
Rule Based System and Conflicts
1Hemant Arun Tumbare and 2John Singh.K

1School of Information Technology and Engineering

VIT University, Vellore-632014, India
2Assistant Professor (Selection Grade)

School of Information Technology and Engineering
VIT University, Vellore-632014, India

Abstract
Marking the cloud entities will enable customers to mark the entities with all possible metadata about the
entity like its size, location, owner, data center to which it belongs to, the cost center to which it should be
charged to, the applications belonging to it, etc, without worrying about the actual inventory view of
cloud. It will also enable solutions to use this information to perform tasks/actions based on a combination
of these attributes set. To perform the actions, solutions allow users to define rules, based on the attrib-
utes. However, if a large number of rules are defined, such rules can conflict and result in the solution
performing multiple actions on the same entity without the actual intention of the user, or worse, crashing
of the solution. Hence, defining rules needs to be restricted or at least the customer should be warned if
creation of a rule can potentially result in conflict. Through this paper, we present a solution to detect
conflict among rules. The solution is generic and can be easily integrated with any other solution.
Keywords: Marking, Rules based on marking, Boolean algebra, Quine-McCluskey Method (QM).

INTRODUCTION.
Introduction of Marking cloud infrastructure entities with custom-defined tags will open myriads of possibilities
and opportunities for rapid automation. It will start a new era in automation where customers or products can
just add some tags on an entity based on its creation parameters and the solutions can simply use these tags to
perform complicated operations on the entity and can perform myriads of background tasks on behalf of the
user. Complex rules can be created in solutions based on the tags defined on the entities to perform certain ac-
tions for all the entities matching the given criteria. These tag-based rules can achieve very high level of auto-
mation, which has always been desired in the ever-expanding customer environments.
With this new rule-based automation comes new challenges of matching these rules to various entities quickly,
detect changes in the tags on entities and change actions accordingly, detecting entities which do not match any
rules or entities which match multiple rules and detecting rules which can potentially lead to conflicts, at the
time of application of these rules on the entities. In this paper, we explored the problem of detecting rules which
can result in conflicts at the time of application. We present an algorithm to detect such conflicting rules and
warn the creator of the rule beforehand.

1. RULE BASED SYSTEM
1.1 Rules

A rule based system consists of a set of rules and each rule consists of a condition and an action. Action part
contains what action you want to execute if the condition is satisfied.
For e.g. consider a simple rule where
 Condition: (Location = USA) AND (Application = Tomcat)
 Action: Power ON the VM.
In this case, if the condition is satisfied then the action part of powering the VM on will be executed. Rule based
system may contain number of rules and action related to each rule.
Throughout the paper the following terms are used.

Tag Tag is metadata associated with cloud enti-

ties.
Tag
Category

A grouping of related tags.

Simple
Expression

Tag category and tag along with a criteria

Criteria Equals, Startswith, Endswith, Contains
Operator Operations used to construct conditions part

of rules - AND, OR, NOT (similar to the
Boolean algebra).

Complex
Expression

Simple expressions along with operators form
complex expressions.

Hemant Arun Tumbare et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1124

1.2 Conflicting rules
A system can have any number of rules defined, potentially resulting in conflict. Two rules are said to be in
conflict with each other if

(a) their action parts are of conflicting nature and
(b) their condition parts are satisfied by same entity.

If the action parts of two rules are different then there will not be any issue, even if the rules get executed on the
same entity. For e.g. if the action part of a rule is – ‘power on a VM’ and that of other is - ‘charge $15’ then
there will be no conflict even if the two rules get executed on the same VM. But two actions like ‘power on’ and
‘power off’ are conflicting because both cannot be executed at the same time. For the purpose of the discussion
in this paper, we assume that the action parts are of conflicting nature and we need to detect rule conflict based
only on the condition part.
1.3 Conflict Detection

Based on the time of detection we can classify rule conflicts as
1.3.1 Static time conflict

These are the conflicts which can be detected at rule creation time. If a term in a rule’s condition is subset or
equal to the terms of another rule’s condition, then the rules conflict with each other. These types of conflicts
can be detected when a new rule is created. For e.g. consider following two rules

(a) If {(Size = small) || (State = powered on)}, then charge $15.
(b) If (Size = small), then charge $10.

If a VM has tag (size = small) set on it, then both the rules become applicable to the VM. However, the system
will not be able to apply either rule because the actions are conflicting.
1.3.2 Run time conflict

Run time conflicts cannot be detected at rule creation time. Consider following two rules,
(a) If (Size = small), then charge $15
(b) If (State = powered on), then charge $10

If we use same logic that is used to detect conflict at static time, these two rules are clearly not conflicting. But
if there exists a VM with tags {Size = small; State = powered on}, then these two rules have run time conflict.
The VM will satisfy both these rules, and then there will be confusion about the action part of which rule should
apply. Moreover, it is incorrect to prevent the user from creating such rules which might result in run-time con-
flict.
1.3.3 Defining boundary between Static and Runtime conflicts

Conflict detection can ideally be delayed till run-time, when the rules actually get applied on entities and the
actions taken. In such a scenario, entities matching multiple rules can be detected easily. However, it is difficult
to figure out what actions should be taken by the solution in such a scenario. Hence, run-time detection of con-
flicts should be avoided as far as possible and it will be safer to detect conflicts at the rule creation time.

