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Abstract  - The problem of analysis of biological sequences, is the discovery of sequence similarity of 
various  kinds, in the primary structure of related proteins and genes. This sequence search can be 
applied to various  applications like discovery of association rules, strong rules, correlations, sequential 
rules, frequent episodes, multidimensional patterns and many other important discovery tasks. In this 
paper we have proposed two new approaches to find multidimensional LCS and SCS, of N sequences 
parallely, using DNA operations. These approaches can be used to find MLCS and MSCS, of any window 
size, from any number of sequences, and from any type of input data. The proposed work can be applied 
to finding diverging patterns, constraint MLCS, and many more related patterns Implementation results  
shown the correctness of the algorithms. Finally, the validity of the algorithms are checked and their time 
complexity is analyzed. 

Keywords: sequential patterns, DNA operations, Parallel algorithms. 

I. INTRODUCTION 

Analysis of biological sequences is the discovery of sequence similarity of various kinds, in the primary 
structure of related proteins or genes.  The frequent subsequences usually correspond to residues conserved 
during the evolution due to important structural or functional behavior. This is the prime motivation for the 
proposed work. The task of discovering frequent subsequences as patterns in a sequence data base is done in 
[21,22,28,31,40 ]. Several methods have been proposed for dealing with sequence mining [5,6,9,16,26,35] A 
detail survey of several multiple-string alignment algorithms can be found in [11]. They encountered many 
notable problems like, the task of optimally aligning a set of strings is computationally very expensive[19] and 
they could align the global similarities[28]. If the sequences under comparison are distantly related or if the 
relative order of their similar regions varies among sequences, it is quite possible that no substantial alignment 
can be produced. To overcome the difficulty of alignment problem a modified Position Weight Matrices (PWM) 
[3] can be used to focus on the positions of the patterns in the sequences. Various ways of building a PWM have 
been carried out, some of them are found in [34,8,17,15,31]. Building modified PWM is given in [4].  

II. LITERATURE REVIEW 

A number of pattern discovery algorithms have been steadily appearing in the literature [1,4,6, 
7,12,14,15,19,25,27 ].  Simulation of all the DNA operations are done in [2], the proposed work uses the DNA 
operations cut and pcr operations. Using DNA operations and modified PWM, given a sequential database 
different related patterns were discovered in [1,2,3,4,5,6]. In DNA sequence mining, Zhang et al [28] introduce 
gap requirement, in mining periodic patterns from sequences. In particular, all the occurrences (both overlapping 
ones and non overlapping ones) of a pattern in a sequence satisfying the gap requirement and different other 
patterns are captured, and the support is the total number of such occurrences are found in [3, 4]. This paper  
deals with finding MLCS of any window size, with given constraint, diverging pattern and contrast pattern 
[23,37,38]. This work is an extension of [6] where LCS is discovered using two new approaches. 
Multidimensional sequence mining is done in [13]. The authors have performed data parallelism to mine 
multidimensional sequence mining. The proposed work which is an extension of [6] performs both task and data 
parallelism, to discover MLCS  and other related patterns. 
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A.  Definitions 

Definition1. (Subsequence and Landmark):  Sequence S = {e1, e2, ...em } is a subsequence of another 
sequence  S′ = {e’1, e’2, ...e’n } (m  ≤  n),  denoted  by S ⊆ S′ (or S′ is a super sequence of S) 1 ≤ l1 ≤ l2 ≤ ... ≤ lm  
≤  n such that S[i]  =  S′[li] (i.e., ei = e’li) for i = 1, 2, ..., m. Such a sequence of  integers 〈l1, l2, ...lm〉 is called 
a landmark of S in S′. 

A pattern P = e1, e2, ...em  is also a sequence. For two patterns P and P ′, if P is a subsequence of P ′, then P  is 
said to be a sub-pattern of P ′, and P ′  a super-pattern of P . 

Definition 2. Instances   of   Pattern:  For   a pattern  P  in  a  sequence  database  SeqDB = S1, S2, ..., Sn, if 
〈l1, e2, ...lm〉   is   a   landmark   of pattern  P = e1, e2, ...em  in  Si ∈ SeqDB,  pair (i, 〈l1, e2, ...lm〉) is said to 
be an instance of P  in SeqDB,  and  in  particular,  an  instance  of  P  in sequence Si.  

