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Abstract - A coherent study of tuning properties of resonant-
cap IMPATT oscillator at Ka-band has been carried out by 
mechanical and electronic means. It is experimentally observed 
that output power of IMPATT oscillator passes through a 
maximum, with an optimum combination of cap diameter and 
cap height. An empirical relation is obtained between cap 
diameter and wavelength of the optimised resonant cap 
oscillator, which agrees well with theoretical relation. Electronic 
tuning is carried out by varying the dc bias current with the 
optimized cavity parameters. It is observed that the variations of 
oscillation frequency and power output with dc bias current   are 
characterised by three ranges of bias current. The effect of 
sliding short tuner position on the performance of the oscillator 
at optimised condition has also been studied. Finally, the 
injection locking of the free running oscillator has been studied 
with a Ka-band signal generator as a reference source. The 
injection locked IMPATT oscillator shows a good phase noise 
performance. 
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I. INTRODUCTION 

IMPact Avalanche Transit Time (IMPATT) devices based 
on Silicon have already been established as  powerful solid-
state sources for generation of high CW and pulsed power at 
wide range of microwave and millimeter wave frequencies 
[1], [2]. These devices provide high oscillator output power 
with high DC to RF conversion efficiency in Silicon 
Monolithic Millimeter Wave Integrated Circuits (SIMMWIC) 
[3]. The vast frequency range of operation with high power 
capability of IMPATT device leads to its application as a   
highly potential source for meeting the ever increasing 
demand in mm-wave communication system. IMPATT 
devices also find useful applications in tracking Radars. The 
tunable bandwidth of IMPATT oscillator plays an important 
role on the total system design.  The tunable bandwidth of 
microwave/millimeter wave IMPATT oscillator has been 
investigated by several researchers and reported in the 
published literatures [4-11]. Although some research work has 
been reported in the field of resonant-cap IMPATT oscillators, 
there remains a lot of scope for research on the detailed and 
coherent study of their tuning properties specially at Ka-band. 
Among all the window frequencies, 36 GHz in Ka-band is 
gaining importance in recent years due to its wide application 
in civil, industrial, medical and strategic fields. The purpose of 
this paper is to present a detailed and systematic study of the 

mechanical tuning properties of resonant-cap IMPATT 
oscillator at Ka-band with the variation of cap diameter, cap 
height and sliding short tuner position and also the electronic 
tuning properties by varying the dc bias current. 

Low phase noise oscillators are in great demand due to the 
rapid growth of their application in millimeter wave 
technology for both civilian and defence sectors. The phase 
noise of IMPATT oscillator is an important parameter to 
improve the overall system performance. In developing high 
quality, low cost oscillators, a detailed and accurate study of 
the phase noise performance of IMPATT oscillators is highly 
needed for their operation in either a stable amplifier mode or 
an injection-locked oscillator (ILO) mode [12]. The injection-
locked oscillator has the advantage of delivering higher output 
power with high DC to RF conversion efficiency. These 
oscillators are not only capable of providing higher gain over 
a wider bandwidth but also adaptable to power combining. 
Further they are generally more suitable because of their 
higher efficiency and power output capability. 

II. KA-BAND IMPATT OSCILLATOR 

A resonant cap IMPATT oscillator consists of a resonant 
cap structure under which the diode is embedded and these are 
mounted in a rectangular wave guide.  The cap along with the 
broad surface of the wave-guide forms a localized radial 
cavity around the diode. The millimeter wave power generated 
by the diode is coupled to the main rectangular wave-guide 
cavity through the vertical open edges of the radial cavity.  
The resonant cap can be approximated as a radial transmission 
line which acts like an impedance transformer between the 
device and the load. The cross sectional view of IMPATT 
oscillator used in the present study is shown in Fig.1 and the 
photograph of the same is in Fig. 2 [13]. Experimental studies 
of the tuning characteristics of resonant-cap oscillators have 
been carried out by using silicon Ka-band SDR IMPATT 
diodes having the following specifications: Frequency range = 
35 – 42 GHz, Breakdown voltage = 45 Volts (max), Current = 
150 mA (max), Power output = 100 mW (max). The block 
diagram of Ka-band measurement test set up is shown in Fig.3 
and a typical spectrum (36.75 GHz) of the oscillator is shown 
in Fig.4. 
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Fig.1. Schematic diagram of a Ka-band resonant cap waveguide cavity  

