Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

JIAC Systemsand JADE Agents
Communication

Abdellatif SOKLABI*, Mohamed BAHAJ?, Ilias CHERTI®

#FST Settat/ Department of Mathematics and Computer Science, University Hassan Ist
Settat, 26000, Morocco
! abd.sokl abi @gmail.com
2 mohamedbahaj @gmail.com
3iliascherti @yahoo.fr

Abstract—Many Mobile Agent Systems (MAS) have been developed, but with diverse proprietary
Application Programming Interfaces (APIs). This propagation of incompatible APls implies the
complexity of communication and interaction inter-platforms. In a heter ogeneous network, an agent may
also need to cooperate with agents developed for different platforms. Furthermore, a group of
cooperating agents and their interacting pattern are usually dynamic and are unknown at the design
stage. As a result, an open and flexible communication and interaction model is needed to ensure the
inter oper ability among mobile agents and mobile agent systems. Agent communication and interaction
are achieved through agent communication mechanisms provided by agent systems. Agent
communication mechanismsvary considerably from one agent system to another agent system.

Our work was to find a suitable solution to the communication between both JIAC and JADE agents,
which takesinto consideration the ar chitecture, APl and language with which both SM A wer e developed.

K eywor ds-M obile agents, Agents communication, inter oper ability, JADE, JIAC

[. INTRODUCTION:

Agents can achieve high-level interoperability by communication at a higher-level of abstraction involving
such concepts as beliefs, goal's, expectations and intentions. Currently, mobile agent presents a very narrow view
of agent communication that does not take full advantage of communication as an interoperability mechanism.
We argue that at this critical period of standardization efforts in the broader area of agents, bringing mobile
agents and agent communication together is an opportunity not to be missed.

JAC (Java-based Intelligent Agent Componentware) is a framework that alows the easy development of
multi-agent-systems [5], [6], [7], [10], [11]. It presents a specific AOSE [1] methodology and tools that should
support and ease the development of agent-based applications. JAC is built around solid component
architecture and uses agent programming language JADL. It is defined as a FIPA compliant agent framework.
JAC provides management and security functionalities as well as a generic scheme for user access. JAC's
agents are based on the BDI (Believe “data’, Desire “goal”, Intention “adopting plans’) concept. That is, to
reach a defined goal, an agent may analyze the related data and choose the appropriate plan.

JADE (Java Agent Development Framework) is the most diffuse FIPA compliant agent platforms for mobiles
agents applications development [3], [4], [13]. But, it is not interoperable with several of current mobiles agents
systems employed for the development of agent-based applications. It is written in Java programming language
and is made up of diverse Java packages, which gives to applications programmers many functionalities and
interfaces.

ActiveMQ is a message broker which is used to develop a MOM (Middleware Oriented Messages). It
supports multiple protocols at several levels for maximum interoperability. It works well with JAVA which is
the programming language of both JJAC and JADE. And it exchange messages in asynchronous mode, which is
the mode needed to insure communication between JAC and JADE mobiles agents. So AvctiveMQ was the
best MOM to choose in order to provide communication between the two MAS (Mobile Agent System).

There is no notion of an execution environment and the focus is on communication as the means for
achieving interoperability [15]. In the latter case, interoperability is akin to effectively exchanging the
information and knowledge content of the agents. From this we can conclude that communication is a basic
element to ensure the interoperability.

Here, we will try to explain our solution for communication between JAC agents and JADE agents. Our
solution is adapted to the architecture, APl and language with which both SMA have been developed. For that
we introduce the paper with used component summary and research motivation. Then we describe the overall
design of JAC and JADE mobile-agent systems, Section 2 and Section 3. We present some related work in
Section 4. Section 5 presents the Java Message Services. Section 6 discusses how to use ActiveMQ like a

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1976

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

communication layer between JADE and JAAC. Finally, in Section 7, we conclude by presenting a
demonstration application of our result.

Il. JAC:
A. What isJIAC?

JAC is conceived as a comprehensive toolkit for conceiving and deploying multi-agent systems [10] [11] [12]
[14]. 1t presents a specific AOSE [1] methodology and tools that should support and ease the development of
agent-based applications. JJAC is built around solid element construction and uses a precise agent programming
language and defined as a FIPA compliant agent framework. It provides management and security
functionalities as well as a generic scheme for user access.

