
Hand Posture Recognition with Application
to Robot Control
N. R. Raajan, S.Raghuraman, T.Vignesh

Department of ECE, SEEE, SASTRA University
Thanjavur, Tamil Nadu, India

nrraajan@ece.sastra.edu, raghuraman1291@gmail.com, vignesh.ykciv@gmail.com.

Abstract— In recent years, several researches are being done to improve the means by which humans
interact with machines. Having developed a variety of input devices, we still are not completely
comfortable with the present human–machine interaction processes. This stirred up the efforts
undertaken to make the machines adapt to the human’s natural means of communication which are
speech and body language. The objective of this paper is to implement a real-time vision system which
offers better comfort to humans while interacting with machines. In our paper, we showed a simple but
efficient method to implement a hand posture recognition system and by means of which we control a bot
wirelessly through Bluetooth. The simplicity of our method enables fast recognition of the hand postures
shown and therefore achieves the real-time continuous control over the bot.

Keyword – machine interaction, real-time vision system, hand posture, Bluetooth.

I. INTRODUCTION
Among humans, a significant way of communication is body language. It adds emphasis to speech and

sometimes delivers the full information by itself. Therefore, hand posture recognition systems using image
processing can be used for enhancing human-machine interaction. One of the important aims of Hand Posture
Recognition is to distinguish different hand postures and correctly sort them out as precisely as possible. In our
method, we identified hand postures by counting the number of fingers shown and based on the number of
fingers, we controlled the movement of a bot. The bot is connected wirelessly to the system through Bluetooth.
The sensor device used for capturing the image frames is a USB web cam. The frames from the camera are
preprocessed using filters to remove noise and then background subtraction operation is performed to extract the
hand region in binary form. We assume that the only moving foreground object present is hand. The hand
contour is extracted and the number of fingers is obtained using convex hull and defect point features. We use
OpenCV libraries in Dev C++ IDE for image processing. The following sections describe the processes used in
our method in detail.

II. RELATED WORKS
A lot of methods have been proposed for hand gesture recognition using image processing and computer

vision algorithms . There are algorithms which use markers on fingertips to detect gestures [1]. Use of markers
is sometimes expensive and inconvenient to the users. [2] gives a simple algorithm for hand gesture recognition
which takes less computational time. But its segmentation part is not robust leading to noise. [3] uses Hidden
Markov Models to recognize the hand gestures. This requires intensive training. A robust approach is given in [4]
which is scale and rotation invariant. This proposes a curvature space method which finds and uses the contours
(outline) of the hand. Some of the other computer vision tools used for recognizing hand gestures are Haar-like
features [5], Support Vector Machines [6] and particle filters.

III. HAND REGION EXTRACTION
A. Background Subtraction

Background subtraction is one of the most fundamental image processing operations. Before performing
background subtraction, a background model needs to be prepared. The background scenes in an unconstrained
environment often contain complicated moving objects such as curtains fluttering, fans turning, trees waving in
the wind, e.t.c. Light intensity might also vary in such scenes depending on door-window positions and weather
conditions. So the normal averaging background method would not be suitable. A good method to face this is to
develop a time-series model for each pixel or a group of pixels to deal with the temporal fluctuations well.
 To obtain a performance fairly close to that of adaptive background subtraction, we form a codebook to
represent significant slowly varying states in the background. We compare the present value of a pixel with the
previous values. If this value is near the previous value, it is considered as a small variation on that color. If the
present value is not close to the previous value, then it starts a new code element and links it with the pixel. We
choose HSV color space since it has a separate axis aligned with brightness. This separate axis helps us because
background variation in most cases is not along the color axis, but along the brightness axis.

N. R. Raajan et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1115

 The following diagram clearly gives an example of the code method. As we can see, a codebook can be
considered to be made up of boxes.

Fig. 1. Codebook Method example

 Initially we take nearly 300 samples for the background model. Each pixel in the background is maintained
with a codebook (structure) to make note of its variations. If the pixel changes during the sampling period, the
codebook expands to include the value. In the above picture, each box is a code element. Thus each pixel will
have codebook with different number of code elements.

Each code elememt has two thresholds (max and min) for each axis in the HSV color space. These
thresholds will enlarge (max increasing, min decreasing) if the new samples from the background fall within the
thresholds used for learning (learnHigh and learnLow). Otherwise if the samples fall outside the thresholds
(max, min) and (learnHigh, learnLow), then a new code element will be created. This is how we create the
background model. In the background difference mode, we define acceptance thresholds maxMod and minMod.
By use of these threshold values, we can prevent creating a new code element if a pixel value is close enough to
a max or a min boundary.

The pictures portray the background and the extracted foreground using codebook method

 Fig. 2. Foreground with background Fig. 3. Foreground extracted separately

B. Finding largest contour area
We have assumed that the only foreground moving object is hand. Therefore after background subtraction,

we will get a noisy binary image with the extracted hand region. To remove the noises, we find the contours in
the noisy binary image and then take the only contour with the largest area. Contours are the outlines of the
Binary Linked Objects present in the image. This gives us a clear binary image with the hand region only and
with less noise. The picture with noiseless hand region is given below.