 

 

 
Fig.2. Photograph of resonant cap IMPATT oscillator 

 

III. VARIOUS TUNING 

A. Mechanical tuning 
 
Mechanical tuning of a resonant cap IMPATT oscillator   is 

carried out by means of cavity tuning and also by varying 
sliding short position. The cap diameter and cap height are 
both varied for tuning the cavity. The variations of both the 
oscillation frequency and output power with the cap diameter 
and cap height have been experimentally determined. The 
results are shown in Fig.5 and Fig. 6 respectively. The cap 
diameter is varied from 3.4 mm to 4.5 mm and the 
corresponding cap height from 1 mm to 2.0 mm to optimise 
the oscillator performance. It is observed that output power 
attains a maximum value of 90 mw when the cap diameter and 
cap height are 4.0 mm and 1.6 mm respectively. The 
oscillation frequency is found to vary from 36.00 GHz to 
37.75 GHz during the process of cavity optimisation. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.  Block diagram of Ka-band measurement test set up 

 
 

 
 

 
Fig.4. A typical spectrum achieved at Ka-band 

 

For the variation of cap height from 1 mm to 2 mm in steps of 
0.2 mm and it is observed that power level increases from 52 
mw to a maximum of 88 mw for cap height of 1.6 mm and the 
same decreases to 72 mw for cap height of 2 mm. The 
corresponding oscillation frequency varies from 36.00 GHz to 
37.5 GHz.  The above studies have been carried out at a bias 
current level of 145 mA and break down voltage of 30.5 Volt. 
It is observed that the oscillation frequency decreases with the 
increase of the cap diameter and reverse takes place for the 
variation of cap height. The rate of decrease of oscillation 
frequency with the increase of cap diameter for the Ka-band 
IMPATT oscillator under study is found to be 1.5 GHz/mm. 
With increasing cap height the oscillation frequency increases 
at the rate of approximately 1.57 GHz/mm. It is  also observed 
that maximum output power at the desired frequency of 36.5 
GHz is obtained when the cap diameter ranges from 3.8 – 4.2 
mm and corresponding cap height ranges from  1.4 – 1.8 mm. 
More precisely a suitable combination of cap diameter and cap 
height i.e. 4.0 mm and 1.6 mm respectively leads to maximum 
output power of 90 mw at a desired frequency of 36.5 GHz. 
Thus the output power delivered by a resonant-cap IMPATT 
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oscillator passes through a maximum at a particular frequency 
for a given device with an appropriate combination of cap 
diameter and cap height.  
 

B. Relation between cap diameter  and wavelength 

 
The experimental results for the condition of optimum 

performance of the resonant cap IMPATT oscillator are 
related by the following approximate equation.   

2


D            (1)  

Where   is the operating wavelength and D  is the cap 
diameter. Thus a resonant–cap IMPATT oscillator can be 
experimentally realised if the cap diameter is designed to be 
half of the wavelength of desired frequency of oscillation for 
optimum performance of the oscillator.  
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Fig.5. Variation of Output power and Frequency with Cap diameter  
(Cavity tuning) 

 
The experimental results obtained can be explained by 

considering the electromagnetic fields within the resonant-cap 
cavity. The resonant-cap cavity is formed between the disc of 
the resonant-cap structure and the lower broad face of the 
waveguide as shown in Fig.7. Such a cavity can be 
approximately modelled as a cylindrical cavity, bounded at its 
top and bottom by electric walls and on its sides by a magnetic 
wall [14-16]. The electric field within the resonant-cap cavity 
has essentially only a z-component, and the magnetic field has 
essentially x and y-components. Because h<<g (guided 
wavelength), the fields do not vary along the z direction, and 
the component of the current normal to the edge of the cap 
approaches zero at the edge. This implies that the tangential 
component of the magnetic field at the edge is vanishingly 
small. With these assumptions, the resonant cap can be 
modelled as a cylindrical cavity, bounded at its top and 
bottom by electric walls and on its sides by a magnetic wall. 
Thus the fields within the resonant cap cavity, corresponding 
to TMnm modes, may be determined by solving a cavity 
problem. The fields corresponding to nmTM  modes within the 

