
Load Balancing in Distributed System
through Task Migration

Santosh Kumar Maurya1
Subharti Institute of Technology & Engineering Meerut India

Email- santoshranu@yahoo.com

Khaleel Ahmad2

Assistant Professor Department of CSE/IT
Subharti Institute of Technology & Engineering Meerut India

Email- khaleelamna@yahoo.co.in

Abstract— In distributed systems or clustered systems load imbalance is a major problem to improve
system performance. Load balancing is process through which utilizing computing resources of lightly
nodes by transferring some jobs on that node from highly overloaded nodes. The sharing and utilization
of computer resources in a distributed system or clustered system is a more complicated task than in
equivalent centralized systems, due to the distribution of computer resources over a set of autonomous
and often physically separate nodes. For effective use of these fragmented resources load balancing are
required to decrease response time and other CPU utilization constraints. Load balancing enables busy
sites to offload some works to lightly loaded sites. But problem with load balancing algorithms is that if it
is not implemented properly it increases network overhead and decreases the performance of systems. In
this paper, we present an algorithm for load balancing which calculate dynamically the load of each node
and migrates the task on the basis of predefined constraint which reduce network overhead.

Keywords: Load Balancing, migration, Distributed Systems, Load Dispatcher, Load Reduction.

1. INTRODUCTION

 A distributed system where set of a heterogeneous nodes are connected through underlying arbitrary
communication networks that work together towards a joint goal. Distributed systems are used for proper
sharing and utilization of the available resources within the distributed environment. But in this computing
environment there are situation when the processing capacity of one node is not capable to execute all of the
tasks at given time or rate of job arrival at one node have higher then others.

Fig1: Distributed computer system

It’s created load imbalance in distributed systems. It is required for such workload imbalance to be minimized
so as to make use of the computing power of idle or lightly loaded machine. Load balancing algorithms try to
accomplish this works by transferring some task to other machines so that work load of each node is
approximately same. This user-transparent mechanism increases the amount of processing capacity to all users
of the systems. Task migration is a complex job in heterogeneous environment. Many different algorithms of
load balancing for multiprocessing and distributed system have been presented. Load balancing algorithms may
be classified as static or dynamic, depending upon the rule they follow for execution of jobs. Static load
balancing algorithms assign tasks to a processor using priori task information (e.g. execution time ,arrival time,
waiting time, amount of resources requirement and their interprocess communication requirements) and load
once assigned does not change. A job is either assigned to the processor that received the job or transferred to
another processor, but the decision regarding transfer of the task does not depend on the system state. Dynamic

Santosh Kumar Maurya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1219

load balancing algorithms uses current system load information to decide where in the network job should
processed. If the workload of a node becomes heavy then the job received at the processor are transferred to
another node which is not heavily loaded. Scheme of approach used for task migration in my paper is calculate
the load of every module and every computing processor and calculation of computation power used in transfer
of modules between nodes and choosing modules to transfer. This paper presents the advance task migration
algorithm that performs load balancing by sorting node and module and pairing overloaded nodes with under
loaded ones then task migration take place. Job migration in network environment can be implemented in a
synchronous or asynchronous manner. This issue is primarily determined by maintenance of state and channel
integrity. Certainly a synchronous implementation simplifies the need for handling messages in transit. In any
case, a task must only be moved when its state is in a form consistent with any user-provided routines to
transport data structures. In this paper we present a load balancing algorithms which improve the performance of
the whole system. The algorithms take into account the load of module as well as the load of the node to which
the transfer is made.

2. THE SYSTEM MODEL

 In our model, we assume that there are N heterogeneous nodes Pi, i=1,2,3……N in the distributed system
and nodes are belonging to a different domain connected through a high speed communication network. Due to
varying computational facilities of each node, a module to be accounting different costs when executing on
different computing node. In model we assume nodes are fully connected with each other. In the paper we use
the term software load as the software task or software job generated by software modules when running on
physical node or processor. High load on a node may increase delays in execution of a job. A module may come
in as input to a node directly from outside or as a transfer from neighbors. Two types of module may thus be
executed in a processor: locale module and remote module. A local module comes directly from outside the
system. A remote module, on the other hand, is received at a particular node as a transfer from one of its
neighbour’s node. Programs in main memory are represented by M modules. Modules on a node are an atomic
collection of programs, like a program object or program parts that can be migrated from one computing node to
another. Matrix X (N X M) is used to represent execution load for module. Elements of X is represented by xij if
module j contribute load on node i otherwise xij=0 if module is not allocated due to grouping constraints. In
system communication model we assume actual communication cost is zero if two software modules are present
on same node. Otherwise, cost of communication is given by a matrix C(M X M), where quantity ckl is the
communication load if software modules k and software modules l are assigned to separate nodes. We assume
ckk = 0 and ckl = clk. Messaging passing protocol is used for communication between nodes; A process is a
sequence of module interactions, with given time frame. It is the arrival of process that makes the module
works. The executing modules on a node generate loads on that node. Assignment of a module to a node is
represented by binary matrix B. Elements of B is either 0 or 1 if Bij=1 then module j is assigned to node i
otherwise Bij=0.

