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Abstract - Design of low power, higher performance digital signal processing elements are the major 
requirements in ultra deep sub-micron technology. This paper presents an IEEE-754 standard 
compatible single precision Floating-point Computation SHaring Multiplier (FCSHM) scheme suitable 
for low-power and high-speed signal processing applications. The floating-point multiplier used at the 
filter taps effectively uses the computation re-use concept. Experimental results on a 10-tap 
programmable FIR filter show that the proposed multiplier scheme can provide a power reduction of 
39.7% and significant improvements in the performance compared to conventional floating-point carry 
save array multiplier implementations.  

Keywords — low-power design, IEEE-754 standard, Floating-point multiplier, Digital FIR filter, VLSI 
implementation. 

I. INTRODUCTION 
The finite impulse response (FIR) filters are used in signal processing applications ranging from video and 

image processing to wireless communications. In some applications, such as video processing, the FIR filter 
circuit must be able to operate at high-frequencies, while in other applications, such as cellular telephony, the 
FIR filter circuit must be a low-power circuit, capable of operating at moderate frequencies. These demands led 
the designers to focus on the algorithmic as well as numerical strength reduction techniques for the low-
complexity design of FIR filter. Strength reduction at the algorithmic level can be used to reduce the number of 
computations (additions and multiplications). Numerical strength reduction improves the performance of a 
computation. In this paper, numerical strength reduction is the area of interest.   
    Many previous efforts like Common sub-expressions elimination [4], [5] and differential coefficients method 
[6], [7] explore low-complexity design of FIR filters by minimizing the number of additions in filtering 
operations. Canonical signed digit (CSD) [8] is used to reduce the number of the required additions and 
subtractions for filtering operation by reducing the total number of nonzero bits in coefficients. In [6] the 
differences between absolute values of filter coefficients were employed to reduce the complexity of 
computation. All these techniques are limited to the optimization of hardware for a particular fixed coefficient 
set. A computation sharing multiplier (CSHM) architecture, which identifies common computations and shares 
them between different multiplications was suggested in [1], [2] overcomes this drawback and applicable for 
applications with programmable filter coefficients. CSHM achieves high- performance programmable filtering 
operation by reusing the optimal precomputations and low-power consumption, since, redundant computations 
are removed.  In addition to signal processing applications, the multipliers can also be used to test data 
compression/decompression VLSI test applications [16]. The reconfigurable multiplier design based on 
reordering of partial product [14] and row-bypassing technique [15] are proposed to reduce the switching power. 
In the literature [2], [10] and [11] CSHM is used only in fixed-point FIR filter implementation.  

 The main contribution of this paper is proposition of a floating-point multiplier based on the CSHM 
technique, and effective implementation of floating-point FIR filter. Henceforth, in this paper this multiplier will 
be referred as FCSHM. The floating-point input values are taken in single-precision IEEE-754 standard format. 
In the rounding stage of multiplier and adder “round to nearest number” technique is used. The significance of 
our proposition should be understood in the context of wide usage of FIR filter in real time applications such as 
satellite communications and signal equalizers.              

  In the remaining of this paper organized as follows. Section II presents the architecture and operation of 8x8 
computation sharing multiplier. In section III, we present the proposed floating-point computation sharing 
multiplier architecture (FCSHM) and the architecture of floating-point carry save array multiplier (FSHM) 
scheme is described in section IV for comparison purpose. In section V, the FCSHM based FIR filter 
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implementation are explained.  The implementation results are discussed in section VI. Finally, section VII 
concludes this paper. 

II. COMPUTATION SHARING MULTIPLICATION 
The FIR filtering can be expressed as multiplications of vectors by scalars C.x. In vector scaling operations, 

we can carefully select a set of small bit sequences so that the same multiplication result can be obtained by only 
add and shift operations. For instance, (1011).x can be decomposed as (0011).x +23.(0001).x . If both (0011).x 
and x are available, the entire multiplication process is reduced to a few add and shift operations. These chosen 
basic bit sequences as alphabets [9]. Also, an alphabet set is a set of alphabets that spans all the coefficients in 
vector C.  