Definition 3. Repetitive Support and Support Set: The repetitive support of a pattern P  in SeqDB is defined 
to be sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant.  The non-redundant instance set I with I = sup(P) 
is called a support set of P  in  SeqDB. 

Definition  4.  Position Weight Matrix:  Given a  finite alphabet Σ and a positive integer m, a PWM M is a 
matrix with ||Σ|| rows and m columns. The  coefficient M, (p, x) gives the score at position p for the   letter x in 
Σ. The PWM defines a function from σm to ʀ, that associates a score to each word u = {u1,u2,...,up} of  σm  : 

ScoreM (u)=Σmp−1  M (p, up), 

Let α be a score threshold.  We say that M  has an occurrence in a text T  at position  k  if  ScoreM (Tk ...Tk+m−1) 
≥ α. 

The most recurrent task is to predict binding sites in a large DNA sequence, that is to look for                             
occurrences  of  a  PWM,  given a  text. 

Definition 5. Longest Common Subsequence: Given two sequences  X = < x1 , x2, …,  xm > and   Z =< z1,  z2, 
…, zk> ,  we say that Z is a subsequence of X, if there is a strictly increasing sequence of  k indices < i1, i2, ..., ik  
> ( 1 ≤  i1 ≤  i2 ≤ ... ≤ ik ≤ n )  such  that  Z = < x1, x2, … xik >. 

For example, let X = < ABRACADABRA >  and let Z =< AADAA >, then Z is a subsequence of X. Given two 
strings X and Y for example, let X be as before and let Y = <YABBADABBADOO>. Then the LCS is  Z = < 
ABADABA >, refer Figure 1. There are many solutions for finding LCS like dynamic programming solution 
[37], Hunt-Szymanski algorithm [23], etc.  

 
  
 
 
 

 

 

Fig. 1. Example of Longest Common Subsequence 

Definition 6. Dimension:  A table T is a set of tuples <D,A1,A2,A3,…,AN>, where D is an attribute whose 
domain is totally ordered. A sequence S is denoted by an ordered list <t1,t2,t3,…,tk>, where t1 is a tuple, i.e  
D(t1)≤ D(t2)≤ D(t3)≤…. D(tk) for 1 ≤i ≤k and D(t1) = value of D tuple t1. Every tuple has n analysis attributes 
along with an ordered value. A set of analysis attribute values can occur at most once in a same value of D,  but 
can occur multiple times in different values of D attribute. The number of values of D in a sequence is called the 
length of the sequence. If  the  length  of  S  in  k, then we call it a k-sequence [13].  

A multidimensional sequence database is of schema<D, A1,A2,A3,…,An,  R1,…,Rm>, where Ri are called 
relevant dimensions. The schema is partitioned according to relevant attribute values and support computed by 
number of partitions that contain sequence. As mentioned previously, every partition is similar to table T, a set 
of tuples <D, A1,A2,A3,…,An > [13].  Given a minimum support threshold min-support, a multidimensional 
sequence S is called a multidimensional sequential pattern if and only if support (S) ≥ min-support.  

III. DNA OPERATIONS BASED ALGORITHMS 

In this paper, we propose, two new approaches to study the Multidimensional Longest Common Subsequences 
[MLCS] mining problem and other different related patterns.  Algorithms 1 and 2  searches for all common 

             S1        H U M A N 
 
             S2        C H I M P A N Z E E 
 
            LCS           H  M  A  N 
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sequences of different window sizes and different other patterns, in input sequences, using support vector and  
modified Position Weight Matrices (PWM). 

Our approaches makes minimal assumptions about the background sequence model and the mechanism by 
which elements affect gene expression. This provides a versatile motif discovery method, across all data types 
and genomes, with exceptional sensitivity and near-zero false-positive rates. Our  algorithms does not use any 
complex statistical models but rather uses DNA operations and DNA strands to search for the presence or 
absence of patterns. The exponential nature of some PWM problems, is a limiting factor for using matrices of 
medium or large length. Here, we use DNA strands to store large data and DNA operations to access them 
parallely [2][3], thus solving the above noted problem.  