cavity are given by [15]. 
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Where k is the propagation constant, nJ is the Bessel function 

of the first kind and order n  . The open circuited edge 

condition requires that 0)(  krJ n , where r is the radius of 

the disk and the prime indicates differentiation with respect to 
the argument. Thus for each mode of configuration the disc 
radius corresponding to zeros of the derivative of the Bessel 
function can be obtained which will lead to desired resonance 
condition. 
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Fig.6. Variation of output power and Frequency with Cap height 

(Cavity tuning) 

 
For any given frequency, the dominant mode has 
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Fig.7. Resonant-cap cavity between the resonant-cap and 
 the lower broad face of the wave guide. 

 
The theoretical relation (3) shows that the operating 

wavelength   and the disc diameter D  of the resonant-cap 
are directly proportional and the constant of proportionality is 
0.58.The empirical relation (1) derived from our experimental 
results has a form similar to the theoretical relation (3) which 
is found to be a close approximation to the results published in 
[5], [8] and [17]. 
 

C. Tuning by Sliding Short  

 
The dependence of the oscillation frequency and output 

power on the sliding tuning short position has been studied 
and the results are shown in Fig.8. Sliding tuning short 
position has been varied from 0 to 9.7 mm in steps of 0.5 mm. 
It is observed that RF power output varies from 0 mw to 88 
mw and frequency varies from 34.50 GHz to 37.75 GHz. It is 
also observed that the mechanical tuning is characterised by 
an initial frequency jump followed by a sharp fall with a 
subsequent rise of output power. A smooth mechanical tuning 
range of 3.15 GHz with a centre frequency of 36 GHz is 
obtained for a change of sliding short position over a range 

of
2


. It is further observed that frequency jumps by 3 GHz 

approximately. Also a sudden power gain of 70 mw is 

achieved nearly at distances
2


and   between the sliding 

short position and the diode plane. This experimental 
observation agrees well with the reported results [5] and [7]. 
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Fig.8. Variation of Frequency and output power with  
sliding short tuner position (Mechanical tuning) 
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Fig.9. DC bias current Vs Output power and Frequency  
(Electronic tuning) 

 

D. Electronic tuning 

Electronic tuning of the oscillator with the optimized cavity 
parameters i.e. D = 4.0mm and h =1.6mm is carried out by 
varying the DC bias current.  DC bias current has been pushed 
upto 160 mA keeping other parameters fixed. The variations 
of output power and frequency with DC bias current are 
shown in Fig.9. It is observed that the variations of oscillation 
frequency and power output with dc bias current are 
characterised by three ranges of bias current. In the first range 
I, starting from threshold dc bias current for oscillation Ith , 

both the output power and frequency increase very slowly 
with dc bias current. This is followed by a second range II of 
dc bias current where the output power increases sharply to a 
maximum value Pmax but the oscillation frequency increases 
with dc bias current in an approximate linear nature. In the 
third range III of dc bias current exceeding the current I0 
corresponding to Pmax the power begins to fall gradually from 
its maximum value but the frequency increases more sharply 
compared to the second range, called burn out zone. The 
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results agree well with the findings of Roy et al [11]. The 
useful linear frequency range is approximately 34 MHz 
corresponding to a change of dc bias current of 64 mA in the 
second range II of dc bias current. The third range III of DC 
bias current should normally be avoided to prevent the 
electronic burn out phenomenon. 

