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Abstract 
          This paper aims at constructing a two-phase 
iterative computerizable numerical algorithm for an 
improved approximation by ‘Modified Lupas’ 
operator. The algorithm uses the ‘statistical 
perspectives’ for exploiting the information about the 
unknown function ‘f’ available in terms of its known 
values at the ‘equidistant-knots’ in C[0,1] more fully. 
The improvement, achieved by an aposteriori use of 
this information, happens iteratively. Any typical 
iteration uses the concepts of ‘Mean Square Error 
(MSE)’ and ‘Bias’ ; the application of the former 
being preceded by that of the latter in the algorithm. 
At any iteration, the statistical concept of ‘MSE’ is 
used in “Phase II”, after that of the ‘Bias’ in “Phase 
I”. Like a ‘Sandwich’, the top and bottom-breads are 
the operations of ‘Bias-Reduction’ per the “Phase I” 
of our algorithm, and the operation of ‘MSE-
Reduction’ per the “Phase II” is the stuffing in the 
sandwich. The algorithm is an iterative one 
amounting to a desired-height ‘Docked-Pile’ of 
sandwiches with the bottom–bread of the first 
iteration serving as the top-bread for the second-
iteration sandwich, and so-on-and-so forth. The 
potential of the achievable improvements through the 
proposed ‘computerizable numerical iterative 
algorithm’ is illustrated per an ‘empirical study’ for 
which the function ‘f’ is assumed to be known in the 
sense of simulation. The illustration has been 
confined to “Three Iterations” only, for the sake of 
simplicity of the illustration. 
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1.  Introduction. 

             Szasz (1950) proposed the following 
generalization of the well-known Bernstein’s 
polynomial approximation operator extending it to 
infinite interval. 

   (1.1)                       

Heinz- Gerd Lehnoff (1984) proposed “Modified 
Szasz- Mirakjan Operator” as follows: 

 Wherein; Tk (x) = (n.x)k /k!      (1.2)                  

Motivated by that modification by Heinz-Gerd 
Lehnhoff (1981), but slightly differently, we propose 
a more appropriate modification of the Lupas (1995) 
polynomial approximation operator: 
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For all f ε C [0, 1] & x ε C [0, 1]      (1.3) 

This modification is apparently a more-appropriate 
one, inasmuch as “ML[n]” could well be interpreted 
as “Weighted- Average” of the used (n +1) known 
values of the unknown function “f(x)” , namely 
‘f(k/n)’ ; k = 0 (1) n ; “Weights” being “Tk(x)’s” 
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C[0,1]. In fact Tk(x)’s could be interpreted as 
proportional to “probabilities” [“Tk(x) . As 

such, therefore,  

                         ML[n] = E (f (x))                      (1.4) 
                                             

Incidentally, as we could use a suitable 
transformation (translation-n-change-of-scale) of the 
variable ‘x’, we could assume, without loss of 
generality, that we are interested in the 
approximation of a bounded function f 

 even if the impugned function could, 

originally, be rather a bounded one f  

2.  Two-Phase Iterative-Sandwich 
Improvement Algorithm for Modified 
Lupas Operators ML[n]. 

   In this section we propose the “Two-Phase 
Iterative-Sandwich Improvement Algorithm for 
Modified Lupas Operators ML[n]”, using ‘TWIN’ 
statistical perspectives of ‘Bias’ & ‘MSE’. In the 
statistical sense ‘ML[n]’ is an estimate of the 
unknown function ‘f(x) Now, we use our 

estimator/modified Lupas Operators ‘ML[n]’ to 
estimate the values of the unknown function ‘f(x)’ 
at the knots ‘(k/n)’, say Et f(k/n), k = 0 (1) n, Vis-

-Vis known values of the unknown function 

“f(x)”, namely ‘f(k/n)’ ; k=0(1)n.  
Hence the “Knot-Wise Error”, say Er f (k/n) 

 could be 

generated to lead to the calibration of the 
“Error/Bias Polynomial Function”, 

Say Er Ln (f; x) = 

                   

(2.1)                                             
     On the other hand, the “Modified Lupas 
Polynomial” approximation/estimator of the 
unknown function ‘f(x)’ is “ML[n]”, as per the 
equation (1.3) in the preceding section. This 
enables us to achieve per our “Phase I” of the 
iterative algorithm, the “Reduced-Bias 
Polynomial” approximation/estimator of the 
unknown function “f(x)” just by subtracting the 
“Estimated Error/Bias Polynomial” per (2.1) 
above, to get: 
Say On (f; x) = ML[n] – Er Ln (f; x)                (2.2)                                                              