N. R. Raajan et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1116

Fig. 4 and Fig. 5. Unwanted portion in hand region

However as we can see in the picture above, there are some objects attached with the hand due to sudden
unpredictable change in camera position or illumination. To reduce this, we use the above binary image as mask
in the original frame. In the masked original frame, we extract the hand region using HSV color space. The Hue,
Saturation and Brightness (V) values for skin color are found to be from 0 to 28, 8 to 140 and 0 to 255
respectively.

 Fig. 6. Masked hand region Fig. 7. Final binary hand image

IV. GESTURE RECOGNITION
In our method, the number of fingers shown in the frame is considered as a gesture. Given the binary image

of the hand region, the number of fingers shown is calculated by means of convex hull. A convex hull of a set
of M points in space is the smallest convex set that includes all these M points. The convex hull is found by
means of Sklansky’s algorithm [7]. Then we find the defects inside the convex hull and take note of the
defects’ start and end points. The start points approximately give the position of the tip of the fingers. The
following figure gives an explanation of convex hull and defects.

Fig. 8. Convex hull

The red line represents the convex hull. The black lines with arrow marks represent the defects. The blue
points are the start of the defects and the red points are the end of the defects or depth point.

Hence the number of start points gives the number of fingers. However due to some unavoidable noise in the
image, the start points and end points tend to vary. If this varies frequently, it cannot be used to control a bot.

N. R. Raajan et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1117

So we define a rectangular area in the frame. The number of start points inside the rectangle is taken as the
number of fingers. Care is taken to define the rectangular area in the portion of the background which is
noiseless. The following picture shows our output which gives the number of fingers.

 Fig. 9. Output displaying the number of fingers.

The blue rectangle is the defined rectangular area.

V. GESTURE CONTROLLED BOT
After getting the number of fingers shown, we send suitable command to bot through Bluetooth to control its

movements. We used Simple Labs’ BTBee as Bluetooth receiver in the bot. A Bluetooth USB Dongle is taken
as the transmitter. The processor used for image processing is Intel’s Core i5 at 2.4GHz. The image resolution of
the frames is 640x480. The bot uses Simple Labs’ Induino board for processing. Based on the command
received, the Induino board is programmed to give suitable output for the four movements of the bot.

Fig. 10. Our Bot

N. R. Raajan et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1118

VI. FLOWCHART

VII.CONCLUSION
We have proposed an algorithm which is simple and takes less computational time for the hand gesture

recognition problem. Our algorithm segments the hand region by means of background subtraction and counts
the number of fingers shown and eventually controls a bot through Bluetooth. With our algorithm, we have
achieved good accuracy and efficiency. In our method, we have considered only a fixed number of gestures
which are atmost five. Our method can be expanded to recognize a large number of gestures. The hand
segmentation section in our algorithm still gives some noise in a cluttered background. So it has to be improved
if the system is used in cluttered environments. However we should take into account that the perfect foreground
segmentation in an arbitrary background is still open and under research.

ACKNOWLEDGMENT
We include our special thanks to all the researchers working in field of image processing and computer vision

who in some way helped us to attain our goal. Also, We wish to express our gratefulness to the faculties in our
university who shared their views and gave suggestions to make our project a success.

REFERENCES
[1] J. Davis and M. Shah "Visual Gesture Recognition", IEEE Proc.-Vis. Image Signal Process., Vol. 141, No.2, April 1994.
[2] Asanterabi Malima, Erol Ozgur, and Miijdat Cetin “A Fast Algorithm for Vision-Based Hand Gesture Recognition for Robot Control”,

IEEE International conference on Signal Processing and Communications Applications, 2000.
[3] Sebastian Marcel, Oliver Bernier, Jean Emmanuel Viallet and Daniel Collobert, “ Hand Gesture Recognition using Input – Output

Hidden Markov Models”, IEEE Proc. on Automatic Face and Gesture Recognition, pp. 456 - 461 2000.
[4] C.-C. Chang, I.-Y Chen, and Y.-S. Huang, "Hand Pose Recognition Using Curvature Scale Space", IEEE International Conference on

Pattern Recognition, 2002..
[5] Qing Chen, Nicolas D. Georganas and Emil M. Petriu, “Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-

Free Grammar”, IEEE Transactions On Instrumentation And Measurement, Vol. 57, No. 8, August 2008.
[6] Nasser H. Dardas and Nicolas D. Georganas, Real-Time Hand Gesture Detection and Recognition Using Bag-of-Features and Support

Vector Machine Techniques, IEEE Transactions On Instrumentation And Measurement, Vol. 60, No. 11, November 2011.
[7] J. Sklansky, “Measuring concavity on a rectangular mosaic”, IEEE Transactions On Computers, Vol. C-21, No. 12, December 1972
[8] T.S. Huang and V.I. Pavlovic, “Hand Gesture Modeling,Analysis and Synthesis,” in International Workshop on Automatic Face and

Gesture Recognition, pp. 73-79, 1995.
[9] Gary Rost Bradski and Adrian Kaehler, Learning openCV, 1st ed., O'Reilly Media Inc., September 2008.

N. R. Raajan et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1119

	Hand Posture Recognition with Applicationto Robot Control
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORKS
	III. HAND REGION EXTRACTION
	IV.GESTURE RECOGNITION
	V. GESTURE CONTROLLED BOT
	VI. FLOWCHART
	VII.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

