
Improved Cluster Merging by Preemption
in Task Scheduling

Tae-Young Choe
Dept.of Computer Engineering, Kumoh National Institute of Techonology

Daehak-ro 61, Gumi, Gyeongbuk, Korea
choety@kumoh.ac.kr

Abstract—Most static task scheduling algorithms schedule tasks in non-preemptive mode. Basic reason
of such tendency is that preemption invokes overheads and it does not help to minimize its schedule
length. We found that preemption helps to reduce the number of processors while the schedule length
does not increase. We propose a task scheduling algorithm that applies task preemption. The basic
process of the algorithm uses preemption when it merges tasks in two processors into one processor.

Keyword-task schedule; cluster merge; pre-emption; parallel and distributed systems; cloud
computing

I. INTRODUCTION
Cloud computing and grid computing have spread applications that use multiple processors. Such

applications are composed of multiple blocks that execute in each processor. Web server is a type of the
applications where each block is a request for a web page. In the case no communication exists between blocks
and the application can be easily implemented using a thread pool. Another type of the applications is a set of
applications where a block should communicate with other blocks. In the case a block is a sequence of codes
that use input data and make results, which are transferred to other blocks and are used as input data by the
blocks. The data transfer between blocks is considered just as a preference relation if all processors are located
in a system and they are connected by a communication switch like a bus and shares a system clock. However,
communication cost or time is included as a property of the data transfer if the working processors are located in
different system and does not share a system clock like computer clusters, grid computers, or cloud computers.
Many traditional computation programs are included in the latter case.

Task scheduling algorithm is to allocate the blocks to processors in order to minimize the completion time of
applications. If we consider a task scheduling algorithm that allocates blocks to processors in a cloud computer,
the algorithm decides the execution time of applications and performance of the cloud computer. If execution
times of blocks and costs communication links are known from the previous execution of computational
applications, static task scheduling could finish the application faster than dynamic task scheduling does.
Although task scheduling problem is known as NP-complete [1], many static task scheduling algorithms have
been proposed, while the algorithms do not allow preemption for task scheduling [2-5]. If preemption is allowed
in task scheduling, a block can be partitioned to two or more sub-blocks and other blocks can be executed
between the sub-blocks. Unfortunately, most papers that deal with preemptive task scheduling in multiprocessor
system are concentrated on satisfying deadline in real-time systems [6-8].

One reason of the unpopularity is that pre-emption does not effect on schedule length. For example, assume
that two tasks ti and tj are allocated in processor Pi in the order. If tj preempts ti in the middle, then the finish
time of tj reduces at the amount of preemption, while the finish time of ti increases and the completion time of Pi
does not reduce at all. Moreover, the preemption invokes context switch overhead [9].

However, reducing the schedule length is not the unique consideration for task scheduling in multi-processor
system. The number of used processors determines cost of an application while the schedule length determines
the performance of the multiprocessor system. Thus, many task scheduling algorithms are designed in order to
reduce the schedule length and to reduce the number of used processors at the same time [10-15]. Methods to
reduce the number of used processors can be classified in two groups. One method is to restrict the maximum
number of useable processors [10][13], which is suitable when a target system is determined in advance. The
other method is to schedule without any restriction and to reduce the number of processors by processor (or
cluster) merging [4][16][17]. The second method is suitable if the target system is flexible like a grid or a cluster
computing system. We concentrate on the cluster merging because the flexible computing system is more
popular.

Cluster merging is an operation that moves all tasks in a cluster to another cluster. Thus cluster merging
reduces the number of used clusters. Tasks in a merged cluster are not completely ordered because tasks are
ordered by parent and child relations. There is no direct order relation between sibling tasks. Since there should
be order in a cluster, topological sorting is applied to tasks in a cluster in general. Unfortunately, ordering
between multiple unrelated tasks could invoke unexpected result. For example, assume that clusters Pi and Pj are

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1897

merged as shown in Fig. 1 (a). If task ni precedes task nj in the merged cluster, there is no change in completion
time of other tasks as shown in Fig. 1 (b). But if task nj precedes task ni, completion time of a child task na
increase as shown in Fig. 1 (c), which may increase schedule length.

Fig. 1. Ordering effect on cluster merge, (a) before merge, (b) merging that keeps schedule length, (c) merging that increases schedule

length

Choe suggested to give higher priority to task that has higher out-degree task [18]. The suggestion come from
the intuition that task with higher out-degree has higher probability to effect on schedule length. Also the
experimental results show that the suggestion has better performance compared to random selection within the
range of error.