Such a static time conflict detection system can't be too restrictive either while detecting rules, as it might
warn/stop the users from creating rules which might be theoretically conflicting, but might never occur in the
customer environment. For example, consider a scenario where a customer has created two tag categories
'country' and 'state' and is using the country tag category to tag all entities residing on infrastructure outside
USA and state tag category to tag all entities residing on infrastructure in USA. Say the admin creates two rules,
R1 = if (country is India), backup VM at 2pm PST and R2 = (state = Washington DC), backup VM at 2am PST.
Theoretically, the rules can conflict if tags from both the tag categories are set on the same entity. However, this
will never happen in the customer environment. Hence, creation of such rules should not be restricted at the time
of creation, and such a conflict should be detected at run-time.

To define the boundary of rule conflicts at runtime and at static time, we have assumed the following: If the
rule, in its reduced DNF form has a term which is subset of a term in the other rule, the rules are conflicting,
otherwise not.

2. IMPLEMENTATION
The implementation of the proposed solution

(a) assumes that the action part of the rules are of conflicting nature and tries to detect whether the condition
part can result in conflict,

(b) It concentrates on the detection of static time conflict among the rules. The intention is to detect such
conflicts at the time of rule creation and warn the user accordingly to avoid unintended behavior when
the system executes actions.

2.1 Representation of rules
The rule conditions are represented in XML. For e.g. figure (1) represents the condition
(Location=India) || {(Location=India) AND (Size=small)}

Hemant Arun Tumbare et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1125

For ease of visualization, we represent each simple expression by a literal. In further discussion, the terms ‘lit-
eral’ and ‘simple expression’ are used interchangeably. The above rule condition can then be simplified by as-
suming
A => (Location = India)
B => (Size = small)
Rule condition: A + AB
In addition we represent simple expressions involving same category but different tags using subscripted literals.
For e.g. if category ‘Size’ has different values like {‘small’, ‘medium’, ‘large’} then,
A1 => (Size = small),
A2 => (Size = medium) and
A3 => (Size = large).
2.2 Evaluation of conventional expression reduction techniques

Comparing rules directly, without pre-processing them might result in incorrect rules being detected as con-
flicting.

For e.g. consider following two rules
R1 = {size=small}, charge $20 and
R2 = {(size=small) OR ((size=small) AND (location=India))} charge $10.
In this case, rule 2 is actually logically equivalent to R3 = {location=India} charge $10. However, if we com-

pare rules directly, R1 and R2 will be reported as conflicting. Hence, it is necessary to reduce rules to their most
elementary form without losing any information from the rule and then compare them.

We explored existing literature on expression reduction and came across reduced DNF forms and the meth-
ods to achieve this reduction, i.e., K-Map method and QM method. However, conditions in the rules differed
from the use of literals in these methods in two important ways:

1) Both the methods use standard Boolean algebra assumptions, some of which are not valid in our case. For
example, A + A' = 1 is a valid Boolean algebra expression. However, in case of conditions defined in rules, this
is not true. Consider a simple case of a rule, R1: if (Size = small and size ≠ small), charge 10$. At first glance, it
might appear that the condition is true for all the entities. However, if the rule is applied as it is, entities which
do not have tag small defined on them, will not match the criteria. Hence, the rule cannot be reduced to R2 = if
(true), charge 10$.

2) Both the methods expect only two dependent literals, which are compliment of each other, i.e., A and A'
are two literals which are independent of all other literals. However, in our case, this is not valid. We can have
multiple dependent literals like A1, A2 and A3 cited in 3.1.
To satisfy these requirements, we developed our own expression reduction technique, which will reduce the
condition part of the rules to a required format and detect static time conflicts, based on some axioms.
Some of the modified Boolean algebra axioms are as follows:

1) A + A' ≠ 1.
2) If a tag category has ‘n’ different tags then, Ai

'
 = ∑ Aj where j ≠ i, 0 < i, j ≤ n.

Assumptions:

<ComplexExpr operator="or">
 <SimpleExpr name="Location" criteria="equals">
 <Value>India</Value>
 </SimpleExpr>
 <ComplexExpr operator="and">
 <SimpleExpr name="Location" criteria="equals">
 <Value>India</Value>
 </SimpleExpr>
 <SimpleExpr name="Size" criteria="equals">
 <Value>small</Value>
 </SimpleExpr>
 </ComplexExpr>
</ComplexExpr>

Fig 1. Sample XML representing rule condition

Hemant Arun Tumbare et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1126

1) At any point in time, an entity cannot have more than one tag from same tag category set on it implying
A1A2 = 0.

