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Abstract  - The Longest Increasing Subsequence (LIS) and Common Longest Increasing Subsequence 
(CLIS) have their importance in many data mining applications. We propose algorithms to discover LIS 
and CLIS from varied databases. This work finds all increasing subsequences from the given database, 
find increasing subsequences in n sliding window, longest increasing sequences in one and more 
sequences, decreasing subsequences and common increasing sequences of varied window sizes.  The 
proposed work can be applied to finding diverging patterns, constraint LIS, sequence alignment, find 
motifs in genetic data bases, pattern recognition, mine emerging patterns, and contrast patterns in both, 
scientific and commercial databases. The algorithms are implemented and tested for accuracy in both 
real and simulated databases. Finally, the validity of the algorithms are checked and their time 
complexity are analyzed.  

Keywords: DNA operations, Motifs, LIS, LDS, CLIS, Pattern recognition, Exceptional mining, Molecular 
computing. 

I. Introduction 

 We consider the problem of extracting a longest increasing subsequence (LIS) from a sequence of integers. The 
sequence S is assumed to be a permutation of the set {1, 2, . . . , n}, but having multiple occurrences of integers 
between 1 and n, in the sequence of length n, does not change the result. Longest Increasing Subsequence, 
searching from a large database is been widely studied. Efficiently searching for substrings or generally 
different patterns in large databases is needed today. In many instances we do not want to find a subsequence 
exactly, but rather something that is ``similar''.  The process of discovery of patterns  in the genetic data proves 
to be essential in many biological researches and commercial interpretations. Genetic codes are stored in DNA 
molecules. The DNA strands can be broken down into long sequences each of which is one of four basic types : 
A, T, C, G.  The method of subsequence searching should be insensitive of random insertions, deletions and 
type of characters from some originating sequence. They are finding the edit distance, Generalized Center String 
[1], LCRS, CPM, gapped subsequences [18,19], Longest Common Subsequences [LCS]  [21] etc. The nature of 
identifying patterns varies with applications.  The concern is also on the quality of identified patterns. The time 
taken to discover them plays a vital role in huge researches. These prime issues motivates the proposed work. 

A detailed survey of several multiple-string alignment algorithms can be found in [10]. They encountered many 
notable problems like, the task of optimally aligning a set of strings is computationally very expensive [17]  and 
they could only align the global similarities [27]. To overcome the difficulty of alignment problem, modified 
Position Weight Matrices (PWM) [19] can be used to focus on the positions of the patterns in the sequences. 
Various ways of building a PWM have been carried out, some of them are found in  [7,29,26]. 

For huge databases, storing and retrieving of data is computationally expensive and time consuming. Using 
DNA strands and DNA operations [22], the storage and retrieval of data can be done parallely, this reduces the 
time and space complexity. Extracting such sequences and subsequences from a database of sequences [24], is 
an important data mining task with plenty of application domains. Motif discovery in sequences, typically 
involves the discovery of binding sites, conserved domains or otherwise discriminatory subsequences. In 
bioinformatics, the two  predominant applications of motif discovery are sequence analysis and micro array data 
analysis. The definition of the search problem, especially the formulation of objective functions, leaves space 
for substantial improvement in the performance of the motif discovery tool  [20]. 
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II  Literature Review 

The LIS problem is closely related to the longest common subsequence problem, which has a quadratic time 
dynamic programming solution [6,13].  Algorithms for finding the LIS date back to Robinson [12] and 
Schensted [25] with a generalization by Knuth [16].  Fredman [11] showed how to compute an LIS of a length n 
sequence in optimal O(n log n) time. When the input sequence is a permutation of { 1, 2, . . . , n} , Hunt and 
Szymanski [14] designed an O(n log log n) time solution, which was later simplified by Bespamyatnikh and 
Segal  [4]. A survey was done in [2] and  by Odlyzko and Rains [23] who discuss on many related issues, and 
references therein. 