Instead of such intuitive suggestion, we discovered a property by which a task should precede the other task.
The property can be intuitively explained from Fig. 1. When a message from task nj arrives to cluster Pb, there is
an interval before task nb starts, which means that execution of task nj can be delayed by the amount of the
interval. But task ni does not give such interval to cluster Pb. Thus task ni should finish its execution before task
nj finishes in order to minimize the delay of child tasks. Based on the property, we suggest a condition that
cluster merge does not increase schedule length. Since the condition is stricter than general case, we also suggest
an algorithm that determines the merge property more exactly.

The rest of the paper is organized as follows. Section 2 defines terms and objectives. Section 3 presents a
condition and a decision algorithm where cluster merging does not increase the schedule length. Section 4
shows a frame algorithm that uses the merge operation and an example schedule. Finally the paper concludes in
Section 5.

II. TERMINOLOGIES
A task is a block of contiguous codes. A task has a size which means the number of instructions to be

executed or an execution time. In the paper, the task size is used as the execution time. A task can have a
relation with another task. The relation could be a precedence restriction or a data transfer from that task to this
task. For example, if task na should be executed before task nb starts, there is a relation from na to nb. A node is
an entity and an edge is a relation between two nodes in a graph. A task is mapped to a node in a graph and they
are notated as na. A relation is mapped to an edge in a graph and they are notated as ea,b if the edge connects
task na and nb. If an application or a module makes a result and terminates in a finite time, it can be represented
as a graph, especially directed acyclic graph (DAG) where edges are directed. All edges are assumed to be
directed. Fig. 2 shows an example of DAG where each node and edge has weight. Weight of an edge means
communication cost between tasks if the tasks locate in different processors. One or more edges are attached to
a node. The number of attached edges in a node is called degree of the node. Out-degree of a node is the number
of attached edges that start from the node. In-degree of a node is the number of attached edges that arrive in the
node. A task that has zero in-degree is called entry task and a task that has zero out-degree is called exit task.

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1898

Task n1 is the entry task and n12 is the exit task in Fig. 2. For generality, we assume that there is an entry task
and an exit task in a DAG in order to easily compute completion time of an application.

Fig. 2. An example of DAG

Two tasks have relation by an adjacent edge. If there is an edge ea,b from task na to nb, na is a parent task of nb
and nb is a child task of na. In Fig. 2, task n3 is parent task of task n7 and n6 is child task of task n4. If a task has
two or more child tasks, it is called a fork task. If a task has two or more parent tasks, it is called a join task.
Given a task na, PRED(na) is the set of parent tasks of na, that is,

}|{)(, EennPRED abba ∈= .

SUCC(na) is the set of child tasks of na, that is,
}|{)(, EennSUCC baba ∈= .

stCs(na) is the start time of task na allocated in cluster Cs and ctCs(na) is the finish time of task na allocated in
cluster Cs. τa is the weight of task na. If task na is not preempted, ctCs(na) = stCs(na) + τa. Computation of start
time is introduced in Chapter 3.

Task scheduling is an allocation of tasks (nodes) to processors where each task has its start time and finish
time in its processor. An entry task has zero start time because it does not need a message from parent task. If a
task has a parent task, it should wait until message from the parent task arrives. If the parent task is allocated to
the same processor where the task is allocated, the message communication time is assumed to be zero because
it is an intra-processor communication and the size is negligible compared to inter-processor communication.
Otherwise the child task should wait until the parent task finishes and the result of the parent task arrives to
child task through communication link. A schedule is a set of clusters (or processors) where each cluster is a set
of pairs (task, start time). Schedule length is a finish time of the exit task in the schedule.

Task scheduling problem is to find an algorithm that generates a schedule with the shortest schedule length. A
task can be duplicated in the multiple processors in order to reduce its schedule length.

III. MERGE CONDITIONS AND DECISION FUNCTION
A. Cluster Merging

A cluster is mapped to a processor in task scheduling. Thus if a task is an element of a cluster, the task is
allocated in the corresponding processor. Cluster merging is to combine two clusters and to make a new cluster,
which is a union of the two clusters. If cluster merging is applied to a task scheduling, overall process of the task
scheduling is as follows:

1) Initial schedule: it can be any schedule. For example, a schedule can be constructed such as one task in
one cluster. Or any previous task scheduling algorithm can be used in the step.

