hardware address translation provided by Intel's VT-d or AMD-Vi. 
         We carried out experiments to compare SR-IOV and paravirtualized network driver. Result shows SR-IOV 
can achieve approximately 10Gbps line rate with better throughput and scalability. Hence SR-IOV provides an 
appropriate virtualization solution with high I/O performance. 
         The rest of the paper is organized as follows: In section II, describes SR-IOV in detail. Section III 
describes SR-IOV architecture and some implementation considerations. Section IV discusses new 
virtualization overhead and proposed optimization technique. Section V gives performance results and section 
VI covers related work. We conclude the paper in last Section. 

II. SR-IOV 
         In software point of view, interaction between device and CPU can be done in three ways. They are 
register, interrupt and shared memory as shown in the below figure. Device interacts with software programs 
through registers and notifies the processor through interrupts. Massive data moments via DMA uses shared 
memory. 

 
Fig 1: Interaction of device with processor through interrupt, register and shared memory 

SR-IOV is a new PCI specification by the PCI-SIG organization which has a rich set of hardware enhancements 
to PCIe device. It is introduced to eliminate hypervisor intervention in data movement. SR-IOV inherits Direct 
I/O technology by using IOMMU to maintain address translation and memory protection. In SR-IOV enabled 
device has one or more physical functions and can be managed to create several VF’s as shown in below figure. 
Each physical function (PF) is a standard function associated with multiple Virtual Function’s (VFs). Each VF 
has critical resources, dedicated to a single software module to support I/O movements. A PCIe function in the 
PCIe bus has a unique requestor ID. 

 
Fig 2: SR-IOV enabled devices 
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         VF’s are light weight functions which are created and managed by PF’s. Every VF is associated with 
unique RID, which helps identifying a PCIe data movements. RID is also used as an index to IOMMU page 
table, so that guest OS can use dedicated page tables. VF has performance-critical resources to share underlying 
device resources, such as physical layer processing and classification of packets as shown in the below figure. 
         SR_IOV also includes address translation services for better performance. It owns an I/O device to 
perform address translation mechanism by catching the Translation Look-a-side Buffer (TLB). This helps the 
device in translating DMA address, prior to issue the transaction. 

 
Fig 3: Resource sharing in SR-IOV enabled network devices. 

III. SR-IOV VIRTUALIZATION ARCHITECTURE 
         In this section, we propose a generalized architecture for SR-IOV enabled devices. This can be 
implemented on various types of hypervisor. The architecture allows VF and PF to be reused across different 
hypervisor’s such as ESXi and KVM[6]. In this section we also reviewed few design considerations for generic 
virtualization architecture like communication between VF and PF drivers should not be intervened by 
hypervisor. Our first implementation with NIC exposed new overhead. VF interrupt is still handled by 
hypervisor to map it from guest to host and vice versa, which is a major SR-IOV performance overhead. 
Interrupt mask and unmask acceleration are applied to overcome virtualization overhead. Adaptive interrupt 
coalescing technique is used to minimize CPU utilization. 
A. Architecture 

         Proposed architecture contains PF driver, VF driver and SR-IOV Manager (IOVM). VF driver runs in a 
virtual machine as a normal device driver, PF driver is to manage physical functions and IOVM sits in service 
OS to enable and disable control points within PCIe topology and provides a configuration space for VF’s to 
make the architecture as simple and VMM intervention free, each component on the architecture needs to be 
independent with VMM. For example interaction between VF and PF driver is directly through SR-IOV 
devices. Below Fig 4 illustrates the SR-IOV architecture. 
• PF Driver 
         PF driver has direct access to all physical resources and it is responsible for creating and managing VF’s.it 
decides the number of VF’s to be enabled or disabled and sets up hardware specific configurations such as 
physical address and virtual LAN settings. It is also responsible for managing layer 2 switching to make sure 
packets are routed properly. 
• VF Driver 
         VF driver runs on virtual machine as a normal device driver and access the VF dedicated to it, without 
involving hypervisor. 
• IOVM 
         SR-IOV Manager (IOVM) sits in service OS to enable and disable control points within PCIe topology 
and provides a configuration space to VF’s. When a host OS initializes the SR-IOV enabled devices it cannot 
see all the VF’s by scanning PCIe function device ID. Because VF is a tear down version of “light weight” 
function, it does not have complete PCIe configuration values. Proposed architecture uses Linux hot had API’s 
to add VF’s dynamically. Once a VF is assigned to VM, the VM can utilize the VF as a normal PCIe function. 
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Fig 4: SR-IOV Virtualization Architecture 