A. Finding MLCS using Support Vector (MLCSSV) 

Algorithm MLCSSV discovers MLCS and different related patterns, with its support vector using DNA 
operations. Algorithm 1with window size 3  is illustrated in Figure 2. 

 Algorithm 1:  DNA-based-MLCS discovery using Support Vector (MLCSSV). 

Input:   S,   level_number, D 

Output:  MLCS strand,   supp strand 

1. begin 
2.    Generate DNA0 and DNA1; 
3.    number_of_ nodes ← size(DNA0) ; 
4.    DNA01…DNA0N ← pcr(DNA0) ; 
5.    DNA11…DNA1N ← pcr(DNA1) ; 
6.   foreach element of DNA01…DNA0N  and   DNA11…DNA1N  do 
7.     Create threads parallely ; 
8.     let supp01…supp0N[],pos01…pos0N[][]←   cut(S,DNA01…DNA0N[element]) ; 
9.     let supp11…supp1N[],pos11…pos1N[][]←   cut(S,DNA11…DNA1N[element]) ; 
10.   end 
11.  [parallely for lcs0 and lcs1] ; 
12.   foreach j from 1 to number_ of_ nodes do 
13.      if (supp01[j]…supp0N[j]) > 0 then 
14.          lcs0[] ←  DNA01[j]; 
15.          supp1[] ←  min(supp01…supp0N); 
16.      end 
17.      if (supp11[j]…supp1N[j]) > 0 then 
18.         lcs1[] ←  DNA11[j] ; 
19.         supp2[]← min(supp11…supp1N); 
20.      end 
21.   end 
22.  foreach (lcs0[] or lcs1[]) <> 0   
23.     if  ((lcs0[]. S1.D1[]) = = (lcs0[]. S2.D2[])) then 
24.          MLCS[] ← lcs0[];  
25.     if  ((lcs1[].S1.D1[]) = = (lcs1[]. S2.D2[])) then 
26.          MLCS[] ← lcs1[];   
27.  end 
28.    Extended for any number of Sequences; 
29.  end 

 Algorithm MLCSSV discovers MLCS and different related patterns, with its support vector using DNA 
operations, refer Figure 3. Let S = (s1,s2...sN), be the N input sequences, encoded in 0's and 1's,  D = (D1,D2...DN) 
be their dimensions respectively and the level_number be the maximum length of MLCS sequence required, that 
is, the window size of   MLCS.  MLCS strand along with its supp, that is, number of times each subsequence is 
present in the given sequences be the output strands (support). Step 2 generate DNA0, the possible combinations 
of 0's and DNA1, the possible combinations of 1's [18], depending on the level_number. Let the 
number_of_nodes be the variable, which stores the total number of elements present in DNA0 or DNA1. Steps 4 
and 5 performs the pcr operation on DNA0 and DNA1 strands, for N sequences and stores in  DNA_01...DNA0N 
and   DNA11...DNA1N respectively. In steps 6 to 10, for each element of DNA01...DNA0N and DNA11...DNA1N, 
threads are created parallely and cut operation is applied to find the support count and position of its occurrences 
and stored in supp01...supp0N,  pos01...pos0N,  supp11...supp1N and pos11...pos1N  respectively. In steps 12  to 21, 
the supp and pos strands are searched vertically for occurrences of all common subsequences for all window 
sizes and the LCS is found for the given level_number . Finally the discovered LCS in S are relationally 
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checked for the equality of their respective dimensions and stored in MLCS strand. The same can be checked for 
ascending and descending order   dimensions also. The Algorithm 1 depicts the process for two sequences in S, 
and can be extended for N sequences. 

                                                          

Fig. 2.  Illustration of Algorithm 1 

Time Complexity 

The time complexity of Algorithm1 can be analyzed in 2 phases. The phase 1 is discovery of  LCS [6] and 
discovery of MLCS from LCS  constitutes phase 2.  Therefore,   

TC(MLCSSV ) = O(LCS) + O(MLCS). 