Fig:2. Model of System

Santosh Kumar Maurya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1220

Assigned the modules to processing nodes in such way that it’s best meet the given condition and objectives.
Formulation of load balancing depends on the nature of problem and communication load, several different
conflicting objectives are existing. The main problem of objectives for performance is between grouping and
migration of modules. By grouping software modules that passing message to each other during execution we
can reduce cost of communication. Process of grouping modules decreases communication cost but it increase
load imbalance on some nodes. Load imbalanced on a node increases waiting time of some module while some
nodes are idle during this period. By distributing modules during execution higher parallelization is gained, but
the more resources are wasted during migration processing. However, lot of consumptions of network resources
in process of task distribution. Total load on particular node formulation depending on execution load,
communication with other and computing parameter. Since the objectives of this works are to study load
balancing using module migration, we chose an objective that minimizes the load imbalance in system.
Workload Wi for selected node i and given allocation B be:
 M
Wi(B)=∑(XjBij+∑ CjkBij(i-Bik))
 J=1 k=1
Above formula is used to calculate load on a given node i and it should be close to the predefined reference load
Wref,i constraints for node i given assignment B. We use notation L for load imbalance for allocation B is:
L=∑∑ │Wi(B)-Wref,i(B)│
 i=1j=1
where Wref,i(B) is the reference load of the nodes weighted by node capacity. Each processing node may not
be assigned more than it’s capacity:

3. Normal Module Migration Algorithm

In the Normal algorithm, randomly select source node for transfer of unbalanced module and a destination node
in pair(ns,nd). Pseudocode of algorithm is given below:

Line 1: Count total number of processing node
Line 2: For every node n repeat Line 4
Line 3: i = 0
Line 4: Let total number of nodes=t
Line 5: While i < t do
Line 6: Select random source node(ns) it is ith node in system
Line 7: Select random overloaded destination node(nd) it is kth node in system
Line 8: if load at node ns is (ns > wref) && load at nd is(nd < wref) then execute Line 9 else i=i+1

Line 9: j=1
Line 10: While j <= total modules assigned to ns repeat Line 11 to 13
Line 11: Let m is the jth module of ns
Line 12: If nd can accommodate a node and nd(load)+m(load)<nd(wref) then migrate m from ns to nd
Line 13: j=j+1
Line 14: i=i+1
Line 15: t=t+1
Line 16: repeat

Normal algorithm not properly migrate the task and select the node. Normal algorithm is suitable for small
systems.
4. ADVANCE TASK MIGRATION ALGORITHM

Objective of this algorithm is to minimized load imbalance by transferring some task to other lightly loaded
node. In algorithm we first short node and module then by comparing nodes with largest loads with nodes that
have lowest load, and then starting migrating task. Pseudocode of algorithm is given below:

Santosh Kumar Maurya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1221

Line 1: node.sort() sort the imbalance node in increasing order of load.
Line 2: for all nodes in node list repeat Line 3
Line 3: Sort the modules load/tasks load of node n in increasing order
Line 4: t= total nodes in model
Line 5: Initialize i = 0
Line 6: While i < t do
Line 7: Select nd that represents the ith node
Line 8: select ns that represents the t-1th node
Line 9: if load at node ns is (ns > wref) && load at nd is(nd < wref) then execute Line 10 else i=i+1

Line 10: j=1
Line 11: While j <=total modules at node ns repeat Line 12 to 14
Line 12: Let m is the jth module of ns
Line 13: if nd(load)+m< wref then migrate the migrate(ns,nd,m)
Line 14: j=j+1
Line 15: i=i+1
Line 16: t=t-1
Line 17: repeat

 Above algorithm works in pair of node(ns,nd), ns is overloaded source node from which some load is migrated
to underweight destination node nd. The algorithm works in some specified intervals. During the T interval
load of each node is calculated. Matching operation is performed at a centrally located server node collects load
information and then transferred according to imbalance. Server node is an ordinary node that acts as hub for
transferring load information in the network. The matching process is made by load imbalance order: the first
pair has the most overloaded node and the must under loaded node, second pair has the second most overloaded
node and the second most under-loaded and so on.
The module is selected in a gluttonous fashion to be migrated: always select largest module for migration which
are fit on destination node this process make load imbalance on both node and decrees network consumption.