The support of a pattern is the number of sequences containing the given pattern and its commonality between 
various other sequences. The longest increasing subsequence problem refers either to identifying the longest 
increasing subsequence(s) or, alternatively, to determining the length k of the LIS. In either of these forms, this 
problem has been the subject of intense study by mathematicians and computer scientists alike. This problem 
has interesting properties both from a purely combinatorial perspective, as well as actual applications in fields 
such as DNA sequence matching [8]. This problem should not be confused with the Longest Common 
Subsequence (LCS) problem which considers two sequences and locates a series of entries that appear in the 
same order in both sequences. However, LIS is a sub case of LCS. 

Simulation of all the DNA operations are done in [22], the proposed work uses  cut and  pcr  DNA operations. 
Mining GCS, using DNA operations and modified PWM, given a sequential database is performed in [1]. In 
particular, all the occurrences (both overlapping  ones and non overlapping ones) of a pattern in a sequence, 
satisfying the gap requirement and different other patterns are captured, with their support count [21,18,19]. 
This paper deals with finding longest increasing subsequences of any window size, with given constraint, from 
one or more sequences.  

A.  Definitions 

Definition1. (Subsequence and Landmark):  Sequence S = {e1, e2, ...em } is a subsequence of another 
sequence  S′ = {e’1, e’2, ...e’n } (m  ≤  n),  denoted  by S ⊆ S′ (or S′ is a super sequence of S) 1 ≤ l1 ≤ l2 ≤ ... ≤ lm  
≤  n such that S[i]  =  S′[li] (i.e., ei = e’li) for i = 1, 2, ..., m. Such a sequence of  integers 〈l1, l2, ...lm〉 is called 
a landmark of S in S′. 

A pattern P = e1, e2, ...em  is also a sequence. For two patterns P and P ′, if P is a subsequence of P ′, then P  is 
said to be a sub-pattern of P ′, and P ′  a super-pattern of P . 

Definition 2 . Instances   of   Pattern:  For   a pattern  P  in  a  sequence  database  SeqDB = S1, S2, ..., Sn, if 
〈l1, e2, ...lm〉   is   a   landmark   of pattern  P = e1, e2, ...em  in  Si ∈ SeqDB,  pair (i, 〈l1, e2, ...lm〉) is said to 
be an instance of P  in SeqDB,  and  in  particular,  an  instance  of  P  in sequence Si.  

Definition 3. Repetitive Support and Support Set: The repetitive support of a pattern P  in SeqDB is defined 
to be sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant.  The non-redundant instance set I with I = sup(P) 
is called a support set of P  in  SeqDB. 

Definition  4.  Position Weight Matrix:  Given a  finite alphabet Σ and a positive integer m, a PWM M is a 
matrix with ||Σ|| rows and m columns. The  coefficient M, (p, x) gives the score at position p for the   letter x in 
Σ. The PWM defines a function from σm to ʀ, that associates a score to each word u = {u1,u2,...,up} of  σm  : 

ScoreM (u)=Σmp−1  M (p, up), 

Let α be a score threshold.  We say that M  has an occurrence in a text T  at position  k  if  ScoreM (Tk ...Tk+m−1) 
≥ α. 

The most recurrent task is to predict binding sites in a large DNA sequence, that is to look for                             
occurrences  of  a  PWM,  given a  text. 

Definition 5. Longest Increasing Subsequence: Given a sequence S ={ s1,s2, ..., sn} and a window size w  ≤  n, 
a window of width w is a subsequence { si+1, si+2,..., si+w }  for some  0 ≤  i  ≤  n-w . We also consider the 
truncated windows (s1, ... , sj) for j  ≤ w and (sj,..., sn) for j  ≥  n-w as windows of size w. The general problem 
that we consider is that of determining a LIS in each of the windows wi and also termed as Longest Increasing 
Subsequence in Sliding Window (LISSW).If the size of w is fixed it is termed as Longest Increasing 
Subsequence in Fixed Window (LISFW).  
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Figure 1:   Example of Longest Increasing Subsequence 

Longest Increasing Subsequence is the increasing subsequence of S, that has the maximal possible length. There 
can be many possible LIS of S since only the length is unique. For example,  S = (3, 1, 4, 5, 9, 2, 6, 8, 7)  has 
four longest increasing subsequences, including (1, 4, 5, 6, 7) and (3, 4, 5, 6, 8).  There are many solutions for 
finding LIS like [3,5,28,9,15]. This article proposes new approaches to find LIS and its variants using DNA 
operations and modified position weight matrices, from one or more sequences. 