It is easy to figure out that, as the number of coefficients in increases, there can be many choices for alphabet 
sets on the coefficients and each alphabet set gives rise to a different combination of add and shift operations to 
obtain C.x. Obviously, an alphabet set should cover all the coefficients in coefficient vector. In addition, there 
are two other desirable characteristics of ‘good’ alphabet set.  First, total number of add operations should be 
minimized. Multiplication operation can be simplified to add and shift operations with the computation sharing 
multiplier algorithm. As will be shown later in the multiplier implementation, the add operations lie on the 
critical path and incurs the largest delay. Second, the number of alphabets in alphabet set should be minimized.  

In the computation sharing multiplier scheme, the multiplied value of should be available before the 
decomposition. They are computed at the first stage. As the number of alphabets increase, the amount of the 
computations also increases, which results in large area and power consumption. It also increases delay due to 
large length of individual alphabet (L). The alphabet sets obtained for L=2 and L=4 are {1,3} and  
{1,3,5,7,9,11,13,15}, respectively [1], where each alphabet is represented with 4-bits. If the values are 
precomputed using the input and the above set the final value of the multiplication can be easily obtained by the 
combination of simple add and shift operations. 

Fig. 1 shows a parallel 8×8 CSHM structure [2]. The bank of precomputer performs the computations and the 
outputs of the precomputer bank are 1x, 3x, 5x, 7x, 9x, 11x, 13x and 15x. To find the correct alphabet, 

 
 

Fig. 1. Architecture of 8 x 8 Parallel Computation Sharing Multiplier 
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SHIFTERs perform the right shift operation until it encounters ‘1’ and send an appropriate select signal to 8-to-1 
(8:1) MUXes. They also send the exact shifted values (shift signal) to ISHIFTER’s. The 8-to-1 (8:1) MUXes 
select the correct answer among the eight values received from precomputer. ISHIFTERs simply inverse the 
operation performed by SHIFTERs. When the coefficient input is 0000, we cannot obtain a zero output with 
shifted value of the precomputer outputs. Simple NOR gates and MUX (2:1) are used to deal with the zero 
(0000) coefficient input. We refer to SHIFTER-MUX (8:1) – ISHIFTER - NOR gate-MUX (2:1) as the select 
unit. The upper select unit generates the multiplication of 4 LSBs of the coefficient with the input. The lower 
select unit produces the product of upper 4- bits with input. A shift of the upper 4 bits is performed when those 
two values are fed to the adder. A simple adder produces the final result. 

Let us consider an example shown in Fig. 1. If the coefficient is 11100100, it is divided into two parts 
consisting of 4 bits. 0100 is fed to SHIFTER of the upper select unit and 1110 to that of the lower select unit. In 
the upper select unit, SHIFTER shifts 0100 to the right twice until it encounters 1 and it sends 000 (select signal) 
to MUX (8:1), which chooses 1 among the precomputer outputs. SHIFTER also sends 10 (shift signal) to 
ISHIFTER. ISHIFTER shifts to the left input from the MUX(8:1) 1 twice. Finally, output of ISHIFTER is 0100. 
In the lower select unit, SHIFTER shifts 1110 to the right once and sends 011 (select signal) to MUX (8:1), 
which chooses 111 among the outputs of precomputer. Like the one in the upper select unit, SHIFTER sends 01 
(shift signal) to ISHIFTER, which shifts 111 to the left once. Because none of the inputs of select units are 0000, 
the MUX (2:1) of both select units just pass their inputs. The outputs of the upper select unit and the lower 
select unit are 0100 and 1110, respectively. When these values reach the adder, 1110 should be shifted four 
times to the left because it is the multiplication of the four MSBs. The precomputer, MUX (8:1), ISHIFTER and 
ADDER lie on the critical path in this multiplier structure. When the input of the SHIFTER is 0000, select and 
shift signal go to don’t care state and the NOR gates (Fig. 1) simply generate the zero outputs. 

III.    PROPOSED FLOATING-POINT COMPUTATION SHARING MULTIPLICATION (FCSHM) ARCHITECTURE 
    In the IEEE-754 single precision [13] (32-bit) floating-point representation the LSB 23-bits give fraction, 

the next 8-bits represent the biased exponent (bias value is 127) and the MSB is the sign-bit. The general 
floating-point multiplication algorithm can be represented as 

 

 2E1E
21

2E
2

1E
1 b)SS()bS()bS( +××±=×±××±                                                             (1) 

where S1, S2 are significands (including the hidden ‘1’) of the input values and E1, E2 are the biased exponents 
of the input values.  
 The Fig. 2 shows the block diagram of floating point multiplier. Initially the input values are unpacked into 
sign-bit, exponents and significands and applied to the sub-modules. The sign of the multiplication result is 
obtained by EX-OR operation on the input sign-bits. The exponents of the inputs are added and bias value is 