If  levelnumber ≠  0, then 

      TC(LCS)  is between O((n/L) + n)  and  O(levelnumber))   at its best case  

               And   between (O(n/M)+O((n/L)+n)) and   O(levelnumber) at average case  [6] 

       TC(MLCS) = O(|LCS|) 

  Therefore at its best case 

        TC(MLCSSV ) =  max((O((n/L) + n) and O(levelnumber)), O(|LCS|) )  

    At its average and worst case 

         TC(MLCSSV ) =  max((O(n/M)+O((n/L)+n)) and O(levelnumber)), O(|LCS|) ). 
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Fig.  3.  Finding MLCS using Support Vector (MLCSSV) 

Special Case:  Multidimensional Shortest Common Subsequence (MSCS): Algorithm MLCSSV can be used to 
find MSCS in S. Since all possible common sequences of all window sizes from 1 to level_number is generated, 
the Algorithm MLCSSV can be used to find common sequence of any small length, thus SCS and thereby 
MSCS.   MSCS is found by varying the window size, that is 1. 

B.   Finding MLCS using modified PWM (MLCSPWM) 

DNA based MLCS discovery using modified PWM,  discovers MLCS in the given N sequences  using DNA 
operations and modified PWM,  refer Figure 4. 

Algorithm 2: DNA-based-MLCS discovery using modified PWM (MLCSPWM) 

Input: S, D 

Output: MLCS strand, PWM strand 

1. begin 
2.    L  ←min(S); 
3.    T1, T2., …, TN  ← pcr(S); 
4.    PWM1[1…L]← cut(T1 , sL[element]); 
5.    PWM2[1…L]← cut(T2 , sL[element]); 
6.    … PWMN[1..L] ← cut(TN , sL[element]); 
7.    j  ←1; 
8.    foreach i ranging from 1 to L do 
9.        if (PWM1[i][j] > 0) then 
10.                test ← PWM2[i][0]; 
11.                lcs[][] ← i; 
12.                lcs[][] ← PWM1[i][j]; 
13.       end 
14.      foreach (i ranging from i + 1 to L) AND (PWM1..N [i][j] ≠ ø)  do 
15.            if (test < PWM2[i][j]) then 
16.                   test←  PWM2[i][j]; 
17.                   lcs[][0] ← i; 
18.                   lcs[][1]  ←PWM2[i][j] ; 
19.               end 
20.               else 
21.                         j++ ; 
22.                end 
23.        end 
24.     foreach (lcs[][0] <> 0)  
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25.         if  ((lcs[][0]. S1.D1[]) = = (lcs[][0]. S2.D2[])) then 
26.                     MLCS[] ← lcs[][0];  
27.      end 
28.                Extended for N number of PWM strands 
29.     end 
30.  end 

Let S = (s1, s2,…sN), be the N input sequences,  D = (D1,D2...DN) be their dimensions respectively, and  MLCS 
and PWM are the output strands, refer Figure 5. Step 2 finds the length of the smallest sequence in S and stores 
in L. Step 3 performs the pcr operation on each of the sequence in S and stored in T1, T2,…,TN. Steps 4-6 does 
the cut operation on T1, T2,…,TN, for each of sL[element] and their position weight matrices are generated as 
PWM1[1…L], PWM2[1…L], ... PWMN[1…L] respectively. Steps 8 to 25 performs a vertical check operation on 
all PWM, checking for the occurrences of elements of sL, in order of their presence, stores in LCS strand, finally 
the discovered LCS elements in each sequence in checked for their dimensions with other sequences and stored 
in MLCS strand. Algorithm MLCSPWM illustrates for PWM1 and PWM2 strands,  thus can be extended for N 
number of PWM strands . 

Algorithm MLCSSV and MLCSPWM can be used to generate MLCS for different support counts, for any 
window size, and all MLCS with position of its occurrences, discover Multidimensional Constrained Longest 
Common Subsequence (MCLCS)   and  find diverging and emerging patterns with given dimensions. 

                                            

Fig.  4.   Illustration of Algorithm 2 

 Time Complexity 

The time complexity of Algorithm 2 can be analyzed in 2 phases. The phase 1 is discovery of  LCS [6] and 
discovery of MLCS from LCS discovered constitutes phase 2.  Therefore,   

TC(MLCPWM ) = O(LCS) + O(MLCS). 