Definition 6. Longest Increasing Subsequence: Let A and B be two sequences A = (a1,a2,...,am) and B = 
(b1,b2,...,bn), where m  ≥  n and each pair of elements in the sequences is comparables. A common increasing 
subsequence of A and B is a subsequence   (ai1 = bj1, ai2 = bj2,...,ai3 = bj3), where i1 < i2 <...< iil and j1 < j2 <...< jil, 
such that for all 1  ≤  k < l, we have aik < aik+1. The longest common increasing subsequence of A and B, is a 
common increasing subsequence of maximum length.  

Definition 7. Common Decreasing Subsequence (CDS): Let A and B be two sequences A = (a1,a2,...,am) and 
B = (b1,b2,...,bn), where m  ≥  n and each pair of elements in the sequences is comparables. A common 
decreasing subsequence of A and B is a subsequence   (ai1 = bj1, ai2 = bj2,...,ai3 = bj3), where i1 > i2 >...> iil and j1 
> j2 >...> jil, such that for all 1  ≤  k < l, we have aik > aik+1. The longest common decreasing subsequence of A 
and B,  is a common decreasing subsequence of maximum length. 

Definition 8. Common Heaviest Increasing Subsequence (CHIS): Let A and B be two sequences A = 
(a1,a2,...,am) and B = (b1,b2,...,bn), where m  ≥ n, each element is accompanied by a weight and each pair of 
elements in the sequences is comparables. The goal is to find the increasing subsequence of maximal sum of 
weights. The Common Heaviest Increasing Subsequence of A and B, is a common increasing subsequence of 
maximum sum of weights. 

III. DNA based LIS and its variant patterns discovery 

 In this paper, we propose, new methods to study the Longest Increasing Subsequences mining problem and 
other different related patterns.  Algorithms 1 and 2   searches for all increasing sequences of different window 
sizes and different other variant patterns, in one and more input sequences, using modified Position Weight 
Matrix (PWM).  

Our approaches  makes minimal   assumptions about the background sequence model and the mechanism by 
which elements affect gene expression. This provides a versatile motif discovery method, across all data types 
and genomes, with exceptional sensitivity and near-zero false-positive rates. Our  algorithms does not use any 
complex statistical models but rather uses DNA operations and DNA strands to search for the given type of 
patterns. The exponential nature of some PWM problems, is a limiting factor for using matrices of medium or 
large length. Here, we use DNA strands to store large data and DNA operations to access them parallely [1,19], 
thus solving the above noted problem.    

 

 

 

 

 

 

 

 

 

Input Sequence  6  9  8  2  3  5  1  4  7 
 
          LIS  1     2  3  4  7 
          
          LIS  2     2  3  5  7 
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Figure 2: LIS for all window sizes possible 

A. Finding LIS in single sequence for all Window sizes (LISW) 

Algorithm LISW discovers all increasing subsequences, LIS and different related patterns, using DNA 
operations and modified PWM, as shown in Figure 2. 

Algorithm 1:  DNA-based-LCS discovery using Support Vector (LCSSV). 

      Input: S, no of elements (noe), window size 

     Output: LISW strands 

1  begin 

2     let n ← max(noe) 

3     let m ← max(window size) 

4     let t1 … tn ← pcr(S) 

5     PWM1 ← cut(t1 , noe[1]) ; 

6     PWMn ← cut(tn , noe[n]) ; 

7    [parallely for each window size LISW2, LISW3, …, LISWm] 

8      foreach windowsize from 2 to m do 

9              [Create threads parallely] ; 

10          foreach i from 1 to ǀSǀ do 

11              if PWM1[i] > 0 then 

12                 test ← PWM1[i] ; 

13             foreach j from i + 1 to ǀSǀ do 

14                if (PWM1[j] > test) then 

15                   LISW2[k][0] ←  i ; 

16                   LISW2[k][1]  ← PWM1[j]; 

17                end 

18              end 

19          end 

20       end 

21    end 

22 Extended for higher window sizes ; 

23  end 

Let no_of_elements (noe), be the set of elements, such that S = (s1, s2, s3, ... ,sm) ɛ (noe), and window size be the 
set of window sizes starting from 2 to max(S). The ouput of Algorithm 1 is LISW strands for window size 2 to 
max(window size). In step 2, n is assigned the value of max(noe). In step 3, m is assigned the value of 
max(window size). Step 4 performs the pcr operation on S and stores them in t1, t2, t3, ... , tn strands. Steps 5 and 6 

