
Heuristic Based Task Scheduling In Grid
Kamali Gupta 1, Manpreet Singh2

1Department of Computer Engineering, GIMT, Kanipala,

Kurukshetra, Haryana,, India kamaligupta@gimtkkr.com

2Department of Computer Engineering, M.M. University,

Mullana, Ambala, Haryana,, India

drmanpreetsinghin@gmail.com

Abstract— Grid computing is concerned with coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations. Efficient scheduling of complex applications in a grid
environment reveals several challenges due to its high heterogeneity, dynamic behavior and space shared
utilization. Objectives of scheduling algorithms are increase in system throughput, efficiency and
reduction in task completion time. The main focus of this paper is to highlight the merits of resource and
task selection technique based on certain heuristics.

Keyword- Grid Computing, Task Scheduling, Min-Min, Max-Min, Suffrage, Makespan.

I. INTRODUCTION

The term grid [1] is increasingly appearing in computer literature, generally referring to some form of system
framework into which hardware or software components can be plugged and which permits easy configuration
and creation of new functionality from existing components. Grids enable the sharing, selection and
aggregation of a wide variety of resources including supercomputers, storage systems, data sources and
specialized devices that are geographically distributed and owned by different organizations for solving large-
scale computational and data intensive problems in science, engineering and commerce [2]. The computing
power of grid is aggregated by that of various organizational or individual computing resources and grid users
need only to submit computational tasks to it. There are still some difficult issues impeding the development of
grid, among which is the issue of grid task scheduling [3][4]. In order to efficiently utilize available grid
resources and promptly complete tasks assigned to the grid, providing a suitable task scheduling strategy for the
grid computing is necessary [5][6].

The objective of this research work is to make a comparison among various heuristic based scheduling
algorithms under different resource/task mapping environments. In Min-Min algorithm [7], the smaller tasks are
chosen first, making use of resources with high computational power. As a result, the schedule prepared by Min-
Min is not optimal when number of smaller tasks exceeds the larger one. Max-Min algorithm [9] schedules
larger tasks first. But in some cases, the makespan may increase due to the execution of larger tasks first. The
rationale behind Suffrage [10] is that a task should be assigned to a certain resource and if it does not go to that
resource, it will suffer the most. For each task, its suffrage value is defined as the difference between its best
Minimum Completion Time (MCT) and its second-best MCT. Tasks with high suffrage value take precedence
during scheduling.

II HEURISTIC BASED SCHEDULING ALGORITHMS

The resource selection process is used to choose one or more resources from the list of candidates for a given
resource requirement. Since all resources in the list could meet the minimum requirements imposed by the task,
so an algorithm is needed that can choose the best resource for executing the task.
Min-Min Algorithm: Min-Min [8] begins with the set MT (Meta Task) of all unassigned tasks and has two
phases. In the first phase, the set of minimum expected completion time for each task in MT is found. In the
second phase, the task with the overall minimum expected completion time from MT is chosen and assigned to
the corresponding macine. Then this task is removed from MT and the process is repeated until all tasks in the
MT are mapped as shown in Fig. 1. However, the Min- Min algorithm is unable to balance the load well as it
usually does the scheduling of small tasks initially.
BEGIN

1. While (J != Null) // J is set of jobs
2. For each job ji £ J

For each machine mj

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 254

Calculate the completion time
Cij = Eij + Rj // Cij, Eij and Rj represents completion time, execution time and ready time

of job ji on machine mj

End For
End For

3. For each job ji £ J
Find the minimum completion time and the machine that obtains it.
End For

4. Search the job ju having minimum completion time among all unassigned jobs.
5. Allocate ju to machine mv that has resulted in obtaining minimum completion time of ju.
6. Delete job ju from the job set J: J = J - ju

7. Update the ready time of machine mv as: Rv = Cuv

End While
END

Fig. 1: The Min-Min Heuristic

Max-Min Algorithm: Max-Min [10] differs from Min-Min in second phase, where tasks with overall maximum
expected completion time from MT is chosen and assigned to corresponding machine as shown in Fig. 2.
In other words, Min-Min gives priority to the task that has the shortest earliest completion time, whereas at the
time of each scheduling instance, Max-Min tends to schedule the longer task first.
BEGIN

1. While (J != Null)
2. For each job ji £ J

For each machine mj

Calculate the completion time
Cij = Eij + Rj // Cij, Eij and Rj represents completion time, execution time and ready time of

job ji on machine mj

End For
End For

3. For each job ji £ J
Find the minimum completion time and the machine that obtains it.
End For

4. Search the job ju having maximum completion time among all unassigned jobs.
5. Allocate ju to machine mv that has resulted in obtaining maximum completion time of ju.
6. Delete job ju from the job set J: J = J - ju

7. Update the ready time of machine mv as: Rv = Cuv

End While
END

Fig. 2: The Max-Min Heuristic

Switcher Algorithm: Switcher [12] selects between the Max-Min and Min-Min algorithm on the basis of
Standard Deviation (SD) of minimum completion time of unassigned jobs. As the name depicts, it switches
between the two algorithms selecting the best between the two, while making each scheduling decision. A
position in the list of unassigned jobs where the difference in completion time between the two successive jobs
is more than the value of SD is searched. If it lies in first half of the list, then Min-Min algorithm is evaluated as
the number of longer jobs is more, otherwise Max-Min is evaluated by taking the last job from the list. If this
position does not exist, then SD is compared with a threshold value. Allocation of job to a machine is
implemented using Min-Min strategy, if SD is smaller than threshold value. Otherwise, Max-Min is selected for
assigning the next job as shown in Fig. 3.
BEGIN

1. While (J != Null)
2. For each job ji £ J

For each machine mj

Calculate the completion time
Cij = Eij + Rj // Cij, Eij and Rj represents completion time, execution time and ready time

of job ji on machine mj

End For
End For

3. For each job ji £ J
Find the minimum completion time and the machine that obtains it.
End For

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 255

4. Calculate the SD of completion time of all unassigned jobs.
5. Sort all unassigned jobs in increasing order of their completion times.
6. Find a position in this list where difference in completion time of two consecutive jobs is more than SD.
7. If this position is in the 1st half of list of unassigned jobs or SD< threshold value

Apply min-min heuristic

END

Else

End While

Apply max-min heuristic

Fig. 3: The Switcher Heuristic

Suffrage Algorithm: In Suffrage [11], the minimum and second minimum completion time for each job are
found in first step. The difference between these two values is defined as suffrage value as shown in Fig. 4. In
second step, the task with maximum suffrage value is assigned to corresponding machine with minimum
completion time.
BEGIN

1. While (J != Null)
2. For each job ji £ J

For each machine mj

Calculate the completion time
Cij = Eij + Rj // Cij, Eij and Rj represents completion time, execution time and ready time

of job ji on machine mj

End For
End For

3. For each job ji £ J
(a) Find the First minimum completion time (FST_MCTi) and second minimum completion time

(SEC_MCTi) of job ji.
(b) Calculate the suffrage value: SVi = SEC_MCTi - FST_MCTi

End For
4. Search the job ju having maximum suffrage value among all unassigned jobs.
5. Allocate ju to machine mv that has resulted in obtaining minimum completion time of ju.
6. Delete job ju from the job set J: J = J - ju

7. Update the ready time of machine mv as: Rv = Cuv

End While

END
Fig. 4: The Suffrage Heuristic

III AN ILLUSTRATION OF SCHEDULING ALGORITHMS

This section presents the generated schedule for various task scheduling algorithms with the help of an
example. Consider the Expected Time to Compute (ETC) matrix as represented in Table 1. The table shows the
expected execution times of 10 unassigned jobs on 5 machines. X denotes that the machine does not have
capability to execute that particular job.

Table 1 ETC Matrix of Unassigned Tasks

Parameters m0

(Machine)

m1 m2 m3 m4

J0 (Task) X 29 16.8 X X
J1 12.7 X 38.5 34.3 9.5
J2 36.3 19.4 22 X 17.6
J3 X X X 26.7 23.2
J4 X 7.8 X X 32.7
J5 X 35.5 X 30.8 8.1
J6 31.4 20.9 X X 37.9
J7 X 5 X 23.8 23.2
J8 27.4 36.8 39.9 X 22.7
J9 37.5 8.9 26.4 X 12.5

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 256

Fig. 7: Makespan Under Switcher Algorithm

Fig. 5 shows the result for Min-Min with makespan = 53.10 using above specified predicted execution times of
unassigned tasks.

Fig. 5: Makespan Under Min-Min Algorithm
After applying the Max-Min algorithm, the generated schedule is presented in Fig. 6 with makespan = 62.70 .

Fig. 6: Makespan Under Max-Min Algorithm

Fig. 7 illustrates the schedule generated by Switcher algorithm having makespan = 53.10 .

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 257

Fig. 9: Makespan Under Low Load Conditions

Fig. 8 presents the resulted schedule for Suffrage algorithm with makespan = 42.60.

Fig. 8: Makespan Under Suffrage Algorithm

IV SIMULATION RESULTS & DISCUSSION

This section presents the comparison among various task scheduling algorithms. The functional code is
implemented using simulator built in Java on an Intel core 2 duo, 2 GHz window based laptop to evaluate the
performance of various scheduling algorithms under different load conditions in terms of variation in number of
tasks as shown in Table 2 (Fig. 9), Table 3 (Fig. 10), Table 4 (Fig. 11) and Table 5 (Fig. 12).
Scenario 1: Systems having low load

Table 2 Performance Under Low Load Conditions

No. of Simulation Runs = 10

No. of Task= 30

No. of Machines = 10

Min-Min Max-Min Switcher Suffrage

46 59.3 51.2 38.9

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 258

Fig. 11: Makespan Under High Load Conditions

Scenario 2: Systems having medium load

Table 3 Performance Under Medium Load Conditions

No. of Simulation Runs = 10
No. of Task = 70

No. of Machines = 10

Min-Min Max-Min Switcher Suffrage
95.1 130.1 90.9 79.5

Fig. 10: Makespan Under Medium Load Conditions

Scenario 3: System having high load

Table 4 Performance Under High Load Conditions

No. of Simulation Runs = 10

No. of Task = 120

No. of Machines = 10

Min-Min Max-Min Switcher Suffrage
159.7 248.1 159.7 152.5

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 259

Comparison among different heuristics under various load conditions is shown in Fig. 12.

Table 5 Performance Under Different Load Conditions

No. of Task Min-Min Max-Min Switcher Suffrage
25 34.5 34.6 38 28.2
50 59.8 81.5 59.8 52.1
75 67.3 122.7 67.3 65.2
100 108.7 144.5 97.2 93.7

Fig. 12: Makespan of Different Heuristics Under Various Load Conditions

V CONCLUSION

In this paper, the working of various task scheduling algorithms is presented. The main goal of task
scheduling is to reduce the overall makespan of the jobs submitted in the grid. When it gets minimized, the
performance of entire grid gets optimized automatically. A performance comparison among various scheduling
heuristics has been made under various load conditions in terms of variation in number of tasks and task length.
The heuristic with shortest makespan is declared the best to perform task scheduling in grid. Simulation result
shows that the Suffrage scheduling algorithm generates an optimum schedule and outperforms the other
conventional algorithms.

REFERENCES

[1] I. Foster, and C. Kesselman, The Grid: Blueprint for a new Computing Infrastructure, 2nd ed.: Morgan Kauffman publishers, 2004.
[2] R. Buyya and S. Venugopal, “A Gentle Introduction to Grid Computing and Technologies” CSI Communication, pp. 9-19, July 2005.

[3] Z. Jinnquan, N. Lina and J. Changjun, “A Heuristic Scheduling Strategy for Independent Tasks on Grid”, in Proc. 8th Inter. Conf. on
High-Performance Computing in Asia-Pacific Region (HPCASIA’05), 2005, pp. 588-593.

[4] H. Zhang, C. Wu, Q. Xiong, L. Wu and G. Ye, “Research on an Effective Mechanism of Task-scheduling in Grid Environment”, in

Proc. 5th Inter. Conf. on Grid and Cooperative Computing, 2006, pp. 86-92.

[5] H. Baghban and M. Rahmani, “A Heuristic on Job Scheduling in Grid Computing Environment”, in Proc. 7th Inter. Conf. on Grid and
Cooperative Computing (GCC’08), 2008, pp. 141-146.

[6] G. Hong-cui1, Y. Jiong, H. Yong and L. Hong-wei, “User QoS and System Index Guided Task Scheduling in Grid Computing”, in

Proc. 3rd China Grid Annual Conference, 2008, pp. 109-112.
[7] T. Kokilavani and D. Amalarethinam, “Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing”,

International Journal of Computer Applications, Vol.20, No.2, pp 43-49, 2011.
[8] M. Wu, W. Shu and H. Zhang, “Segmented Min-Min: A Static Mapping Algorithm for Meta-Tasks on Heterogeneous Computing

System”, in Proc. 9th Heterogeneous Workshop (HCW’00), 2000, pp. 375-385.

[9] E. Munir, J. Li , S. Shi and Q. Rasool, “ Performance Analysis of Task Scheduling Heuristics in Grid”, in Proc. 6th Inter. Conf. on
Machine Learning and Cybernetics, 2007, pp. 3093-3098.

[10] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund, “Dynamic Matching and Scheduling of a Class of Independent tasks
onto Heterogeneous Computing Systems,” Journal of Parallel and Distributed Computing, Vol. 59, No. 2, pp. 107-131,1999.

[11] E. U. Munir, J. Li and S. Shi, “QoS Sufferage Heuristic for Independent Task Scheduling in Grid,” Information Technology Journal,
Vol. 6, No. 8, pp. 1166-1170, 2007.

[12] M. Singh andP.K.Suri, “QPSMax-Min<>Min-Min : A QoS Based Predictive Max-Min, Min-Min Switcher Algorithm for Job Scheduling
in a Grid”, Information Technology Journa,l Vol. 7, No. 8, pp. 1176-1181, 2008.

Kamali Gupta et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 4 No 4 Aug-Sep 2012 260

	Heuristic Based Task Scheduling In Grid
	Abstract
	Keyword
	I. INTRODUCTION
	II HEURISTIC BASED SCHEDULING ALGORITHMS
	III AN ILLUSTRATION OF SCHEDULING ALGORITHMS
	IV SIMULATION RESULTS & DISCUSSION
	V CONCLUSION
	REFERENCES