2) Cluster merging: two clusters are merged repeatedly until some pre-defined conditions are satisfied. An
example of the pre-defined condition is the maximum available number of processors.

If an initial schedule is one task in one cluster, results of merge are highly un-expectable. Thus any previous
task scheduling algorithm that has no restriction on the number of processors is preferred than one task in one

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1899

cluster initialization. One example of such algorithm is TDS (Task Duplication based Scheduling) algorithm
proposed by Darbhan and Agrawal [11]. After initial schedule being decided, clusters are merged until a
condition is satisfied. There are two types of merging stop conditions: one is the number of available processors;
another is that merge does not increase schedule length. If an application runs in a cluster computer or in a
parallel computer where the number of processors is predefined, the number of clusters should be equal or
smaller than the predefined number of processors. In the case, cluster merging repeats until the number of
clusters is equal or smaller than the predefined number.

If an initial scheduling algorithm generates a schedule with the shortest schedule length and the length should
be maintained, cluster merging continues while it keeps the schedule length. TDS algorithm is one of the task
scheduling algorithms that generate the shortest length schedule if input DAG satisfies a condition. Roughly
speaking, the condition means that cluster merging does not reduce schedule length if each parent task of a join
task constitutes its cluster. For example in Fig. 2, join task n7 has 3 parent tasks n3, n4, and n5. Then there are
three clusters C(n3), C(n4), and C(n5), where any cluster merging does not reduce the start time of task n7.
Although cluster merging does not reduce schedule length, it still reduces the number of used processors.
B. Preemption

In a cluster, some tasks are in ordered relation and others are not. Only if they are scheduled to satisfy
topological sorting, the application works correctly. Unfortunately, ordering between unrelated tasks can make
different schedule length as shown in Fig. 1. In order to order tasks correctly, a scheduler need to know more
information for task order. We apply time gap of a task such as the earliest start time and the latest start time [11,
14].

Also we focus on preemption on tasks. Although task preemption reduces the schedule length for some
restricted environment [19], it helps to keep schedule length during cluster merging. For example, Fig. 3 is a
schedule of DAG in Fig. 2 by TDS algorithm. The DAG satisfies Darbha’s condition and there is no cluster
merge that can reduce schedule length in Fig. 3. If cluster C(n12) and C(n10) are merged by force, the result of
merge increases the schedule length to 22 as shown in Fig. 4.

Fig. 3. Schedule of DAG in Fig. 2 by TDS algorithm

Task n6 and n7 have edges to child tasks n8 and n11 in other cluster, respectively. It is clear that ordering of the
tasks effects the start times of the child tasks. Fig. 4. show that locating task n6 before task n7 delays start time of
task n7 and start time of task n11. The delay propagates to the exit task n12 which increases schedule length up to
22. Unfortunately, exchanging order of task n6 and task n7 does not remedy the increment of schedule length. If
task n7 is allocated before task n6 in cluster C’(n12), task n7 finishes at time 9, task n6 finishes at time 13, and
start time of task n12 becomes 16. Although the amount of delay is reduced, the increment of the schedule length
denies cluster merge.

By applying task preemption, the schedule length is preserved as shown in Fig. 5. By allocating task n6 before
task n7 and preempting n6 with n7, start time of task n11 is preserved. Also delay of task n6 by the preemption
does not affect start time of the exit task n12.

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1900

Fig. 4. Merge of cluster C(n10) and C(n12) from schedule in Fig. 3

Fig. 5. Merge of cluster C(n10) and C(n12) using preemption from schedule in Fig. 3

Now, we derive a merge condition that indicates whether cluster can be merged without increasing the
schedule length. Given an initial schedule, there are some clusters where tasks are allocated. Before deciding
preemption, some properties of tasks should be computed. Start time stCs(na) and slack time of task na in cluster
Cs are such properties. Slack time is an interval between the start time and a closing start time of task na.
Closing start time of task na is the latest start time by which start times of its child tasks are not delayed. If na
start after the closing start time, start times of some its child tasks are delayed and the schedule length could
increase as the consequence. Closing start time of task na in cluster Cs is notated as cstCs(na).

Start time of a task is 0 in the case of an entry task. Otherwise, it is determined by message arrival time from
its parent tasks. A task cannot start before the last message arrival time from parent tasks. According to clusters
where parent tasks reside, inclusion of inter-processor communication time to start time is determined. If the
task and its parent reside in the same processor, the edge weight between two tasks is ignored. Thus the start
time stCs(na) of task na is computed as follows:

),(max)(
)(apCnPREDnaC nnrdynst

s
ap

s ∈
= , (1)

where rdyCs(np, na) is a message arrival time from a parent task np to task na in cluster Cs and it is called ready
time. We assume that task duplication is allowed. Thus there could be multiple duplicated task np in multiple

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1901

clusters. Since task na need just one message from the multiple parent tasks, one message that arrives the earliest
is sufficient. If parent task np is located in the same processor with task na, communication overhead is ignored.
Thus ready time from np to na in Cs is computed as follows:

+

=
=

∋

∋

otherwise))((min

 if)(min
),(

,appCnC

pspCnC
apC cnct

CCnct
nnrdy

p
pp

p
pp

s

. (2)

Closing start time cstCs(na) of task na is computed from a completion time mct which is computed from
current start times of its child tasks by subtracting communication cost. Since the completion time is computed
from all child tasks, it should be the minimum value of completion times derived from the child tasks. By
subtracting the size of na, the closing start time is computed as follows:

)),((min)(
)(aiaCnSUCCnaC nnmctncst

S
ai

s
τ−=

∈
, (3)

where mctCs(na,ni) is the last allowed completion time of task na in order for all duplications of its child task ni to
start in the current time. Thus cst should be the minimum value for all duplications of its child tasks. If child
task ni is allocated to the same cluster as task na, communication cost between the tasks is ignored. Thus,

−

=
=

∋

∋

otherwise))((min

 if)(min
),(

,iaiCnC

isiCnC
iaC cncst

CCncst
nnmct

i
ii

i
ii

s

. (4)

As long as a task na starts between stCs(na) and cstCs(na), the schedule length does not change. There could be
a case of stCs(na) > cstCs(na), which means that allocating na to Cs could increase the schedule length. Let start
time of task na be t in cluster Cs. Although start time of na is delayed to cstCs(na), the schedule length does not
increase. We call the value cstCs(na) – t as slack time and notate as sltCs(na, t). That is,

tncsttnslt aCaC ss
−=)(),(. (5)

If time t is the same as stCs(na), it can be abbreviated to sltCs(na). From above values, a condition for merging
with preemption is proposed as following theorem.
Theorem (Preemptive merge condition) Two clusters Ca and Cb are merging into a new empty cluster Cs, where
the last task is ns. Whenever a task na in cluster Ca is selected to be merged into Cs, if one of following
conditions are satisfied for all selected tasks, merging two clusters does not increase the schedule length.

)()(sCaC nctnst
ss

≥ , (6)

)())(),(max(aCsCaC ncstnctnst
sss

≤ , (7)

asC nslt
s

τ≥)(, and)()()(aCaCaC nsltnstnst
aas

≤− . (8)

Proof. Following two cases are situations where merging of na into Cs does not increase the schedule length:

1) There is no other tasks of Cs in the slot where na would be scheduled: in the case, na can be scheduled
without any delay. The case is expressed by Equation (6).

2) Task ns overlaps the slot where na would be scheduled: in the case, start time of na is delayed by the
amount of overlap. If the delayed start time of na does not exceed its closing start time, its child tasks
can start in time. The case is expressed by Equation (7).

If above cases are not satisfied, scheduling na after ns delays start times of its child tasks and it could increase
the schedule length. Thus na tries to preempt ns. If task ns is preempted, completion time of ns increases up to
the amount of τa. In order for child tasks of ns to keep their start time, slack time of ns should be equal to or
greater than τa. Thus the left condition of Equation (8) should be satisfied. Also, delay amount of na should be
equal to or less than its slack time. Thus the right condition of Equation (8) should be satisfied. □

When two clusters Ca and Cb are merged, checking increment of schedule length is processed as follows:
1. Create an empty cluster Cs
2. Select a task na that has the smallest start time among tasks in two clusters.
3. If there is no task in two clusters, jump to step 7.
4. Check whether the schedule length increases when task na is inserted into cluster Cs.
5. If it does not increase, move na to Cs and jump to step 2.
6. If it increases, return “increase”.
7. Since there is no increment, return “no increase” (or “merge-able”).

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1902

When task na is moved from cluster Ca to cluster Cs with preemption enabled, following process checks
whether the schedule length increases:

1. If Cs = Ca, return “no increase” (the step can be skipped).
2. If na is already in Cs, return “no increase”.
3. Decide increment based on values st and cst of na in Cs.

Consider a method to check increment of schedule length based on st and cst. Assume that task ns is just
allocated to the end of cluster Cs, and task na is about to be merged into cluster Cs.

1. Compute stCs(na) using Equation (1).
2. If stCs(na) ≥ ctCs(ns), then merge na to Cs and return “no increase”.
3. Compute cstCs(na) using Equation (3).
4. If max(stCs(na), ctCs(ns)) ≤ cstCs(na), then merge na to Cs and return “no increase”.
5. Otherwise, there is possibility of schedule length increment. Process follows:

A. If sltCs(ns) ≥ τa, then check 5-B, otherwise do not merge and return “increase”.
B. If stCs(na) – stCa(na) ≤ sltCa(na), then na preempts ns and return “no increase”.
C. Do not merge and returns “increase”.

In short, if one of conditions in step 2, 4, or (5-A and 5-B) is satisfied; merging task na to cluster Cs does not
increase the schedule length.

IV. AN EXAMPLE
We show an example of the proposed merge condition and merge process using figures from Fig. 2 to Fig. 5.

A DAG is given as shown in Fig. 2. Numbered labels mean weight of node or edge. The DAG satisfies the
optimality condition proposed by Darbha and Agrawal [11]. In order to process fast, TDS algorithm generates
an initial schedule as shown in Fig. 3. Needless to check the optimality condition, any cluster merging does not
decrease the schedule length 17. For example, if two clusters C(n8) and C(n12) are merged, then the completion
time of the exit task n12 would be 19. Also merging of other two cluster C(n10) and C(n11) increases the
completion time of task n12 up to 18. Merging cluster C(n10) and C(n9) without preemption increases schedule
length up to 20 as shown in Fig. 4. Major reason of the increment is the delay of task n7, which started at 7
before merging and starts at 10 after merging. On the other hands, task n6 allocated before task n7 effects on start
time of the exit task n12 through task n8, where message arrival time from task n8 is too early for task n12.

Consider step to decide whether merging two cluster clusters C(n12) and C(n10) does not increase the schedule
length. An empty cluster C”(n12) is created. Since C(n12)={n1, n3, n6, n9, n12} and C(n10)={n1, n4, n7, n10}, task
n1 is selected from C(n12) and is inserted into C”(n12). Next, n1 in C(n10) is selected, but it is abandoned because
already n1 is in C”(n12). Task n3 is selected and is checked for effect on its child tasks. Since child tasks n6 and
n7 will be merged with n3, they are excluded for consideration. Thus n3 is allowed to be merged into C”(n12).
Task n4 also has child tasks which are all included in merging clusters, and is merged into C”(n12). Next, task n6
is selected. A child task n9 is included in merging cluster. Since another child task n8 is not in merging clusters,
effect from n6 to n8 should be considered. Closing start time cst(n6) is determined by closing start time of n8.
Since the gap between the arrival time of message from n8 and start time of n12 is 3, cst(n8) is 13. Thus cst(n6) is
8. Since st(n6) is 5 and ct(n4) is 6, merge is allowed in step 4. Next, task n7 is considered. Start time st(n7) is 7
and ct(n6) is 10. So cst(n7) should be computed in step 3. Task n7 has a child task n11 which locates outside
C(n12) and C(n10). Since cst(n11) is 10, cst(n7) is 7. Closing start time cst(n7) is smaller than the max value in
step 4. Slack time slt(n6) is 2 and τ7 is 2, which makes step 5-B to be tested. Since start time stC(n12)(n7) is 7,
stC(n10)(n7) is 7, and sltC(n10)(n7) is 0, Condition in step 5-B is satisfied. Thus n7 preempts n6 at time 7 and is
merged into C”(n12). Following tasks n9 and n10 has only one child task n12. Thus they checks only start time and
the schedule length is preserved. As the result of merge, the schedule is changed as shown in Fig. 5.