Input sequence        6  9  8  2  3  5  1  4  7 
 
Window  size (W)      { 2, 3, 4, 5} 
 
W=2     6 9 / 6 8 / 6 7 / 2 3 / 2 5 / 2 4 / 2 7 / 
             3 5 / 3 7 / 3 4 / 5 7 / 1 4 / 1 7 / 4 7 
 
W=3     2 3 5 / 2 3 4 / 2 3 7 / 2 5 7 / 
             2 4 7 / 3 5 7 / 3 4 7 / 1 4 7 
 
W=4     2 3 5 7 / 2 3 4 7 
 
W= 5 -------------
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performs cut operation on t1 with noe[1], t2 with noe[2], ... , tn with noe[n] and stores in PWM1, PWM2, ... , 
PWMn strands. Steps 8 to 21 performs the process of parallely finding longest increasing subsequences for 
different window sizes given. It vertically checks for the existence of increasing subsequences using position 
weight matrices of step 5 to 6. Algorithm 1 depicts steps for finding IS, for window size 2, which could be 
extended for any window sizes each done parallely. The contents of LISWm are the required LIS of the given S. 
This algorithm can be used for finding Shortest Increasing Subsequences (SIS). The minimum the window size, 
the shorter is the discovered subsequence length, thus algorithm 1, finds SIS also.  

  Time Complexity 

The time complexity of Algorithm LISW consists of two sections. The section 1 comprises of steps from 2 to 6 
and section 2 contains steps from 10 to 21. Therefore, 

TC(LISW) = O(max(O(section1),O(section2))) 

          TC(section1) = O(max(PCR,CUT)) 

If PWM  ɇ  ϕ  then 

          TC(section2) = O((n - 1)(n - 1)!) 

Therefore from [22] at its best case 

          The TC(LISW) is between O((n/L) + n) and O((n - 1)(n - 1)!) 

At its average and worst case 

          The TC(LISW) is between (O(n/M)+O((n/L)+n)) and O((n-1)(n-1)!) 

If PWM ɛ ϕ, 

          TC(LISW) = O(PCR,CUT) )   implies  O(n/M) at its average case. 

B.  Finding LIS for each of the Given Element (LISGE)  

Algorithm LISGE discovers all increasing sub sequences of, each of the given elements and its variant patterns, 
in a given sequence using DNA operations, as shown in Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: LIS for each of the given element 

Algorithm 2: DNA-based-MLCS discovery using modified PWM (MLCSPWM) 

Input: S, no of elements(noe) 
Output: allLIS strand 
1 begin 
2       let n ← max(noe) 
3       let t1, ... , tn ← pcr(S) 
4       let f,   s,  j,  z1 ←  0 
5       PWM1←  cut(t1 , noe[1]) ; 
          ... 
6       PWMn ← cut(tn , noe[n]) ; 
7         [Parallely for each of the element in noe] ; 
8           foreach i ranges from 1 to noe[1] ... noe[n] PWMi[j] > 0 do 
9                foreach j ranges from i + 1 to noe[1] ... noe[n] do 
10                 if (PWMi[j] < PWMz1[j])then 
11                      allLIS2[f][s] = PWMz1[j] 
12                     [Increment f and s] ; 
13                  end 
14               end 
15           end 

No-of-Elements { 1, 2, 3, 4, 5, 6, 7, 8, 9} 
 
Input Sequence       6 9 8 2 3 5 1 4 7   
 
ALL  IS        [  1 4 7 / 2 3 4 7 / 2 3 5 7 / 3 4 7 / 
                         3 5 7 / 4 7 / 5 7 / 6 9 / 6 8 / 6 7  ] 
 
      LIS           2 3 4 7 / 2 3 5 7 
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16 end 