B. Agents communicationin JIAC:

JAC employs service based interaction. More specifically, while JAC uses FIPA compliant speech acts for
communication, the communication between two J AC-agents is always handled via service calls. Every service
cal is wrapped in a so caled Meta protocol which automatically takes care of security requirements, error
handling, data exchange and negotiation protocols between agents. The actual exchange of messages between
agents during one service session however is not restricted, as long as both agents can agree on a common
protocol. The default implementation of JAC's communication components relies on ActiveMQ. The message
broker is a component of the AgentNode and supplies messaging between all agents on it and on other nodes.

While service provision always occurs between two agents, the meta protocol aso allows to precede the
actual provision with a provider selection, where the service user can request a service from many agents and
use any suitable protocol such as for example the contract net protocol to select the most suitable provider.

111. JADE:
A. What is JADE?

JADE is an agent platform and development framework [3], [4], [13] compliant with FIPA. Agent platforms
are responsible for dealing with agent services such as messaging, development, agent lifecycle management
and other common resources. JADE agents execute and share services with other agents present in the container.
Our main interest in the JADE platform concerns its messaging capabilities.

JADE provides an agent based platform, index facilitator and ACC which eases the development of agent and
its functionalities. An agent is congtituted from different synchronized behaviors. JADE employs dedicated
methods to dispatch messages among other agents. When agents are in the same platform, the messages are
delivered by java local calls according to FIPA specification when crossing platform boundaries. JADE is
continuously developed and maintained by Telecom Italia Lab (Tilab) developers, where it was originated first.

B. Communication agentsin JADE:

We talk about Inter-platform messaging when two or more agents that reside in different platforms wish to
communicate. This communication takes place over JADE's Internal Message Transport Protocol (IMTP).
IMTP techniques currently used by JADE are Java Event passing for intra-container messaging and Remote
Method Invocation (RMI) for inter-container messaging. According to the FIPA condition, agents communicate
via asynchronous message passing. The Agent class provides methods for agent communication and the
ACLMessage class represents exchanged messages between agents. An agent which wants to send a message
must create a new ACL Message object that fill its attributes with appropriate values, and then call the agent
SEND(). Similarly, an agent ready to receive a message should call RECEIVE() or BLOCKINGRECEIVE()
method, both methods implemented by the Agent class. Sending or receiving messages can also be programmed
as independent agent actions by adding the behaviors ReceiverBehavior and Sender Behavior to the agent queue
of tasks.

IV.SIMILARWORK:

There was an implementation attempt of a network protocol called Agent Platform Protocol (APP) in JADE
in order to realize the interaction between JADE and KODAMA [17]. APP was designed to meet the exact
demands of agent interaction over world-wide networks. It works at a lower level than agents do. APP was
already implemented in KODAMA. The advantage of the implementation of APP in JADE does not affect the
origina JADE agent structure. And In order to get KODAMA and JADE agents to work together, they simply
assign the Directory Facilitator of a JADE system to the top community in a KODAMA system, so that JADE
agents can send SEARCH REQUESTS to the portal agent of the top community if they cannot find them in the
JADE system. Also, they use the JADE message form as the standard one where messages are exchanged
between JADE and KODAMA. This is because KODAMA agents do not make use of the “address’ parameter
that isused in JADE agents.

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1977

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

Another work presented Agent Communication Language [18] (ACL) as an interoperability mechanism,
made by exploiting that ACLs offer a conceptual framework that can assist in addressing the difficult problem
of achieving interoperability between applications. An Agent Communication Language offers some kinds of
advantages, like that the declarative nature of most ACLs provides many features that make interoperability
easier, such as abstracting away some of the lower-level, more procedural aspects of the systems involved.
Moreover, an ACL supports interoperability between static and mobile agents, between mobile agents designed
for different agents platforms and also between mobile agents and static agent information sources. And the
higher level of abstraction at which ACLs operate can accommodate multiple paradigms.

An ACL can be considered as a collection of message types each with areserved meaning. A communication
language is not concerned with the physical exchange, over the network, of an expression in some language, but
rather with stating an attitude about the content of this exchange. However, this research was conducted before
the creation of JJAC which has recently been created and does not take into consideration the architecture and
APIswith which the various SMA were created.