B. PF Driver/VF Driver Communication 

         A channel is needed for both PF and VF driver to transfer management and configuration information, as 
well as interrupts. In proposed architecture communication between PF and VF is based on a private hardware 
based channel. Intel SR-IOV enabled NIC, implemented this type of hardware based communication. The 
sender writes a message and rings the door bell, which will notify the receiver that data is ready for 
consumption. Receiver consumes it and updates the shared register. 
C. Security Consideration 

         SR-IOV allows the PF Driver to enforce policies concerned to VF device bandwidth, interrupt handling, 
broadcast storms and congestion control etc. PF Driver monitors configuration request and behavior of VF 
drivers. It will take necessary action if anything found unusual. 

IV PROPOSED OPTIMIZATION TECHNIQUE 

         SR-IOV aims for high performance I/O virtualization and scalability by removing hypervisor intervention. 
However hypervisor needs to intercept VM interrupt delivery. It captures the physical interrupt raised by VF. 
We proposed interrupt mask and unmask acceleration optimization which reduce virtualization overhead. 
Adaptive interrupt coalescing (AIC) achieves low CPU utilization with high throughput.  
         High frequency interrupts leads to serious performance issues. Contact switching caused by interrupts 
leads to TLV and cache pollution[7]. Techniques to reduce interrupts, such as NAPI[8] and interrupt coalescing 
in modern NIC drivers, which throttles interrupt after certain amount of time [9-p6]. Our architecture brings 
more challenges to interrupt coalescing. Higher bandwidth may be achieved in intervene communication leads 
to more interrupts and thus may confuse the device driver. Virtualization overhead can be minimized by 
reducing the frequency of interrupts, but it hurts TCP throughput[8]. AIC is used to configure less interrupt 
frequency, but won’t overflow the application buffer or device driver buffer. 

 
         Here ap _ bufs and dd _ bufs are application and the device driver respectively, td means interval between 
two interrupts. pps are the number of packets received per second. We use lowest acceptable interrupt sequence 
(lif) to cut down the latency. Fig 8 and 9 illustrates the results of bandwidth and CPU utilization for both TCP 
and UDP streams. 
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V Experiment and Performance Results 

         This section evaluates the scalability and performance of the virtualization architecture for SR-IOV 
enabled devices. 
• Comparison of Paravirtualized driver and SR-IOV CPU utilization with Single VM. 

 
CPU utilization delta between SR-IOV and VMXNET3 is small at small packet rates and it becomes larger at 
large packet rate. 
• Comparison of Paravirtualized driver and SR-IOV CPU utilization with Multiple VM’s. 
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         PV driver CPU cost is higher than SR-IOV, with the single VM and 4K messages per sec PV burns more 
CPU than SR-IOV by ~30%, while at 8K messages per sec it burns ~65% more. 
• Comparison of Paravirtualized driver and SR-IOV latency with Single/Multiple VM’s. 
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         The above graphs capture 95% latency. SR-IOV roundtrip latency is less than PV especially at high 
message rates. When tested with a single VM at 1K messages/second SR-IOV is better than PV by 36% while at 
16K messages/second is better by ~280%. 

VI. RELATED WORK 
         Virtualization and performance of Ethernet adapter on Vmware Workstation[9] have been studied. Citrix 
Xen’s PV uses shared memory based data channel to reduce data movement overhead.  Various hardware-
assisted solutions are proposed in virtualization to achieve high-performance I/O, such as VMDq[3][4] and self-
virtualized devices[10]. IOMMU is used to offload address translation and memory protection grabs new 
attention. Major bottlenecks for high bandwidth I/O are interrupts due to context switching and cache pollution. 

VII CONCLUSION 
         SR-IOV enabled devices provide good I/O throughput and high degree of scalability with reduced CPU 
utilization. In case of single VF dedicated to a VM increases security capability. SR-IOV based I/O 
Virtualization is a good base to meet current networking requirements.  
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