Let no_of_elements (noe), be the set of elements, such that S = (s1,s2, s3, ... , sm) ɛ (noe). The output of 
Algorithm 2 is allLIS strands for all noe[1], noe[2], ... , noe[n]. In step 2, n is assigned the value of max(noe). 
Step 3 performs the pcr operation on S and stores them in t1, t2, t3, ... , tn strands. In step 3, f, s, z1 and j is 
assigned the value 0. Steps 5 to 6 performs cut operation on t1 with noe[1], t2 with noe[2], ..., tn with noe[n] and 
stores in PWM1, PWM2, ...,  PWMn strands respectively. Steps 8 to 14 finds all increasing sub sequences for 
each of the element in no_of_ elements. Algorithm 2 depicts finding all increasing sub sequences for _rst 
element of noe, by vertically checking the contents of  PWM1, with all other PWM2, ... ,  PWMn. Thus finding all 
increasing sub sequences of each of the element of noe, thus algorithm 2, also finds LIS for each of element of 
noe. Similarly, this algorithm can be used for finding Shortest Increasing Subsequences (SIS) for all elements of 
noe.      

 

 

 

 

 

 

 

 

 

Figure 4 : Example of LISSW and LISFW 

 Time Complexity 

Like Algorithm 1, the time complexity of algorithm LISGE also consists of two sections. The section 1 
comprises of steps from 3 to 6 and section 2 contains steps from 9 to 15. Therefore, 

TC(LISGE) = O(max(O(section1),O(section2))) 

     TC(section1) = O(max(PCR,CUT)) 

     If PWM ɇ  ø , then 

          TC(section2) = O(n!),  

     Therefore from [22] at its best case 

             The TC(LISGE) is between O((n/L) + n) and O(n!) 

     At its average and worst case 

             The TC(LISGE) is between (O(n/M) + O((n/L) + n)) and O(n!) 

      If PWM ɛ ϕ,  

             TC(LISGE) = O(PCR,CUT) implies O(n/M) at its average case.                                                    

IV. Variants of LIS 

There are many variants of LIS, depending on its application. Algorithm 1 and Algorithm 2 can be used to _nd 
some of the variants listed below. 

Special Case 1: Finding LISSW and LISFW: Longest Increasing Subsequence in Sliding Window (LISSW), 
or Longest Increasing Subsequence in Fixed Window (LISFW) can be discovered with Algorithm 1, see Figure 
4 . Since algorithm 1 finds increasing sequences for all given window sizes, it can be modified to find LIS with 
sliding window also. The step 13 of algorithm 1 can be modified as j ranging from i + 1 to window size.      

 

 

 

 

 

 

           Input sequence       6 9 8 2 3 5 1 4 7 
           Fixed window size  =  3 
 
Sequences are checked as  6 9 8 – 9 8 2 – 8 2 3 – 2 3 5 – 
                                           3 5 1 – 5 1 4 – 1 4 7 
 
Increasing sub sequences     6 9 / 2 3 5 / 3 5 / 1 4 7 
 
Longest Increasing sub sequences      2 3 5 / 1 4 7 
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Figure 5: Example of CIS and LCIS for two sequences 

 Special Case 2:   Finding CIS and LCIS: Common Increasing Subsequence (CIS), and Longest Common 
Increasing Subsequence (LCIS) can be discovered by using Algorithm 1, 2. Algorithm 1 and Algorithm 2, _nds 
IS and LIS of single sequence, the procedure can be extended for any number of sequences, creating that many 
number of strands parallely.  Finally the IS of the sequences can be compared to find CIS and therefore LCIS 
can also be found. Figure 5 depicts the finding of CIS and LCIS.  

 

 

 

 

 

 

 

 

 

 

Figure 6:  Example of DS and CDS for two sequences 

Special Case 3: Finding DS and CDS : Algorithm 1, 2 can be used for finding Decreasing Subsequence (DS) 
and Common Decreasing Subsequence (CDS) in a single or more number of sequences. In step 14 of Algorithm 
1, and step 10 of algorithm 2, the relational operator used to discover increasing subsequences have to be 
changed to find DS, thereby finding CDS as shown in Figure 6. 