V. MS:
A. What is IMS?

The Java Message Service (IMS) [9], [8] specification provides an Application Programming Interface and a
semantics that describe the interface and general behavior of an Enterprise-messaging service. The goa of the
JMS is to provide a universal way to interact with multiple heterogeneous Enterprise-messaging services in a
consistent approach. All messaging is about the separating of senders and receivers. The messages are sent to a
broker and then they are received from a broker in an asynchronous manner, which corresponds perfectly to the
asynchronous way of communication between JADE agents.

B. Integrating IMSin JADE :

JMS provides to Java an implementation of MOM (Message Oriented Middleware) or middleware
communication messages. However, to use IMS, we must have an external implementation to Java. There are
many implementations, both commercial and Open Source. Examples: Websphere MQ 1BM, OpenJMS,
ActiveMQ which we use here.

There was already an attempt to integrate IM S Message Transport Protocol solution for the JADE Platform to
deliver interplatform JADE agent communication Between Platform [8]. In this paper we integrate IMS with
JADE and other messaging solution for connection between JADE and JIAC, with respect to the operating
principle of JADE, which is possible by adding JIMS headers IMS message before JADE sends them. In this
way, messages will be easily read and analyzed by the IMS is already integrated in JAC. JMS can be integrated
into JADE like alibrary that will be called as needed (Fig. 1).

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.jms.Destination;
import javax.jms.MessageProducer;
import javax.jms.JMSException;

public class ProducerAgent extends Agent {
ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
msg.setContent("I am a JADE agent message");
TextMessage message =
session.createTextMessage(msg.getContent());

Fig.1 Packages and integration of messagesin JMS sessions
VI.ACTIVEMQ:
A. Operating principle of ActiveMQ:

ActiveMQ works well with JAVA which is the programming language of JADE; it's a message broker which
is used to develop a Middleware Oriented Messages. It supports multiple protocols at severa levels for
maximum interoperability like AMQP, MQTT, OpenWire, REST, RSS and Atom. In ActiveMQ like any other

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1978

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

MOM messages consists of two parts. the header technique and the data can be in any format. ActiveMQ
exchanges messages in asynchronous mode. The sending application of a message and the receiving application
of the message don't need to be active simultaneously. The queue receives the message from the sending
application and stores it until the receiving application comes and reads the message. It allows the changing of
the data messages format to fit the receiving application. We choose AciveMQ to benefit from its reliability.
Each message sent by an application is subject to an acknowledgment by the MOM. Every application that
consumes a message sends an acknowledgment to the MOM. Coupled with persistence, this mechanism ensures
that no message will be lost in the transfer between applications. ActiveMQ [19] has two main operating modes:
« Point to point: an application produces messages and another consumes them. Messages are read by a single
consumer. Once a message is read, it is removed from the queue.
« Publish Subscribe (by subscription): messages intensive applications subscribe to a topic (subject, message
category). Messages posted to this topic remain in the queue until al applications have subscribed to read the
message.

B. Integration of ActiveMQ in JADE:

When using plain old Java to set up the broker, the org.apache.activemg.broker.BrokerService class is one
starting point. This class is used to configure the broker and manages its entire life cycle. The BrokerService
class is useful when the needing to configure JADE using JAVA for the broker configuration. This method is
useful for many situations, in particular when the need of an externally customizable configuration. In many
JADE applications, the programmer wants to be able to initialize the broker using the same configuration files
used to configure standalone instances of the ActiveMQ broker. For that purpose, ActiveMQ provides the utility
org.apache.activemq.broker.BrokerFactory class.

The BrokerFactory class is a utility that makes it easy to create a broker instance simply using an ActiveMQ
URI. Depending on the broker URI scheme, the BrokerFactory locates the appropriate factory and uses it to
create an instance of the BrokerService class. The most widely used factory is the XBeanBrokerFactory class
and is configured by simply passing the XBean-style of URI. ActiveMQ can be integrated in JADE as libraries
that will be called asrequired (Fig.2).

import org.apache.activemq.ActiveMQConnection;
import org.apache.activemq.ActiveMQConnectionFactory;

Fig.2. imported ActiveMQ libraries

C. Queue structure:

The IMS-ActiveMQ utilizes a queue structure, as illustrated in (Fig.3), which requires each platform to have
its own queue for incoming messages. Every SMA may read messages from its queue. To avoid naming
conflicts we prefer for all JADE platform queues to be placed under the ‘/jade’ prefix and for al JAC platform
queues to be placed under the ‘/jiac’ prefix. If several platforms of the same type are installed, separation
numbers are automatically added to the names of agents (queue 1/jade, queue 2/jade ... queuel / JAC,
queue_2/jiac ...).