  If PWM  ɇ   ø , then 

        TC(LCS)  is between O((n/L)+n) and O(|min(S)|) at its best case, 

            and  is between   (O(n/M) + O((n/L) + n)) and  O(|min(S)|)  at its average case  [6]  

        TC(MLCS) = O(|LCS|)  

  Therefore at its best case 

    The TC(MLCSPWM) =  max(O((n/L)+n) and O(|min(S)|), O(|LCS|) ) 

At its average and worst case  

The TC(MLCSPWM) =max( O(n/M) + O((n/L) + n) and O(|min(S)|), O(|LCS|) ) 
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Fig. 5: DNA-based-MLCS discovery using modified PWM (MLCSPWM) 

IV. DIFFERENT RELATED PATTERNS 

Special Case 1: Find MCLCS and Sequence Divergence 

Algorithms 1 and 2 can be extended to find  MCLCS for given S. Since all possible LCS are found, the 
constraint can be can be applied and the final MCLCS  can be found as shown in Figure 6  and thereby find 
sequence divergence also. 

                              

 

 

 

 

 

 

 

Fig. 6.  Example of MLCS 

Special Case 2: Find Diverging and Emerging Patterns 

Algorithms MLCSSV and MLCSPWM can also be used to find diverging and emerging patterns for given S. 
Steps 13 to 20 in Algorithm MLCSSV and  steps 14 to 23 in Algorithm MLCSPWM, can be modified to find 
diverging and emerging patterns for given S. 

Special Case 3: Re description Mining 

The goal of re description mining is to use the given descriptors as a vocabulary and find subsets of data. 
Algorithms 1 and 2  can be extended to find subsets from a given set of data. 

V. PERFORMANCE 

Algorithms MLCSSV and MLCSPWM have been implemented and tested with simulated and real databases. 
Therandom DNA sequences of size varying from 100 to 25000, are generated from 
http://old.dnalc.org/bioinformatics/dnalc-nulceotide-analyzer.htm#randomizerand 
http://old.dnalc.org/bioinformatics.org/sms/rand-dna.html.  The real data is collected from EMBL database in 
FASTA format. The genome sequences of 3021 viruses are collected and tested for the existence of all required 
patterns. The database is got  from http://www.ebi.ac.uk/genomes/virus.html. Algorithms   MLCSSV and 
MLCSPWM proved to be efficient and accurate in solving MLCS and MCLCS in the given sequences. Tested 
with randomly generated and real motifs, our work could discover all motifs present, with its positions of 
existence. All implementations are performed  on a dual core computer and 5 GB main memory using Java. The 
operating system is Windows XP. The resulted data of these experiments are consistent. The limitation of these 
algorithm is that the maximum number of threads generated, is dependent on the efficiency of the system 
architecture. 

VI. APPLICATIONS 

The assumption behind the discovery of patterns is that a pattern that appears often enough in a set of biological 
sequences is expected to play a role in defining the respective sequences functional behavior and evolutionary 

  S1        T A G T C A C G    

  D1       5  5  5  5  5  5  5  5  

      S2        A G A C T G T C 

                D2        5  5  5  5  5  5  5  5  

   C  =  A T     

Possible  LCS  of  window  size  4  is   A G A C  &    A G T C 

                   MCLCS  =  A G T C 
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relationships. Since the proposed new algorithms use DNA strands for its DNA operations and other processing, 
the storage and retrieval processes can be implemented  easily and parallely, whatever may be the size of the 
database. Since the applications for finding, the existence of subsequences given a large database of commercial 
or genetic information are unlimited, the searching for MLCS and MCLCS has its importance in many 
industrial, research and scientific applications. Especially in medical and genetic field, the finding of all patterns 
of motifs with its diverging pattern, can be used to predict, analysis, interpret and conclude the existence or 
future liability of any disease or abnormality present in the patient data or defaulters in any commercial 
databases. This work can also be applied to analysis of rule based systems, expert systems, rule mining, pattern 
mining, program execution traces, algorithm behavioral patterns and  other commercial database analysis. 

VII. CONCLUSION 

In this paper, we have designed and performed the implementations to find MLCS,  MSCS, and different related 
patterns, in a highly parallel way, and can be extended to many other data mining applications also. In future, it 
is possible to solve more real time problems in molecular biology. 
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