 

 

 

 

 

 

 

 

Figure 7:  Example of Heaviest Increasing Subsequence 

Special Case 4 : Finding HIS and HCIS: With a minimum modification, Heaviest Increasing Subsequence 
(HIS) and Heaviest Common Increasing Subsequence (HCIS) can be found using Algorithm 1 and 2. This needs 

Input Sequence  1      6 9 8 2 3 5 6 4 7 
Input sequence   2      2 4 8 3 6 5 1 6 7 
 
CIS of window size 3 and above  2 3 5 / 2 4 7 / 5 6 7 / 
                                               2 3 5 6 / 3 5 6 7 / 2 3 5 6 7 
 
              LCIS                2 3 5 6 7 

Input Sequence  S1        6 9 8 2 3 5 6 4 7 
Input Sequence  S2        2 4 8 3 6 5 6 4 7 
 
D S of S1   6 2 / 6 3 / 6 5 /  6 5 4 / 9 8 2 / 5 4 / 9 8 3 / 
                  9 8 5 4 / 9 8 6 / 9 8 7 / 6 4 
 
D S of S2   4 3 / 8 3 / 8 6 5 4 / 8 7 / 6 5 4 / 5 4 / 6 4 
 
L D S  of  S1    9 8 5 4 
L D S  of  S2    8 6 5 4 
 
C D S of S1 and S2 8 5 4 / 6 5 4 / 5 4 / 6 4

Input Sequence  6 9 8 2 3 5 1 4 7 
Weights              2 3 4 2 6 8 4 5 3 
Window size  =  4 
 
LIS            2 3 5 7  /  2 3 4 7 
Weights    2 6 8 3  /  2 6 5 3 
 
HLIS       2 3 5 7 
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an additional DNA strand to store each element's respective weight. The weight DNA strand  along with PWM 
strand have to be checked for discovery of HIS, refer Figure 7 and if applied to more number of sequences finds 
HCIS also. These algorithms can further be used to find Heaviest Decreasing Subsequence (HDS) and Heaviest 
Common Decreasing Subsequence (HCDS).  

V. Performance 

 Algorithms 1, 2 have been implemented and tested with simulated and real databases. The random DNA 
sequences of size varying from 100 to 25000, are generated from http://old.dnalc.org/bioinformatics/dnalc-
nulceotide-analyzer.htm#randomizer and  http://old.dnalc.org/bioinformatics.org/sms/rand-dna.html.  The real 
data is collected from EMBL  database in FASTA format. The genome sequences of 3021 viruses are collected 
and tested for the existence of all required patterns. The database is got from 
http://www.ebi.ac.uk/genomes/virus.html. Algorithms 1, 2 proved to be efficient and accurate in solving LIS 
and CLIS in the given sequences. Tested with randomly generated and real motifs, our work could discover all 
motifs present,  with its positions of existence. All implementations are performed  on a dual core computer and 
5 GB main memory using Java. The operating system is Windows XP. The resulted data of these experiments 
are consistent. The limitation of these algorithms is that the maximum number of threads generated, is 
dependent on the efficiency of the system architecture.               

VI. Applications 

 The assumption behind the discovery of patterns is that a pattern that appears often enough, in a set of 
biological sequences, is expected to play a role in defining, the respective sequences functional behavior and 
evolutionary relationships. Since the proposed new algorithms use DNA strands for its DNA  operations and 
other processing, the storage and retrieval processes can be implemented  easily and parallely, whatever may be 
the size of the database. The applications for finding, the existence of subsequences given a large database of 
commercial or genetic information are numerous. The searching for LIS and CLIS and all its variants, has its 
importance in many industrial, research and scientific applications. Especially in medical and genetic field, the 
finding of all patterns of motifs with its diverging pattern, can be used to predict, analyse, interpret and conclude 
the existence or future liability of any disease or abnormality present in the patient data or defaulters in any 
commercial databases. This work can also be applied to analysis of rule based systems, expert systems, pattern 
avoidance, pattern matching, pattern mutation and  other similar commercial database analysis.   

VII. Conclusion 

In this paper, we have designed and performed the implementations to find LIS, CLIS, and different variants of 
it, in a highly parallel way, and can be extended to many other data mining applications also. In future, it is 
possible to solve more real time problems in molecular biology. 
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