JADE
Agent
ACC ACC
MS IMs
JIAC - JADE
K ActiveMQ)
JADE JIAC

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1979

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

Both JADE and JIAC use the Services for Agent Communication Channel (ACC) stored in ACCService. It
contains on the one hand services to forward speech-acts and on the other one service to retrieve temporary
stored speech-acts as well as services to set on the storage modus for undeliverable speech-acts. The protocols
that implement the provider’ s role are defined in ACCProvider, service’ srole is not used.

VII. APPLICATION:

In our application, we sent messages of text type from JADE agents (Producer agent) and receive messages
by agents of JAC (Consumer Agent) using the IMS API and ActiveMQ broker. The programming interface
Java Message Service (JMS) allows to send and receive messages asynchronously between applications or Java
components. It also allows the messages exchanging between several systems. The IMS model comes from the
unification of two modes of communication: « A means of communication from point to point with a temporary
storage in a mailbox called Queue, where aproducer will leave a message to be read later by a consumer (Fig.4).
* A communication mode or event mode publish / subscribe, where zero or more consumers listening on the
same broadcast channel called Topic, powered by one or more producer.

message
Producer
Agent

message
Consumer

Fig.4 transfer of messages between the Producers agents of JADE and Consumers agents of JAC

Unlike RPC models (CORBA, RMI and SOAP), the consumers and producers don't share interfaces and
exchange information only in the form of messages. A message is defined as the composition of a header, title
and content. The latter can be of several kinds: text, binary...

The mechanism for the creation of connection and session is perfectly identical to the creation and reception
of messages. It involves two entry points. ConnectionFactory factory of connection and the name of the
destination (Queue or Topic). The connectionFactory creates a connection which in turn creates one or more
sessions. MessageProducer or a MessageConsumer exists only within a session. It's specific to a destination. A
consumer can naturally receive multiple messages, as well as a Producer can produce more messages in the
same Session.

A. JADE Producer agent:

To send amessage, it must have a ConnectionFactory and know other hand, the name of a destination, Queue
or Topic. Creating a ConnectionFactory is specific to an implementation, here it is ActiveMQ. The required
parameter is the server address and port number (Fig.5).

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1980

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

public class ProducerAgent extends Agent {
private static String broker_url = ActiveMQConnection.DEFAULT_BROKER_URL;
private static String queue = "queuel/jiac";
public static void main(String[] args) throws IMSException {
// Getting connection from the server
ConnectionFactory CF = new ActiveMQConnectionFactory(broker_url);
Connection connection = CF.createConnection();
// Starting the connection
connection.start();
// creating a Session.
Session session = connection.createSession(false, Session.AUTO ACKNOWLEDGE);
// the destination queue on the IMS server.
Destination destination = session.createQueue(queue);
// sending messages by using MessageProducer
MessageProducer producer = session.createProducer(destination);
ACLMessage acl_msg = new ACLMessage(ACLMessage.INFORM);
msg.setContent("I am a JADE agent message");
// send a text message saying 'I am a producer agent'
TextMessage msg = session.createTextMessage(acl msg.getContent());
// sending the message
producer.send(message);
System.out.println("Sent message '" + msg.getText() + "'");
connection.close();

Fig.5 JADE Producer agent

i % Package.. I = 8

|3

; :Ljdjade
'l L:‘f- JADE_cormmunication ‘

4 (% src B

4 8 firstAgent
> E ProducerAgent.java
» B8 JRE Systern Library [JavaSE-1.6]
4 =) Referenced Libraries
> 3 hitpjar - C:\added folder\jade\lib

m

iiop.jar - Chadded folder\jade\lib

]