2) Criterion for matching tags is either ‘Equals’ or ‘Not Equals’.
3) Currently the rule conditions support operations like ‘AND’, ‘OR’ and ‘NOT’.
We believe the above assumptions will satisfy most of the common use cases.

2.3 Normalize complex rule conditions
Hereafter, an expression refers to the Boolean expression that represents the condition part of the rule. We nor-
malize the condition part of the rules first to ‘Negation Normal Form’ (NNF) and then to ‘Disjunctive Normal
Form’ (DNF).
2.3.1 Convert any expression to NNF

NNF is a representation where the NOT operator is always present at the literal level. To convert any given
expression to NNF we distribute the NOT operators to the level of simple expressions. The Convert NNF to
DNF
DNF is a representation where the condition is represented as a disjunction of conjunctive clauses [1].
For example A, (A + B), (AB), (AB + CD) are all in DNF.
Let’s define an ‘almost DNF’ expression as the one whose all sub-expressions are in DNF but it is itself not. for
e.g. (C+D)*(A+B). Here the individual sub-expressions (C+D) and (A+B) are in DNF but the expression as a
whole is not.
2.4 Reduction filters

Reduction filters are applied on the DNF expression obtained. These filters attempt to simplify DNF expressions
by removing redundant conjunctive clauses (also referred as terms) in the DNF.
2.4.1 Complement product filter

This filter eliminates the terms where a literal and its complement are present together. For e.g. (ABCA' + D) =>
D, since AA' = 0.
2.4.2 Distributive law filter

This filter checks whether a term in the DNF expression is subset or equal to any other term and deletes the
superset term.
For e.g. (A + AB + ABC) => A (1 + B + BC) => A.
2.4.3 Product exclusion filter

Product exclusion filter eliminates such terms where subscripted literals co-exist.
For e.g. A1A2 = 0, so (A1A2C + D) => D.
2.4.4 Redundancy product filter

Considering the subscripted literals described in 3.1 the redundancy product filter will do a filtering illustrated in
the following example.
For e.g. A1A2' => A1 (A1 + A3) => A1A1 + A1A3 => A1 + 0 => A1.

2.5 Analyse reduced rules for conflict
Given two rules whose condition part has been normalized and reduced as discussed above, figure 2 illustrates
the algorithm to find whether the rules have static time conflict or not.

for each term1 in rule1’s condition {
 for each term2 in rule2’s condition {

 1) Compare each literal in term1 with that of term2
 2) If literals are equal i.e. same tag category,
 tag and criteria then rules are conflicting
 }
}

Fig 2. Algorithm to detect rule conflict

Hemant Arun Tumbare et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1127

3. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm to detect conflicts in tag-based rules at rule creation time (static time).
The algorithm is developed because direct comparison of rules might result in false positives, while reduction of
rules using standard Boolean algebra reduction techniques like K-map method and QM method can't be applied.
The algorithm is based on some of the Boolean algebra axioms, some modified axioms as per our solutions
requirements and some of our assumptions. We created a prototype for the same as well.
Currently, the algorithm is based on the assumption that criterion for matching tag is either ‘EQUALS’ or
NOT_EQUALS’. We will further like to explore as to how the criteria like ‘STARTS_WITH’, ‘ENDS_WITH’
and ‘LIKE’ can be supported.

REFERENCES
[1] Akshay Narayan, Shrisha Rao, Gaurav Ranjan and Kumar Dheenadayalan, “Smart Metering of Cloud Services”, In Proc. of IEEE

International Conference on Systems, pp. 1-7, 2012.
[2] Ki-Woong Park, Jaesun Han, JaeWoong Chung and Kyu Ho Park, “THEMIS: A Mutually Verifiable Billing System for the Cloud

Computing Environment”, In Proc. of IEEE International Conference on Cloud Computing, pp. 139-147, 2010.
[3] Stefan Tai, Jens Nimis, Alexander Lenk and Markus Klems, “Cloud Service Engineering”, In Proc. of IEEE International Conference

on Software Engineering, Vol. 2, pp. 475-476, 2010.
[4] Ibrahim Armac, Michael Kirchhof and Liviana Manolescu, “Modeling and Analysis of Functionality in eHome Systems: Dynamic

Rule-based Conflict Detection”, In Proc. of IEEE International Conference on Engineering of Computer Based Systems, pp. 218-228,
2006.

[5] Francois Hantry, Mohand-Said Hacid and Romuad Thion, “Detection of conflicting Compliance rules”, In Proc. of IEEE International
Conference on Enterprise Distributed Object Computing, pp. 419-428, 2011.

[6] LUO Qian, TANG Chang-jie, LI Chuan and YU Er-gai, “Detecting Self-Conflicts for Business Action Rules”, In Proc. of IEEE Inter-
national Conference on Computer Science and Network Technology, Vol. 2, pp.1274-1278, 2011.

Hemant Arun Tumbare et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1128

	Rule Based System and Conflicts
	Abstract
	Keywords
	INTRODUCTION
	1. RULE BASED SYSTEM
	2. IMPLEMENTATION
	3. CONCLUSION AND FUTURE WORK
	REFERENCES