 
 

Fig. 2.  Block diagram of Floating-point Multiplier. 
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subtracted from the result (in order to make the final exponent result in biased format). This resultant exponent 
is adjusted in the subsequent normalization steps and checked for overflow or underflow before final exponent 
is obtained. The 24×24 significand multiplication is the main block in which redundant computations take place 
frequently and is the main obstacle in achieving high-performance and low-power consumption in the filter 
design. The redundant computations can be reduced by identifying common computations and sharing them 
among filter taps. Since each alphabet is represented with 4-bits, for the 24×24 significand multiplication we 
need six select & shift units. We have implemented an IEEE-754 compliant FCSHM based on the proposed 
architecture. Also, we have implemented 24×24 CSAM for comparison purpose.  
1) Result Sign: The result sign is obtained by XOR operation of the sign bits of the input operands. 
2) Exponent Addition: We have used Carry-Look ahead adders for the exponent addition and for the subtraction 
of bias (valued 127) from the added result. 
    

IV.  CSHM IMPLEMENTATION 
 The architecture for 8 × 8 multiplier using parallel 24×24 CSHM scheme is shown in Fig. 3.  In this 
structure, the S & A of 8×8 multiplier, which is shown in Fig. 2, are connected in parallel to the precomputer 
and a carry save adder is used to generate the final output. As the number of coefficient increases, only the 
number of inputs to the final carry save adder increases and this does not incur large delay. The CSHM scheme 
contains the following blocks: 
a) Precomputation Block: The multiplications 1x, 3x, 5x, 7x, 9x, 11x, 13x and 15x are performed by the 
precomputer and this is implemented using adders.  
b) Select unit: It consists of SHIFTER, MUX (8:1), ISHIFTER, NOR gates and MUX (2:1).  
c) Carry save adder: As shown in Fig. 3, carry save adder is used to obtain final output in the parallel 24×24 
CSHM. The carry save adder is the largest component in the S & A, which sums the outputs of four select units.  
d) Normalization block: After 24x24 multiplication the 48-bit result has to be normalized such that there will be 
at least one non-zero digit left to the binary-point.  

 
 
 

Figure 3.  24x24 Significand Multiplication using CSHM 
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e) Rounding block: Among the rounding techniques we use “Round to nearest” technique. A ‘1’ is added to the 
LSB position of the bits to be retained if there is a ‘1’ in the MSB position of the bits to be removed. Thus, 0.b-1b-

2b-31...  is rounded to 0.b-1b-2b-3+0.001, and 0.b-1b-2b-30… is rounded to 0.b-1b-2b-3. When the bits to be removed 
are 10…0, a tie occurs. In this case 0.b-1b-20100 is truncated to the value 0.b-1b-20 and the value 0.b-1b-21100 is 
truncated to 0.b-1b-21+0.001.  This is an unbiased rounding technique, because the error range is approximately -
1/2 to +1/2 in the LSB position of the retained bits. 
 

V. FIR FILTER IMPLEMENTATION USING FCSHM 
 The input-output relationship of linear time invariant (LTI) FIR filter can be described as  


−

=

⋅ −=
1

0
)(  )(

M

k

k knxcny
                

                                                     (2) 

where n  represents the length of FIR filter, kc ’s are the filter coefficients, and )( knx −  denotes the data 
sample at time instance )( kn − .Fig. 4(a) shows a direct form (DF) implementation of an FIR filter.  An 
equivalent architecture is the transposed direct form (TDF) as shown in Fig. 4(b). The TDF implements a 
product of the coefficient vector ],...,,[ 110 −= McccC  with the scalar )(nx  at time n . The input )(nx  is 

multiplied by all the coefficients 110 ,...,, −Mccc  simultaneously. In the sequel, such product will be referred to 
as a vector scaling operation. Expressing the filtering operation in terms of a vector scaling operation allows 
opportunity to share computations between multiplication operations. 

 In the direct form FIR filter, a large adder in the final stage lies on the critical path and it slows down the FIR 
filter. Since we focus on the design of a high performance FIR filter, the transposed direct form FIR filter is 
more appropriate for a high-performance filter structure.  In the TDF of FIR filter shown in Fig. 4(b), multipliers 
are replaced by floating-point computation sharing multipliers (FCSHM). The precomputation block is shared 
by all floating-point multipliers. The input x(n) is applied precomputation block and  the precomputed values 
shared by all the Select & Shift units of the significand multipliers. 