1ET

commoens-codec-1.3 jar - Chadded folder jac

]
=

3

=1

jadejar - Chadded folder\jadellib

I

jadeTools.jar - Chadded folder\jad &\lib
agentCore-5.1.3-jar-with-dependencies.jar - ©

[
EE

» BH com.sun.activation.registries
- BH com.sun.activation.viewers
- f3 com.sun.istack

- B3 com.sun.istacklocalization

El Console 532

<terminated> Producerfgent (1) [Java Application] C:\Prograr
Sent message 'I am a JADE agent message’

Fig.6 JADE Producer agent execution result

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1981

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

B. JIAC Consumer agent:

The default implementation of JAC's communication components relies on ActiveMQ [19]. The message
broker is a component of the AgentNode (Fig.7) and supplies messaging between all agents on it and on other
nodes. The first to do is to add a CommunicationBean (Fig.8) to those agents that want to talk to other agentsin
the configuration file. Note that, if the user uses the SimpleAgent definition as parent for the configuration, the
agent gets a CommunicationBean automatically, so he can omit specifying the property. If he uses a full
configuration, he has to provide a communication property. The CommunicationBean registers the
IMessageBoxAddress of the agent at the broker, in order to be able to send messages to that agent directly.
Furthermore, the CommunicationBean provides some actions that can be used by the agent containing the
CommunicatioBean.

<?xml version="1.0" encoding="UTF-8"?>

<beans>
<import resource="classpath:de/dailab/jiactng/agentcore/conf/AgentNode.xmL" />
<import resource="classpath:de/dailab/jiactng/agentcore/conf/Agent.xmlL" />
<import resource="classpath:de/dailab/jiactng/agentcore/conf/IMSMessaging.xmlL"
/>

<bean name="CommunicationNode" parent="NodeWithJMS">
<property name="agents">
<list>
<ref bean="CommunicationAgent"/>
</list>
</property>
</bean>

<bean name="CommunicationAgent" parent="SimpleAgent" scope="prototype">
<property name="agentBeans">
<list>
<ref bean="CommunicationBean" />
</list>
</property>
</bean>

<bean name="Bean" class="communication.CommunicationBean"
scope="prototype">
<property name="executeInterval" value="1000"/>
</bean>
</beans>

Fig. 7 Consumer AgentNode Configuration

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1982

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

public class CommunicationBean extends AbstractAgentBean{

private static String broker_url = ActiveMQConnection.DEFAULT_BROKER _URL;
// Queue name from which the message is recaived
private static String queue = "queuel/jiac";
public void execute() {
// Getting connection from the server
ConnectionFactory CF
= new ActiveMQConnectionFactory(broker_url);
Connection connection = CF.createConnection();
connection.start();
// Creating session
Session session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
// Getting the queue 'queuel/jiac'
Destination dest = session.createQueue(queue);
// MessageConsumer is used for receiving messages
MessageConsumer consumer = session.createConsumer(dest);
//Receive the message.
Message msg = consumer.receive();
// Printing the message
TextMessage tMessage = (TextMessage) msg;
System.out.println("Received message '" + tMessage.getText() + "'");
connection.close();

Fig.8 JJAC agent CommunicationBean

The Figure 9 shows a screenshot of the JAC project structure with different used libraries and the result of
the execution of the agent consumer which gets the same message that was sent by the JJAC agent producer.

L@ JJAC Nav... [E Package.. i Tz Mavigater — O

= <}=,=l“} =
; '_,';‘Jjade
b '_jj JADE_communication
. 22 JIAC

i '[D‘J- JIAC _communication
8 src/main/jadl-onto

[src/main/jadl-knowledge

- = JRE System Library [jre6]
. =y JIAC IV Library [4.7.2]
. =4, Referenced Libraries
. [srC
- [target
| pormsxml

» = MQ

&l Console &3

<terminated> CommunicationBean (1) [Java Application] CA\F
Received message 'I am a JADE agent message'

Fig.9 JADE Producer agent execution result

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1983

Abdellatif Soklabi et.a / International Journal of Engineering and Technology (1JET)

VIIl. CONCLUSIONSAND FUTURE WORK:

The software of agents offers a new model for building very large scale distributed heterogeneous
applications that focus on the interactions of autonomous, cooperating processes that can adapt to humans and
other agents. As such, communication is the solution to realize the potential of this new model, just as the
development of human language was critical to the development of human society and culture. This holds for
mobile agents as well as for static ones. Agents use an Agent Communication Language to communicate
information and knowledge. In this paper, we have to communicate the agents of the most used MAS in the
world and the agents of the newest framework of MAS creation, that always in ongoing amelioration by a very
active searcher community. The work is not going to stop at this stage, as we continue through the Securing
agent communication before proceeding to push research in the way of interoperability which was our original
goal.

