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 Abstract - Recombinant technology has led the way to monumental advances in the development of 
useful molecules, including the development of safe probiotics. The development of novel approaches 
using recombinant technology and probiotics that allow accurate targeting of therapeutics to the mucosa 
is an interesting area of research. The creation and use of recombinant probiotics expressing recombinant 
ovalbumin, recombinant ovalbumin mutants and yet-to-be-designed recombinant hypo/non-allergenic 
molecules offer the opportunity to further investigate their effects for food, nutrition, environment and 
health. This review highlights advances in native probiotics and  recombinant probiotics expressing 
native and recombinant molecules for food, nutrition, environment and health.   
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I. INTRODUCTION 
 

 Recombinant technology defined as transfer of the gene of interest from one organism to the plasmid of 
another organism, has led the way to monumental advances in the development of useful molecules, including 
the development of safe probiotics [1], [2], [3], [4]-[11]. Probiotics are live microorganisms having beneficial 
effects on human and animal health. Beneficial microbes have been used over the centuries for food, nutrition, 
environment and health, and are testimony of one of the ways to food safety. Probiotics, such as dietary lactic 
acid bacteria (LAB) present in yoghurt are non-invasive and non-pathogenic Gram-positive bacteria that are also 
present in the intestine. A minimum level of 106 viable probiotic bacteria per milliliter or gram of food is 
considered adequate although the amount of cells required to produce a beneficial health effect may vary 
according to the strain and the health benefit desired [12]. LAB are used for food processing and preservation, 
and are used as starter cultures, co-cultures and bioprotective cultures in the food industry [13].  In fermented 
foods, LAB have been shown to produce antimicrobial compounds, such as organic acids, bacteriocins and 
antifungal peptides. The United States Food and Drug Administration has categorized LAB as ‘generally 
regarded as safe’ (GRAS). Some of the functional effects of probiotics include strengthening of the gut mucosal 
barrier, antimutagenic/anticarcinogenic activities, stimulation of the immune system and lowering of blood 
cholesterol levels [14], [15], [16]. There is growing scientific evidence by mechanistic and clinical studies that 
probiotics have many health benefits, including modulation of host cell metabolism [17], reduction of lactose 
intolerance, maintenance of balanced gut microbiota [18], prevention of colonization by opportunistic pathogens 
[19] and treatment /prevention of allergies [20]. A correlation between intestinal microflora and allergic diseases 
has been epidemiologically demonstrated [21]. Epidemiological studies have shown that reduced consumption 
of fermented food is one of the factors associated with rise in allergic diseases. In animals, probiotics are used to 
improve health status and animal performance, while in ruminants probiotics are used to improve rumen 
fermentation, and may mitigate methane emissions known to contribute to global greenhouse effects [22].  
 
 While probiotics administered or consumed as a single species or as a mixture of species are being used as 
mucosal adjuvants, recombinant probiotics are increasingly being used to function as vehicles for the expression 
and targeted delivery of native or recombinant molecules to mucosal surfaces in nutrition and health [23]. The 
development of novel approaches using recombinant technology and probiotics that allow accurate targeting of 
therapeutics to the mucosa is an interesting area of research. Probiotic-mediated delivery systems obviate the 
need for large scale purification of molecules and enable delivery of molecules to the mucosa. The ‘biodrug’ 
concept is based on the oral administration of living recombinant microorganisms for the prevention or 
treatment of various diseases. This review highlights advances in native probiotics and recombinant probiotics 
expressing native and recombinant molecules for food, nutrition, environment and health.   
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II. SAFETY OF NATIVE AND RECOMBINANT PROBIOTICS 
 
 LAB are enterococci that are important in fermented foods for ripening and aroma development of certain 
cheeses and sausages, especially those produced in the Meditteranean, but can spoil processed meats and act as 
nosocomial pathogens causing bacteraemia, endocardities and other infections in humans. Some enterococci 
strains, such as Enterococcus faecalis and Enterococcus faecium harbor virulence traits, such as antibiotic 
resistance, adhesins, invasins and haemolysins [16]. Hence, it is imperative that each strain should be carefully 
evaluated for virulence determinants and sensitivity to clinically relevant antibiotics before being deemed 
suitable as a probiotic.  
 
 Therapeutic safety of recombinant probiotic carrier organisms is crucial, especially when the strain has to 
be used under diseased conditions. Westendorf et al. [24] tested the potential of recombinant Escherichia coli 
Nissle 1917 (rEcN) to serve as a safe carrier for targeted delivery of recombinant proteins to the intestinal 
mucosa.   rEcN was first approved by Dutch authorities as a therapeutic agent for experimental therapy of 
intestinal bowel disease in humans. In a well-defined and very sensitive immunological system, it was 
demonstrated that intestinal rEcN had no effect on migration, clonal expansion and activation status of specific 
CD4+ T cells in healthy mice and in animals with acute colitis. Furthermore, rEcN had no effect on the induction 
or breakdown of peripheral T-cell tolerance in an autoimmune environment. 
  
 Risk exposure determination, risk assessment and safety assessment are essential to ensure protection for 
the population against any unintended consequences of the use of probiotics [25], as well as against general 
farm-to-fork challenges. Food safety is Canada’s top priority, and the safety of probiotics, both native probiotics 
and recombinant  probiotics expressing native and recombinant molecules is paramount in food safety. Health 
Canada, the Canadian Food Inspection Agency, Fisheries and Oceans Canada, and Environment Canada have 
joint responsibility to determine the safety of products. Regulations defining the conditions for activities and 
materials associated with the testing, manufacture, preparation, preservation, packaging, administration, storage 
and sale of products are set out in the Canadian Food and Drugs Act, Food and Drug Regulations and Medical 
Devices Regulations. Countries, such as India are fast emerging as potential markets for probiotics in food, and 
guidelines have been drafted for evaluation of probiotics in food [26].  
 

III. TECHNOLOGICAL PERFORMANCE OF RECOMBINANT PROBIOTICS 
 
 Probiotics being of intestinal origin are sensitive to many environmental stresses, such as acidity, oxygen 
and heat; and hence it is technologically challenging to produce them [12]. It is important that 
biotechnologically produced probiotics fulfill several criteria, including scientifically validated health 
properties; demonstrated safety; good technological properties to be produced on a large scale; viability, 
functionality and lack of unpleasant flavors or textures on incorporating into food products; high survival rates 
in downstream processes and in food products during storage; high survival through the upper gastrointestinal 
tract; and high viability at the site of action in the intestine. Viability of Lactobacillus delbrueckii ssp bulgaricus 
has been shown to be increased 104 times at pH  2 and in the presence of bile salts when encapsulated in 
artificial oil bodies [27].  
 
 Recombinant LAB strains with improved efficacy and potency expressing specific genes encoding probiotic 
functions, such as adhesion factors to mucus, resistance to acid, and with specific cell wall components have 
been constructed and characterized, and could help unravel mechanisms underlying the cross-talk between 
probiotic bacteria and their host. A recombinant derivative of Lactobacillus paracasei NFBC338 overproducing 
heat shock protein chaperones GroES and GroEL was shown to exhibit improved thermal tolerance and 
acquired solvent tolerance [28]. L. paracasei NFBC 338 heterologously expressing the Pediococcus parvulus 
2.6 glycosyltransferase (gtf) gene responsible for catalyzing the conversion of sugar nucleotides into β-glucan 
when grown in the presence of glucose displayed a “ropy” phenotype with strands of polysaccharide linking 
neighboring cells, and the biosynthesis of β-glucan [29]. This strain survived both technological and 
gastrointestinal stresses suggesting that production of a prebiotic β-glucan exopolysaccharide by strains destined 
for use as probiotics allow greater performance/protection during cultivation, processing, and ingestion. β-
glucan has been reported to be associated with many health-promoting properties. Functional display of a 
fibrolytic enzyme β-glucanase from Fibrobacter succinogenes fused to the C-terminus of L. reuteri collagen-
binding protein Cnb on the cell surface of L. reuteri Pg4, a probiotic strain isolated from the gastrointestinal 
tract of a healthy broiler was used to study the adhesion capability of the enzyme [30]. Persisting LAB, such as 
Streptococcus gordonii, Lactobacillus plantarum, and Lactobacillus casei; and nonpersisting LAB, such as 
Lactococcus lactis have been investigated as strain-specific immunoadjuvants for the protective antigen C 
subunit of the tetanus toxin [31]. Lactococcus lactis has been extensively consumed by humans without any 
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associated form of pathology. Its main use lies in the manufacture of fermented milk, vegetable, and meat 
production. Recombinant L. lactis strains have been produced for synthesis and delivery of immunomodulatory 
proteins at the intestinal mucosa, and an adequate biologic containment system has been established [32], [33], 
[34]. A biologically contained L. lactis strain secreting human IL-10 was used in a phase I, open label clinical 
trial on Crohn’s disease patients. This trial demonstrated that treatment of humans with viable L lactis secreting 
IL-10 is clinically and biologically safe and gave indications of its clinical efficacy [35]. Recombinant probiotic 
Salmonella strains were successfully used in DSS-treated animals [32], gene therapy of experimental colitis  in 
mice [36], and as factories for production of recombinant therapeutic proteins [37], [38].  Recombinant strains 
producing sufficient antigen concentrations induced high serum IgG concentrations and high secretory IgA [39] 
while strains that co-delivered cytokines further enhanced host immune responses to prevent or treat 
inflammation in two murine colitis models [40], [41], [42]. Production and mucosal delivery of bioactive 
molecules, such as hypo/non-allergenic molecules, single-chain Fv antibodies, digestive enzymes and trefoil 
factors have been achieved in LAB [33], [43] for diseases, including vaginal candidiosis, dental caries, allergies, 
autoimmune diseases, HPV-induced tumors, and pancreatic insufficiency.  
 
 Although evidence of yeast strain variation with respect to immunological effects in the mammalian gut is 
becoming available [44], the probiotic yeast Saccharomyces boulardii taxonomically indistinguishable from 
strains of S. cerevisiae is the only strain demonstrated to suppress intestinal inflammation caused by a broad 
range of enteric pathogens [45]. It is particularly useful in the treatment of antibiotic induced diarrhoea and 
Clostridium difficile infections, and appears to act by modulating host signalling pathways through inhibition of 
interleukin-8 production.  Improved characterization will drive further research into characterization of yeast-
derived bioactive compounds in the gut, with clear opportunities for further biotechnological innovation [46]. A 
S. cerevisiae strain expressing plant cytochrome P450 73A1 (cinnamate-4-hydroxylase [CA4H] activity) used to 
study its survival and ability to bioconvert trans-cinnamic acid (CIN) into p-coumaric acid (COU) in the 
digestive tract of rats was found to be resistant to gastric and small intestinal secretions but was more sensitive 
to the conditions found in the large intestine [47]. Oral co-administration of the yeast and CIN resulted in 
increased CA4H activity, with COU being found throughout the rat’s digestive tract and in its urine within the 
first 5 min. It is worth mentioning here that Pichia pastoris has become the favoured yeast vehicle for the 
production of proteins, both due to its higher protein secretion capacity and due to the very high cell densities 
that it achieves in industrial fermenters [46]. 
 

IV. RECOMBINANT PROBIOTICS AGAINST ALLERGY 
 

 Allergens are a serious food, nutrition, environment and health concern. There is a need for prevention and 
treatment of allergies, including diarrhea and asthma caused by food allergens, such as native egg ovalbumin. 
Clinical trials have shown a reduced incidence of allergic symptoms after ingestion of particular LAB strains 
[48]. The protective capacity of recombinant LAB strains against a food allergen β-lactoglobulin has been 
demonstrated [49]. A major advantage of mucosal application of recombinant LAB is the potential to induce 
local immune responses at the antigen-exposed mucosal site [43].  
 
 rEcN has excellent colonization properties rendering it as an ideal carrier for gut-focused in situ synthesis of 
therapeutic molecules [24]. Adam et al. [50] reported that EcN represents an efficient adjuvant to prevent 
allergic responses. EcN activated dendritic cells through TLR4 signaling pathway dependent up-regulation of 
CD40, CD80 and CD86 and stimulation of NF-κB and MAPK. Intra-nasal co-administration of EcN with 
recombinant dust mite allergen ProDer p 1 in a murine model of mite allergy prevented subsequent allergic 
response following Der p 1 sensitization and airway challenge with aerosolized mite extracts through the 
induction of an allergen-specific IgG2a response, the prevention of specific IgE production and a strong 
reduction of IL-5 secretion by allergen-restimulated splenocytes. EcN alone or in combination with ProDer p 1 
inhibited the development of airway eosinophilia and neutrophilia. This in vivo protective effect of EcN was, in 
part, mediated by TLR4 signaling.  
 
 Subcutaneous immunization, as well as intranasal pretreatment of mice with recombinant Lactobacillus 
plantarum and Lactococcus lactis strains producing the major birch pollen allergen Bet v I lead to a shift 
towards non-allergic Th1 immune responses along with enhanced allergen-specific mucosal IgA levels thus 
offering a promising approach to prevent systemic and local allergic immune responses [51]. Mucosal delivery 
of OVA by genetically modified L. lactis induces suppression of local and systemic OVA-specific T cell 
responses in OVA T cell receptor transgenic mice, this effect being dependent on both OVA and the bacterium. 
Oral administration resulted in induction of systemic tolerance mediated by antigen specific CD4+CD25- 
regulatory T cells that seem to function through a TGF-β-dependent mechanism. The intestinal delivery system 
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through the oral route by L. lactis is superior than oral administration of low or high doses of soluble OVA 
antigen as the latter were not able to diminish delayed hypersensitive response [52].  
 
 Recombinant hypo/non-allergenic molecules exhibit Th1 promoting capacity and offer less invasive 
treatments when administered as mucosal vaccines. Several studies show that oral administration of 
Bifidobacterium or Lactobacillus alleviate food allergy [53]. Oral administration of B. bifidum BGN4 inhibited 
serum IgE and IgG1 production in a food allergy mouse model [54], while L. casei Shirota suppressed antigen-
specific IgE by stimulating secretion of IL-12 [55]. Spleen cells of the mice administrated with L. casei Shirota 
produced high levels of Th1-associated cytokines, such as IFN-γ and IL-2, but low levels of Th2-associated 
cytokines, such as IL-4, IL-5, IL-6 [56]. Promotion of anti-allergenic processes through maintenance of balance 
on Th1 and Th2 cytokines [57], [58] and enhancement of regulatory lymphocytes [59],  [60] by specific 
probiotic species have been reported. Torii et al. [61] supported this hypothesis by showing that oral 
administration of L. acidophilus L-92 suppressed ovalbumin (OVA)-specific IgE production through regulation 
of Th1 and Th2 cytokines and induction of  Treg associated TGF-β production. Additionally, the specific IgE 
suppressive effect of B. bifidum G9-1 was suggested to be mediated by Treg cells independent of IFN-γ 
production [20]. Supplementation with L. acidophilus resulted in an increased allergic sensitization rate – strain 
specificity [62]. Some commercial probiotics strains and different L. acidophilus strains have the potential to 
induce differential cytokine profiles [53], [63]. 
 
 Native egg ovalbumin is a phosphoglycoprotein constituting 58% of the protein fraction of the egg white 
and is a common ingredient in processed foods. It is used to add nutritional value, texture and taste to food, in 
addition to its use as an emulsifying agent, but it is also an allergen. Recombinant ovalbumin (rOVA) and eight 
recombinant ovalbumin mutants (rOVAm) were designed and developed [4], [5]. The recombinant molecules 
were tested for their protective efficiency as orally administered immunospecific agents against anaphylaxis / 
egg allergy in a mouse model, and their mechanisms of action were studied [4], [5], [8]. The creation and use of 
recombinant probiotics expressing rOVA, rOVAm and yet-to-be-designed recombinant hypo/non-allergenic 
molecules offer the opportunity to further investigate their effects for food, nutrition, environment and health. 
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