 

IV. INJECTION LOCKED IMPATT OSCILLATOR  

A. Injection Locking Model 

The phenomenon of injection phase-locking may be used 
to synchronize one or more oscillators to a lower power 
master or reference oscillator and also to reduce some part of 
the resultant FM noise power spectrum. The cavity oscillator 
has been represented as a tank circuit where C0 is the 
equivalent capacitance  of the cavity oscillator, L0 its 
equivalent inductance, +G the conductance of the load, and -G 
the equivalent negative conductance of the oscillator, equal in 
magnitude to the conductance G of the load in the steady-state 
condition [18]. The basic injection phase locked oscillator 
model is shown in Fig.10 and the injection locking has been 
done by a “reference” oscillator having good phase noise 
performance.  

 
 
 

 
 
 
 
 
 
 
 
 

Fig.10. Basic injection phase-lock circuit diagram 

 

B. Injection Locking of IMPATT Oscillator 

The indigenously developed Ka-band CW IMPATT 
oscillator [13] is used as a free running oscillator with power 
output 0 dBm and a Ka-band signal generator has been used 
as a reference source. An injection signal from the signal 
generator of very low power – 40 dBm is used to lock the free 
running oscillator. Fig.11 shows a schematic of injection 
locked Ka-band IMPATT oscillator.  Using the same 
configuration the phase noise of Ka-band IMPATT oscillator 
has been measured under injection locked condition. A snap 
shot of the phase noise at different offset frequency has been 
shown in Fig.12 by using a phase noise measurement system. 
The measured values are tabulated in Table. 1 at various offset 
frequencies. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig.11. Injection locked IMPATT Oscillator and  

Phase noise measurement set up 
  

 

 
 

Fig.12. Snap shot of Phase Noise at different offset frequency 
(using phase noise measurement system) 

 
Table: 1 

Phase noise at different offset frequency 

 
 

Offset Frequency 
Phase noise 

(Phase noise measurement 
system) 

1 KHz -84.56 dBc / Hz 

100 KHz -93.75 dBc / Hz 

1 MHz -99.80 dBc / Hz 

V. CONCLUSION  

In this paper the authors have used three different methods 
of mechanical tuning of wave guide mounted resonant-cap 
Ka-band IMPATT oscillator. A wide tunable range of 3.15 
GHz is achieved by sliding short and tunable ranges of 1.75 
GHz and 1.5 GHz are obtained by varying cap diameter and 
cap height respectively around the centre frequency of 36 GHz 
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at Ka-band. For the design and development of millimeter 
wave (Ka-band) IMPATT oscillator using resonant-cap wave 
guide structure, the values of cap-diameter and cap height are 
important parameters in deciding the output power as well as 
the frequency. The authors have obtained an approximate 
relation between cap diameter and wavelength under 

optimised condition i.e., D = 
2


 which is very close to the 

theoretical relation D/ = 0.58. The dependence of output 
power and frequency with the sliding short position has been 
demonstrated. In order to achieve the optimum condition the 
sliding short position is to be tuned to a distance which are 

multiples of  
2


 . In course of tuning by sliding short, sudden 

frequency jump occurs at certain positions with high power 
gain. Utmost care is to be taken for tuning the oscillator by 
sliding short. 

The authors have carried out electronic tuning by varying 
the dc bias current and taking into account the values of the 
optimized cavity parameters, i. e. cap diameter D = 4.0 mm 
and cap height h = 1.6 mm.  It is observed that the variation of 
oscillation frequency and power output with dc bias current is 
characterised by three ranges of bias current. In the first range 
I, both the output power and frequency increases slowly, in the 
second range II, both the output power and frequency increase 
sharply. In the third range III, the output power decreases 
where as frequency increases. The operating bias current of 
the oscillator  in the third range III, should normally be 
avoided to prevent the burn out phenomenon of IMPATT 
diode which occurs very frequently while tuning the IMPATT 
oscillator.  

Finally, the authors have demonstrated the injection 
locking of IMPATT oscillator by using a signal generator as a 
reference source with the corresponding phase noise 
measurement. A phase noise of -84.56 dBc / Hz @ 1 KHz has 
been realised from the Ka-band injection locked IMPATT 
oscillator. 
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