 
 

(a) 
 

 
(b) 
 

Figure 4.  Implementation of FIR filters architecture in (a) Direct Form (b) Transposed Direct Form. 
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    Fig.5 shows the proposed structure of the FIR filter using FCSHM. The computations 
,7 ... ,2 ,1 ,0 , =⋅ kxkα , are performed only once for all s'k , and all filter taps and these values are shared by 

all the select & shift units for generating xci ⋅ , 3,.... 2, 1, ,0=i .This gives a reduced computational 
redundancy in FIR filter. 
 Since the precomputer lies on the critical path of the FCSHM one pipeline stage is introduced after the 
precomputation block. Because of this the latency of the proposed FIR filter increases by one clock cycle. If 
conventional multipliers (Wallace multiplier, Booth-encoded multiplier etc.) are used for filter implementation, 
flip-flops for pipelining should be placed in every tap of the filter. However, pipelining of the filter using 
FCSHM can be simply done by placing flip-flops right after the precomputation block, irrespective of the filter 
size, due to computation sharing and reuse. Therefore, the cost of pipelining (the number of flip-flops) is much 
smaller than using conventional multipliers. IEEE-754 complaint Floating-point adder is designed as explained 
in the previous section for the adder elements in the filter.  
 

VI. RESULTS AND DISCUSSIONS 
 We have described the proposed floating-point computation sharing multiplier (FCSHM) architecture and 
floating-point carry-save array multiplier (FCSAM) architecture using Verilog Hardware Description Language. 
To demonstrate the application of the proposed floating-point computational sharing multiplier (FCSHM), we 
have implemented the FCSHM architecture into a 10-tap programmable FIR filter with transposed direct form. 
Also, to show the effectiveness of the proposed FCSHM scheme, a 10-tap FIR filter with programmable 
coefficients is designed based floating-point multiplier (with carry-save array multiplier for the 24x24 
significand multiplication (FCSAM)) and implemented. Both the multiplier scheme and FIR filter structures 
using both FCSHM and FCSAM are modeled using Verilog HDL and simulated using Cadence IUS. After 
functional validation, the structures are synthesized using Cadence RTL Compiler, targeted to TSMC 0.18μm, 
1.8v CMOS standard cell library. Placement and Routing is done using Cadence SOC Encounter. The results of 
the filter implemented based on FCSHM and FCASM are tabulated in Table I. 

 
 

Figure 5. FIR filter (TDR) implementation based on FCSHM 

TABLE I.  COMPARISON OF RESULTS WITH FCSHM SCHEME IN TSMC 0.18μM CMOS TECHNOLOGY. 

Component 
FIR-FCSHM  

(proposed work) 
FIR-FCSAM 

Performance 
Improvement 

of FCSHM 
over FCSAM 

Delay Clock (ns) 44 47 6.38 

Power 

Switching Power (mW) 41.77 69.46 39.86 
Net Power (mW) 26.92 37.36 27.94 
Internal Power (mW) 14.85 32.09 53.72 
Leakage Power (nW) 21.12 22.69 6.92 
Total Power (mW) 83.75 138.93 39.72 

Power-Delay Product (PDP) 3685.05 6529.84 43.56 

Area 
No. of Cells 46521 36703 -26.75 
Cell Area (μm2) 475442 464179 -2.43 
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FIR filter based FCSHM structure achieves 39.7% savings in Power and an improvement of 6.38% in terms 
of speed and 43.56% savings in terms of PDP (Power Delay product) compared to the FIR filter based on 
FCSAM with 2.43% area overhead. This is achieved by computation sharing which reduces the computational 
redundancy in the filtering operation.  

VII. CONCLUSION 
       We have implemented Floating-point FIR filter based on Floating-point Computation sharing Multiplier 
(FCSHM) and Carry-save Array Multiplier. In FCSHM scheme, the precomputed values are shared among the 
multipliers in the filter. Since redundant computations are removed in the 24×24 significand multiplication, the 
FCSHM technique results in Low-power and high-performance compared to CSAM. The proposed FIR filter 
based on FCSHM architecture can be used in the design of adaptive filter and signal equalizers.  
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