REFERENCES:

[1] M. Gaglio, S. Garro and A. Seidita, “Method fragments for agent design methodologies, from standardization to research” In Agent-
Oriented Software Engineering, April 2007, pp. 91-121.

[2] A. Grimstrup, R. Gray and D. Kotz, “Toward Interoperability of Mobile-Agent Systems’ in sixth |EEE International Conference on
Mobile Agent , Barcelona, Spain, October 2002, pp. 106-120

[3] R. Gupta and G. Kansal, “A Survey on Comparative Study of Mobile Agent Platforms’ in International Journal of Engineering
Science and Technology (IJEST). ISSN: 0975-5462 VVol. 3 No. 3 March 2011.

[4] F.Béellifemine, A. Poggi and G. Rimassa, “JADE: A FIPA compliant agent framework”.

[5] B. Hirsch, T. Konnerth and A. Hebler. “Merging agents and services in the JAC agent platform” in Languages, Tools and
Applications, pp. 158-184. Springer, 2009.

[6] T.Kuster “The Visua Service Design Tool” Version 1.4.2, march 2012.

[7] P. S. Tan, “Automated generation of JAC agentbeans from BPMN diagrams’. Diploma thesis, Technische University at Berlin,
November 2011.

[8] E.Curry, D. Chambersand G. Lyons, “A JMS Message Transport Protocol for the JADE Platform”

[9] Sun Microsystems "Java Message Service: Specification," 2001.

[10] T. Erdene-Ochir and M. Patzla “Programming Multi-Agent Systems, chapter Collecting Gold: MicroJJAC Agents in Multi-Agent
Programming Contest”, pp. 251-255. Springer Berlin/Heidel berg, 2008.

[11] R. Sesseler, “Eine modulare Architektur futur dienstbasierte Interaktionen zwischen Agent”, PhD thesis, Technische University at
Berlin, January 2002.

[12] T.Kuster, M. Lutzenberger, A. Hebler, and B. Hirsch, “Integrating Process Modelling into Multi-Agent System Engineering” in Multi
agent and Grid Systems, International Journal, pp. 105-124, January 2012

[13] F.Bellifemine, G. Caire, T. Trucco and G. Rimassa, “JADE PROGRAMMER’'S GUIDE", last update: April 2010.

[14] B. Hirsc, S. Fricke, O. Kroll-Peters, T. Konnerth, “Agent Programming in Practice —Experiences with the JAC IV Agent
Framework”

[15] Y. Labrou, T. Finin and Y. Peng, “The Interoperability Problem: Bringing together Mobile Agents and Agent Communication
Languages’

[16] K. Takahashi, G. Zhong, S. Amamiya, T. Mine and M. Amamiya, “Communication Protocol for Agent Platform: Agent Platform
Protocol”, In Proc. of Tenth Workshop on Multiagent and Cooperative Computation, pp.30-37, November 2001.

[17] K. TAKAHASHI, G. ZHONG, D. MATSUNO, “Interoperability between KODAMA and JADE using Agent Platform Protocol”

[18] Y. Labrou, T. Finin, and Y. Peng. “The interoperability problem: Bringing together mobile agents and agent communication
languages’ In Proceedings of the Hawaii International Conference on System Sciences, Maui, Hawaii, January 1999.

ISSN : 0975-4024 Vol 5No 2 Apr-May 2013 1984

	JIAC Systems and JADE AgentsCommunication
	Abstract
	Keywords
	I. INTRODUCTION:
	II. JIAC:
	III. JADE:
	IV.SIMILARWORK:
	V. JMS:
	VI.ACTIVEMQ:
	VII. APPLICATION:
	VIII. CONCLUSIONS AND FUTURE WORK:
	REFERENCES:

