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Abstract—A new computerized method for determination of driving point resistance is proposed. It is 
suitable for manual calculation as well. It proceeds step by step in a logical way. The network is reduced 
to a single resistance using parallel, series, star-delta and delta-star reduction techniques. The method is 
successfully tested manually as well as by simulation on the computer. 
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I. INTRODUCTION 
Methods for evaluating the driving point resistance (DPR) of a network are available [1]-[7]. The most 

simple and straight forward method is reducing the network to a one loop two node circuit using basic rules of 
series and parallel reduction, and star delta transformation. In this paper, the method is mechanized such that it 
can be computerized. The main difficulty is to make the computer to understand whether the elements are 
connected in series, parallel, delta or star. For this a special matrix representation of the network is developed 
which identifies the type of connection. Once this is achieved, then the task left for the computer is simply to 
calculate. 

II. MATRIX METHOD 
A. Numbering of junctions 

A junction is defined as a meeting point of two or more elements. A junction will be indicated by a ‘o’. 
Consider any two terminal resistive network whose driving point resistance (DPR) r1,1' at the input terminals 1,1' 
is to be determined. Mark in serial order starting from the input terminal 1 as 1, all the junctions as 2 to N-1 and 
the terminal 1’ as N, such that, while traversing from junction 1 to N, all the junctions are encountered but once. 
There can be many possible ways of numbering the junctions. 

 

 
Fig. 1:  (a) Circuit for example 1, (b) and (c) two possible numbering of junctions 

Example 1: Consider the circuit shown in Fig. 1(a). There are 8 junctions. Two possible numbering of 
junctions are shown in Figs. 1(b) and 1(c). 
B. Formation of matrix  

An [n × n] matrix is formed as follows. Enter Ri,j corresponding to the resistor connected between the 
junctions i and j as an element in the ith row and jth column. If there is no resistor, enter ∞. If there is k number 
of resistors connected in parallel between these junctions, all these will appear in the same location. Such a 
matrix will appear as shown in Table I.  

 
 
 

(a) (b) (c) 
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TABLE I  

[n × n] matrix 

 
Junction 1 2 … N-2 N -1 N 

1 0 R1,2 … R1,N-2 R1,N-1 R1, N 
2 R2,1 0 … R2, N -2 R2,N-1 R2, N 

  
 
. 

 
. 

 
0 

 
. 

 
. 

 
. 

N-2 R N -2,1 R N -2,2 … 0  RN-2,N-1 RN-2,N 
N-1 R N -1,1 R N -1,2 … RN-1,N-2 0 RN-1,N 
N R N,1 R N,2 … R N, N -2 RN, N -1 0 

 

Note that the forward diagonal has all 0 elements. Since Ri,j = R,j,i, the matrix is symmetrical across the 
forward diagonal. The diagonal immediately next and above the forward diagonal, will be called as first 
diagonal (FD), next to FD the second diagonal, and so on.  We shall refer the part of the matrix consisting of  
the diagonals 1 through N-1 as upper triangular matrix (UTM), and designate it by [UTM]N-1.  
Example 2: Consider the network shown in Fig. 2 where the junctions are already numbered. The UTM for 
the network is shown in Table II. Note that three parallel resistors R2, R3 and R4 appear together in the second 
row and second column.  

 
 

Fig. 2: Network for Example 2  

TABLE II 

UTM for circuit shown in Fig. 2 

 [UTM]5 = 

Junction 2 3 4 5 6 
1 R1 ∞ ∞ ∞ ∞

2  
R2 
R3 
R4 

R5 ∞ ∞ 

3   R6 ∞ ∞
4    R7 ∞
5     R8 

C. Matrix simplifications 

Series parallel reduction 

Consider the ladder network shown in Fig. 3 with junctions numbered. The corresponding UTM is given in 
Table III. 

 
Fig. 3: Ladder network 
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TABLE III 

UTM for the ladder network of Fig. 2 

 
 Junction 2 3  I i+1  N-2 N -1 N 

 
[UTN]n-1  = 

 
 

 

1 R1,2 ∞  ∞ ∞  ∞ ∞ R1,N 
2  R2,3  ∞ ∞  ∞ ∞ R2,N 

                 
i-1    Ri-1,i ∞  ∞ ∞ Ri-1,N 

     i      Ri,i+1  ∞ ∞ Ri,N                      

              
N-2       RN-3,N-2 ∞ RN-3,N 
N-1        RN-2,N-1 RN-2,N 
N         RN-1,N 

           

Note from eqn (4), the following. 
1. All the elements Ri,i+1,  i = 1, 2, . . . , N-1, appearing in the FD are the series branch resistors of the 

ladder network. 
2. All the elements Ri,N, i = 1, 2, . . . , N-1, appearing in the last column are the shunt branch resistors of 

the ladder 3. 
3. All other elements Ri,N = ∞,  j ≠ N, j ≠  i+1,  i, j = 1, 2, . . . , N-1. These are the elements located in the 

area occupied by the diagonals 2 through N-1. This area will be referred as an infinite zone (IZ). IZ with 
all elements as ∞ characterizes the ladder network.  

The DPR of the network is given by the recursive relation  
 

ri+1,N = [ri+2,N + Ri+1, i+2]// Ri+1,N  i = N-3, N-4, . . ., 0 
rN-1,N = RN-1,N 

(1)

where x//y = xy/(x + y).  
General networks 

We have seen above that the UTM of a ladder network has all the elements in IZ ∞. However, a general 
network may produce finite values also in the IZ. For example, the UTM of the network shown in Fig. 2 given 
in Table II has R5 in the IZ. Note that the resistor R5 is the bridging element between the junctions 2 and 4 in the 
network. Hence the elements that appear in the IZ are the bridging elements.  

A general 2-terminal network may, therefore, consist of series resistors which appear as elements in the SD, 
parallel resistors that appear as elements in the last column and the bridging resistors that appear as elements in 
the IZ. We may, therefore, call any 2-terminal network as a bridged-ladder network in line with the name 
bridged-T network. 

Any 2-terminal network redrawn in the following way will look as a bridged ladder. After numbering the 
junctions, place the junctions from 1 to N -1 on an imaginary horizontal line, and the junction N in another 
horizontal line below the fist line as shown in Fig. 4. Then insert all the resistances between various junctions as 
in the original network. 

 
Fig. 4: Arrangement of the junctions 
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Example 3: The network shown in Fig. 5(a) is redrawn following the above procedure as shown in Fig. 5(b).  
 

 
    
         
 
 
 
 
 
 
 
 

 
 
 
 

         (a)      (b) 
 

Fig. 5: (a) Network and (b) redrawn to look like a bridged ladder 

Some obvious properties of UTM of a ladder network are as follows. 
1. All the junctions belong to the basic ladder. 
2. If each junction is connected to all other junctions, then IZ will be full with all elements of finite value. 

This will be referred as house full IZ. 
3. Number of elements connected at a junction k is the sum of non-infinite number of elements both in the 

row and column corresponding to the junction k. 
Parallel reduction 

Let there be k number of parallel resistances connected across the junctions i and j. These resistances will 
appear as a cluster at the ith row and jth column in UTM. They can be replaced by a single resistance Rp in the 
same row and same column given by  

 

Rp = 1/[sum of the reciprocals of all the parallel resistances]. (2)
 

After replacing the string of k parallel resistors by the equivalent resistance Rp in the network, the UTM 
corresponding to the reduced network will be the same UTM except that the entire parallel matrix will be 
replaced by a single element Rp. This process will be referred as parallel reduction rule. 
Example 4: Consider the network of Fig. 2 and the corresponding UTM of Table II. Three resistors R2, R3, R4 
connected in parallel between the junctions 2 and 3 manifests as a cluster in the row and column corresponding 
to the junction 2 as shown in the UTM in Table II.  Applying the parallel reduction rule, the new UTM obtained 
is shown in Table IV. 

TABLE IV 

New UTM 

 Junction 2 3 4 5 6 

[UTM]5 = 

1 R1 ∞ ∞ ∞ ∞
2  Rp R5 ∞ ∞
3   R6 ∞ ∞
4    R7 ∞

 5     R8 

Series reduction 

If a string of k number of resistors Ri+1, Ri+2, . . . Ri+k connected in series, they all can be replaced by a single 
resistance  
 

RS =  Ri+1 + Ri+2 + . . .+ Ri+k. (3)
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Consider the UTM of Table IV. Resistors R7 and R8 connected in series in the circuit between the junctions 
4 and 5 manifests in the columns corresponding to these junctions. Such a matrix will be referred as series 
matrix. The following are the characteristics of a series matrix.  

1. Each series resistor Rij will appear as the element in the FD and no other element will appear in the ith 
row and in jth column.  

2. All other elements in this matrix will be ∞.  
After replacing the string of k series resistors by the equivalent resistance RS in the network, the UTM 

corresponding to the reduced network will be the same as shown in Table IV by inserting an element RS in the 
kth column and deleting first k-1 columns and bottom k-1 rows of the series matrix. This will reduce the order of 
the matrix by k. This process will be referred as series reduction rule. 
Example 5: After applying the series reduction rule to the Table IV, UTM  reduces to  

 
Junction 2 4 6 

1 R1 ∞ ∞
2  R5 

RS1

∞ 

4   RS2 

where RS1 = Rp +R6, RS2 = R7 + R8. Further R5 and RS1 form a parallel combination. After removing them by 
applying parallel rule the following UTM results. 

 Junction 2 4 6 

[UTM]3 = 
1 R1 ∞ ∞
2  Rp1 ∞
4   RS2 

where .
51

51
1 RsR

RsR
pR

+
=  

Again applying the series reduction rule,  
 

 Junction 6 

[UTM]1 
= 1 R1+ Rp1+ RS2 

Thus the input resistance is r1,6 = R1+ Rp1+ RS2. 

Bridged-T reduction using delta to star transformation 

A star network shown in Fig. 6(a) can be converted into a bridged-T network by introducing a bridging 
branch in three possible ways as shown in Figs. (b), (c) and (d). These will be referred as BT-T, BT-R and BT-L 
respectively, based on the position of the bridging branch on top, right or left, respectively. Note that (1) at 
junction i+1 the number of elements connected is due to three star branches and is three, (ii) the position of 
bridging branch is different for BT-T, BT-R and BT-L respectively. The portion of the UTM when p < i is 
shown in Table V. Note that three branches Rp,i+1, Ri,i+1 and Ri+1,i+2 shown in black color are the same while the 
location of the bridging element is shown in red color by and green color by RL (Rp,i) corresponding to the BT-T, 
BT-R and BT-L respectively.  

After delta resistances are converted into equivalent star resistances and then the two resistances connected 
in series are replaced by their series equivalent, the UTM of the new network will be as given in Table VI. Note 
that the red color elements become infinity while the black color elements changed RAk, RBk and RCk (k = T, R, L) 
as per equation (4). Other elements in the row and column corresponding to i+1 junction will remain infinity, so 
that the sum of the number of finite elements is still 3. 
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                   (b)                                 (c)       (d) 
 

Fig. 6: (a) Star connection, (b) BT-T, (c) BT-R and (d) BT-L  

 
TABLE V 

Portion of the UTM corresponding to bridged-T when p < i 
 

Junction 2 p  … i-1 I i+1 i+2 …  N 
1      ∞     

       ∞     

p     ∞,∞,RL Rp,i+1 ∞,RR, ∞     

       ∞     

i      Ri, i +1 RT, ∞,∞    
i+1       Ri +1,i +2 ∞ ∞ ∞ 
i+2           
            

N           
 

TABLE VI 
UTM after the bridged-T is converted into an equivalent T 

 
Junction 2 . . . p . . . i i +1 i +2 … N 
1      ∞    

   .     ∞    

p     
∞,∞,∞ 

RCT+Rp,i+1, 

RBR, 
RAL 

∞,∞, ∞ 
  

       ∞    

i      RAT,  
RCR+Rp,i+1, 
RBL 

∞,∞,∞ 
  

i+1       RBT, 

RAR, 
RCL+Ri+1 i+2, 

∞ ∞ 

i+2          
           

N-1          
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where 

(4)

 

 

(5)

 

 

(6)

 
TABLE VII 

UTM of bridged-T network when p > i+2 
 

junction 2 . . . i i + 1 i + 2 . . . p > i +2 . . . N 
1    ∞      

   .   ∞      

i    Ri,i+1 RT  RL   
i+1     Ri+1,i+2 ∞ Ri+1,p ∞ ∞ 
i+2       RR   
           

N-1          
 

TABLE VIII 
UTM after the bridged-T is converted into an equivalent star 

 
Junction 2 . . . i i + 1 i + 2 . . . p > i +2 . . . N 

1    ∞      

   .  ∞,∞,∞      

i    RaT,  
RcR+Rp,i+1, 
RbL 

∞,∞,∞ 
 

∞,∞,∞ 
  

i+1     RbT,  
RaR 

RcL+Ri+1,i+2 

∞ RcT+Ri+1,p,  
RbR 

RaL

∞ ∞ 

i+2       ∞,∞,∞   

           

N-1          
where 

2,12,1,

1,2,1

,
2,12,1,

2,12,

,
2,12,1,

2,1,

++++++

+×++=

++++++

++×+=

++++++

+×+=

iiRiiRiiR

iiRiiR

CTR

iiRiiRiiR

iiRiiR

BTR

iiRiiRiiR

iiRiiR

ATR

2,12,1,

1,2,1

,
2,12,1,
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,
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iiRipRipR
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iiRipRipR
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1,,

,
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++++++

+×
=

++++

×+=

iiRiiRiiR

ipRiiR
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iiRiiRiiR
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(7)

 
 

(8)

 
 

(9)

Similarly the original and the reduced UTMs when p > i+2 will, respectively, be as given in Tables VII and 
VIII. Alternatively, the new locations of elements can be obtained from .2,, iipyRypR →+=  Note that these 

changes do not reduce the number of junctions, however, eliminate the bridging resistance. This will be referred 
to bridged-T to T reduction rule. 
Star to delta reduction 

Star to delta conversion can also be used for reducing the number of junctions. Let there be a star of three 
resistors Ri,i+1, Ri+1,i+2 and piR ,1+  between the junctions i and i+1, i+1 and i+2, and i+1 and p. The equivalent 
delta resistances are  

2,1

1,,1
1,,1

1,

,12,1
,12,1

,1

2,11,
2,11,

++

++
++

+

+++
+++

+
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ii
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iiii
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RRR

 (10) 

An n-branch star requires an equivalent mesh with )1()2/1( −nn  sides [5]. Thus, the number of sides in a 
mesh is minimum when n = 3. Therefore, converting a star with 3>n will increase the complexity of circuit 
rather than reducing it.  
Bridged-T reduction using star to delta transformation 

Consider the bridged-T network depicted in the UTM of Table V. If the star portion of it is replaced by its 
equivalent delta resistances RX, RY and RZ, the new UTM will be as shown in Table IX.   

Note that the junction i+1 is eliminated, RX got mixed with Ri,,i +2; two being in parallel, but RY  and RZ 
appear in the IZ. This means two new bridging elements are added. This will make the method more complex 
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except when new bridging elements appear across some of the existing bridging elements. Hence star delta 
transformation is not suitable for reduction purpose. However, when the junctions cannot be arranged as 
mentioned earlier, some junctions may appear isolated. These isolated junctions may be removed by star delta 
transformation first and then proceed.  

TABLE IX 
UTM after bridged-T is converted into equivalent delta 

 

Junction 2 . . . p . . . i i +2 …  N 
1          
   .         

p     RZ RY    
p+1          
           

i      RX 
Ri,,i +2

   

i+2          
           

N-1          

Consider the network shown in Fig. 7(a) where the resistance is to be determined between the junctions 1 
and 8. The junctions are numbered as shown and the bridged-ladder form of the network is drawn in Fig. 7(b). 
Note that junction 6 is not directly connected to the next junction 7 in serial order. Converting the star at 
junction 7 into equivalent delta, we get the new bridged-ladder network as shown in Fig. 7(c). Though it has 
added one additional bridging element between the junctions 3 and 5, all the junctions are now connected. 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 

 

 

 
 

(b)                             (c) 

Fig. 7: Network for Example 6, (b) bridged-ladder equivalent of (a), (c) New bridged-ladder  

Procedure for evaluating the DPR 

The following procedure is formulated for evaluating DPR of any 2-terminal network by the proposed matrix 
reduction method. 

1. Number the junctions. 
2. Write the complete UTM. 
3. Remove all the isolated junctions using star delta transformation.  
4. Apply series and parallel reduction rules to reduce UTM. 
5. Apply bridged-T to T reduction rule.  
6. Apply parallel, series, and/or series parallel reduction rule. 
7. Repeat steps 5 and 6 until UTM reduces to [UTM]1.  
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The procedure will now be illustrated for finding the DPR with two typical examples. 
Example 6: Consider the circuit shown in Fig. 5(b). Assume all resistance values as 60. Its UTM is  
 

 Junction 2 3 4 5 6 7 

[UTM]6  = 

1 60 ∞ 60 60 ∞ ∞
2  60 60 ∞ ∞ ∞
3   60 ∞ ∞ 60 
4    60 60 60 
5     60 ∞
6      60 

There are no parallel and series matrices present in [UTM]6, however, there are two BT-T  matrices indicated 
by red color. Applying the BT-T to T reduction rule, we get the UTM as  
 

 Junction 2 3 4 5 6 7 

[UTM]6 = 

  1 60 ∞ 60 80 ∞ ∞
2  20 ∞ ∞ ∞ ∞
3   20 ∞ ∞ 80 
4    20 ∞ 60 
5     20 ∞
6      60 

 

There are two series connections (violet). Applying series reduction rule, we get   
 

 Junction 3 4 5  7 

[UTM]4 = 
1 80 60 80 ∞
3  20 ∞ 80 
4   20 60 

 5    80 
By BT-T (red) BL-R (green) to T reduction rule  
 

 Junction 3 4 5 7 

[UTM]4 = 
  1 30 ∞ 90 ∞

3  7.5 ∞ 90 
4   7.5 ∞

 5    30 
 

By series reduction rule, we get 
  

 Junction 3 5 7 

[UTM]3 =   1 30 90 ∞
3  15 90 

 5   30 
 

Applying BT-T to star reduction rule, 
 

 Junction 3 5 7 

[UTM]3 =   1 20 ∞ ∞
3  10 280/3 

 5   30 
 

By series parallel reduction rule, 
 

 Junction 7 
[UTM]1 =   1 48 

 

Thus the DPR of the given network is 48. This is the same obtained by manual calculations. 
Example 7: Consider the network shown in Fig. 7(a) with all resistance values equal to 60. Its UTM is shown 
below. Star resistances appear in the row and column corresponding to the isolated junction 7 and shown in 
black color.  
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[UTM]7  = 

Junction 2 3 4 5 6 7 8 
1 60 ∞ 60 ∞ 60 ∞ ∞ 
2  60 ∞ ∞ ∞ ∞ 60 
3   60 ∞ ∞ 60 ∞ 
4    60 ∞ ∞ ∞ 
5     60 60 ∞ 
6      ∞ 60 
7       60 

 

After converting the star around junction 7 into equivalent delta, resulting UTM is   
 

 Junction 2 3 4 5 6 8 

[UTM]6  = 

1 60 ∞ 60 ∞ 60 ∞
2  60 ∞ ∞ ∞ 60 
3   60 180 ∞ 180 
4    60 ∞ ∞
5     60 180 
6      60 

BT-T and BT-L to T reductions: 
 Junction 2 3 4 5 6 8 

[UTM]6  = 

1 72 ∞ 72 ∞ 72 ∞
2  36 ∞ ∞ ∞ 36 
3   36 ∞ ∞ ∞
4    36 ∞ ∞
5     36 ∞
6      36 

Series reduction: 
 Junction 2 4 6 8 

[UTM]4 = 

1 72 72 72 ∞
2  72 ∞ 36 
4   72 ∞
6    36 

BT-T to T reduction: 
  Junction 2 4 6 8 

[UTM]4  = 

1 24 ∞ 72 ∞
2  24 ∞ 60 
4   72 ∞
6    36 

Series reduction: 
 Junction 2 6 8 

[UTM]3  = 
1 24 72 ∞
2  96 60 
6   36 

BT-T to T reduction: 
 Junction 2 6 8 

[UTM]3  = 
1 9 ∞ ∞
2  36 72 
6   36 

Series parallel reduction: 
 Junction 8 
[UTM]1  = 1 45 

Thus r1,8 = 45.  
The method is successfully tested with several examples both manually as well as by running a computer 
program [8].  

III. CONCLUSION  

A computerized matrix method has been proposed. It can easily be used for manual calculations. It proceeds 
step by step in a logical manner to reduce the given network into a single resistance. The method has been 
successfully tested with several examples both manually as well as by running a computer program.  
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