5. COMMENTS

Load metrics: the individual nodes can estimate the fraction of its total load using analytic load calculation in
this method; the load for a task is estimated based on knowledge of the time complexity of the algorithm(s) that
task is executing along with the data structures on which it is operating This method has the advantage that it is
potentially very responsive to a job for which the relative workload is changing quickly over time. In particular,
knowing that some parameter which has a tremendous impact on a task’s load has changed would allow the load
balancing algorithm to anticipate that change ahead of time rather than responding to it after the fact. Load
metrics are updated periodically. As the modules migrate to and from a node, the node’s load matrices are
updated with an estimate of the migrating module’s load.
Coordinator node: a node with good connections to other nodes can be used as a coordinator node. But
generally any node in the system can be used as a coordinator. Coordinator node contains information about
load metrics of each node. The main function of a coordinator node is to maintain the current load state of each
lightly loaded node in the community. Each lightly loaded node needs to send its current load state periodically
to the coordinator. The coordinator itself maintains a table to hold incoming valuable information from all
nodes.
Scalability: the advance task migration algorithm is scalable in the sense that in large system with many nodes
the system can be portioned into group. Each group can have its own coordinator and nodes are paired within
the group. First a light weighted node is checked in same group, if suitable node not found then after nearby
group is searched and after getting a required node transfer takes place if protocol is satisfied for load transfer.
Overloaded: the overhead is associated with the advance task migration algorithm includes the load
information sent to the coordinator node and the reply message sent to each source node. Due to network
congestion the actual migration of module is likely to be expensive and difficult.

6. COMPARISON WITH OTHER ALGORITHM

Cooling [6] the cooling algorithm basic concept is similar to advance task migration algorithm on the surface;
the difference is in which order module are chosen. The advance task migration algorithm first sorting node and
module then finds (ns,nd) pairs, and then attempts migration within each pair In the cooling algorithm, source
node is largest overloaded node and largest module on this node is considered for migration.

Santosh Kumar Maurya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1222

 The destination node is the underloaded node that can lodge the source module. In advance algorithm many
migrations are performing parallel, it is difficult in case of cooling.
Hot spot[6] the hot spot algorithm is similar to cooling, with addition of looking at estimated queuing latency of
an activity when deciding what to migrate. The module that gives the largest latency to an activity is grated to a
node where it’s added estimated latency is less than on the source node.
Match making algorithm[7] is similar to the advance task migration algorithm. However there is a main
difference between them. The Match-Making algorithm arranges the imbalance node in decreasing order of
load while Advance task migration algorithm arrange the imbalance node in increasing order of their load (i.e.
the difference of a node’s load from its reference load (w-ref)). This gives better result then other algorithm.

7. CONCLUSION

An advance task migration model has been formulated for dynamic load balancing of a distributed computing
system in the context of load balancing. Advance task migration algorithm discuss in this paper short the node
and module according to load and group the node with a coordinator node and then migrate modules from
overloaded nodes to nodes , algorithm first search light weighted node within group if it is not found then search
nearby group node. As the main aim of advance task migration algorithm is reducing the likelihood of nodes
being idle while there are tasks in the system. The algorithm has low complexity and high scalability, and as
such is well suited for performing load balancing in dynamic systems. Some constraints on advance task
migration algorithm are load balancing is currently implemented in a barrier. This is not a necessity. Introducing
asynchrony into the load balancing process would allow its cost to be overlapped with idle time on under-loaded
computers and would not disrupt applications that do not have algorithmic synchronization points. Task-based
load balancing strategies fail whenever the load of a single job exceeds the average load over all computers. No
matter where such a job is moved, the node to which it is mapped will be overloaded. By dividing the task
through routines such as node split(), one can alleviate this problem by providing viable work movement
options. In general, adoptions can be used to dynamically manage the granularity of a computation so as to
maintain the best number of tasks, increasing or decreasing the available options as necessary.

8 . REFERENCES

[1] Mor Harchol-Balter and Allen B. Downey. Exploiting Process Lifetime Distributions for Dynamic Load Balancing. Technical Report
[2] UCB/CSD-95-021, Computer Science Division, University of California, Berkeley, May 1995.
[3] Kristian Paul Bubendorfer “Resource Based Policies for Load Distribution”, Victoria University of Wellington August 3, 1996
[4] William Osser, “Automatic Process Selection for Load Balancing”, June 1992
[5] Jerrell Watts, “A Practical Approach to Dynamic Load Balancing”, October 4, 1995
[6] Dynamic Migration Algorithms for Distributed Object Systems by V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser, Department

of Electrical and Computer Engineering, University of California
[7] Match Maker Algorithm from Migration Algorithms for Automated Load Balancing by N. Widell.
[8] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Load balancing in distributed systems: An approach using cooperative games,”

Proc. 16th IEEE Int. Parallel Distributed Processing Symp., pp. 52–61, Apr. 2002.
[9] www.wikipedia.com
[10] Various sources over the Internet.

Santosh Kumar Maurya et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1223

	Load Balancing in Distributed Systemthrough Task Migration
	Abstract
	Keywords
	1. INTRODUCTION
	2. THE SYSTEM MODEL
	3. Normal Module Migration Algorithm
	4. ADVANCE TASK MIGRATION ALGORITHM
	5. COMMENTS
	6. COMPARISON WITH OTHER ALGORITHM
	7. CONCLUSION
	8 . REFERENCES