V. CONCLUSION
We propose a preemptive cluster merge method for static task scheduling algorithm and merging conditions.

The conditions check whether the cluster merging increase the schedule length. If a given DAG satisfies the
optimality condition and TDS algorithm generates an initial schedule, the conditions help to reduce the number
of used processors. If a random DAG is given, any scheduling algorithm can generate an initial schedule and the
condition help to reduce the number of used processors and to reduce the schedule length.

Since the proposed conditions are not commonly accounted condition, frequency and effects should be
investigated in detail. We will adapt the proposed condition and steps to random and application DAGs as future
works.

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1903

ACKNOWLEDGMENT
This paper was supported by Research Fund, Kumoh National Institute of Technology.

REFERENCES
[1] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., 1979.
[2] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors,” Journal

of Parallel and Distributed Computing, vol. 16, pp. 276-291, Dec. 1992.
[3] K. He and Y. Zhao, “A new task duplication based multitask scheduling method,” in Proceedings of the Fifth International Conference

on Grid and Cooperative Computing (GCC’06), (Changsha, Hunan, China), pp.221-227, IEEE Computer Society, 21-23 October 2006.
[4] C.-I. Park and T.-Y. Choe, “An optimal scheduling algorithm based on task duplication,” IEEE Transactions of Computers, vol 51, pp.

444-448, April 2002.
[5] Y.-K. Kwok and I. Ahmad, “Exploiting duplication to minimize the execution times of parallel programs on message-passing systems,”

in Proceedings of Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 426-433, October 1994.
[6] T. Megal, R. Sirdey, and V David, “Minimizing Task Preemptions and Migrations in Multiprocessor Optimal Real-Time Schedules,” in

IEEE 31st Real-Time Systems Symposium (RTSS), pp.37-46, 2010.
[7] K. Bletsas and B. Andersson, “Preemption-Light Multiprocessor Scheduling of Sporadic Tasks with High Utilization Bound,” in IEEE

30th Real-Time Systems Symposium, pp.447-456, 2009.
[8] Sun Wei, “A Novel Genetic Admission Control for Real-Time Multiprocessor Systems,” in International Conference on Parallel and

Distributed Computing, Applications, and Technologies, pp.130-137, 2009.
[9] A. Silberschatz, G. Gagne, and P. B. Galvin, Operating System Concepts 8th edition, Wiley, 2011.

[10] Amit Agarwal and Padam Kumar, “Economical Duplication Based Task Scheduling for Heterogeneous and Homogeneous Computing
Systems,” in Proceedings of the 2009 IEEE International Advance Computing Conference (IACC 2009), pp.87-93, Patiala, India, 6-7
March 2009.

[11] S. Darbha and D. P. Agrawal, “Optimal Scheduling Algorithm for Distributed-Memory Machines,” IEEE Transactions on Parallel and
Distributed Systems, vol 9, no. 1, pp.87-95, January 1998.

[12] I. Ahmad and Y.-K. Kwok, “On Exploiting Task Duplication in Parallel Program Scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 9, pp.872-892, September 1998.

[13] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.260-274, March 2002.

[14] D. Bozdag, F. Ozguner, and U. V. Catalyurek, “Compaction of Schedules and a Two-Stage Approach for Duplication-Based DAG
Scheduling,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6, pp.857-871, June 2009.

[15] A. Agarwal and P. Kumar, “Economical Duplication Based Task Scheduling for Heterogeneous and Homogeneous Computing
Systems,” in 2009 IEEE International Advance Computing Conference (IACC 2009), pp.87-93 Patiala, India, 6-7 March 2009.

[16] Kun He and Yong Zhao, “A New Task Duplication Based Multitask Scheduling Method,” In Proceedings of the Fifth International
Conference on Grid and Cooperative Computing (GCC;06), pp.221-227, 2016.

[17] M. A. Palis, Jing-Chiou Liou, and David S. L. Wei, “Task Clustering and Scheduling for Distributed Memory Parallel Architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 1, January 1996.

[18] T. Y. Choe, “Task Scheduling Algorithm to Reduce the Number of Processors using Merge Conditions,” International Journal on
Computer Science and Engineering, vol. 4, no. 2, February 2012.

[19] Z. Gu, X. He, and M. Yuan, “Optimization of Static Task and Bus Access Schedules for Time-Triggered Distributed Embedded
Systems with Model-Checking,” in Proceedings of the 44th annual Design Automation Conferenc (DAC’07), pp.294-299, June 2007.

Tae-Young Choe / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1904