       Now, we embark upon the “Phase II” of our 
proposed ‘Iterative Algorithm’. The concept 
“Minimum Mean Square Error Estimator 
(MMSEE)” of Searles (1964) is seminal to this 
phase of our algorithm. As per (1.4), our “Modified 
Lupas Polynomial” estimator is rather analogous to 
the sample-mean ‘ ’. Searles (1964) considered the 

class of estimators ‘k.  ‘ , and chose the “Optimal” 

value say “k0” by minimizing the MSE (k. ) to 

lead to the MMSEE  “k0. ” Analogously, we 

consider the perturbed ‘Polynomial’, say b. On (f; 
x), and hence determine the estimated values of the 
unknown function ‘f(x)’ at the knots ‘(k/n)’, say Et f 
(k/n) , k = 0 (1) n, vis-a-vis known values of the 
unknown function “f(x)”, namely ‘f(k/n)’ ; k = 0 
(1) n. 
      
Hence the “Knot-Wise Squared-Error”, say E2rf 
(k/n) ≡ [b*Et f (k/n) – f (k/n)] 2, k = 0 (1) n could 
be generated to lead to the calibration of the 
“Squared-Error Polynomial Function”,  

Say E2r =                                   

(2.3)                                            
This will be a “Quadratic Polynomial in b”, say Q 
(b)  A.b2 + B. b + C. To avoid any complex 

solution to Q (b) = 0, we chose b0 = - (B/2.A) to 
minimize the value of the MSE, leading to a 
‘Reduced-MSE Polynomial’ estimator “b0. On (f; 
x)”.  
To complete the “First Iteration” we again apply the 
details of the ‘Phase I’ to treat our “Reduced-MSE 
Polynomial” estimator “b0. On (f; x)”, to achieve 
the improved [at Iteration #1] ‘Modified Lupas 
Polynomial’ Operator/Estimator; Say: 

I [#1] ML[n] [Reduced- Bias Version Using 

‘Phase I’ (Iteration #1) on “b0. On (f; x)”]     (2.4)             

       Thus operations defining “FIRST Iteration” 
could well be characterized as a “Sandwich”! The 
top and bottom-breads are the operations of ‘Bias-
Reduction’ per the “Phase I” of our algorithm, 
and the operation of the ‘MSE-Reduction’ per the 
“Phase II” is the stuffing in the sandwich. The 
algorithm is iterative one, amounting to the desired-
height ‘Docked-Pile’ of sandwiches with the 
bottom-bread of the first iteration serving as the 
top-bread for the second-iteration sandwich, and 
so-on-and-so forth.  
At any iteration, the improvements will begin-
and-end with the “Phase I” operation, 
sandwiching its “Phase II” operation of the ‘MSE-
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Reduction’. As such, at any iteration, we will have 
two improvement-operations only, namely that of 
‘Phase II’ followed by that of ‘Phase I’ borrowing 
the last operation of  the ‘Bias-Reduction’ per the 
‘Phase I’ in the preceding iteration. Only the 
“First Iteration” will be an exception using three 
improvement-operations  Phase I – Phase II - 

Phase I. 
 

3. The empirical simulation study. 
To illustrate the gain in the efficiency of the 

“Modified Lupas Operators” by using our proposed 
“Sandwich- Iterative Algorithm of Improvement of 
Polynomial Approximation”, we have carried an 
empirical study. We have taken the example-cases of 
n = 3, 4, and 5 (i.e. n + 1 = 4, 5, and 6, knots) in the 
empirical study to numerically illustrate the relative 
gain in efficiency in using the Algorithm Vis- -Vis 

the Original Modified Lupas Polynomial Operator in 
each example-case of the n-values. Essentially, the 
empirical study is a simulation one wherein we would 
have to assume that the function, being tried to be 
approximated, namely f(x) is known to us.  Once 
again, we have confined to the illustrations of the 
relative gain in efficiency by the Iterative 
Improvement for the following four illustrative 
functions: f (x) = exp(x), ln (2 + x),  
sin (2+x*π/2), & 2x. 
To illustrate the POTENTIAL of the improvement 
with our proposed Sandwich-Iterative  Algorithm, we 
have considered THREE Iterations, and the 
numerical values of seven – quantities: including 
the three Percentage Relative Errors (PREs), 
corresponding to our Improvement Iteration (# = 1, 
2, or 3) (PRE_I (#) MLn (f ;x)) [n]), following that 
for Original Modified Lupas Polynomial Operator 
(PRE_MLn (f; x) [n]), and the three corresponding 
Percentage Relative Gains (PRGs) in using our 
Iterative Algorithmic Modified Lupas Polynomial 
Operators in place of the Original Modified Lupas 
Polynomial Operators MLn [n], namely (PRG_I (#) 
MLn [n]; # 1 (1) 3).  
These quantities are defined, as follows.  
PRE using original Modified Lupas (Polynomial) 
using n intervals in [0, 1], i.e. [(k- 1)/n, k/n]; k = 1 
(1) n: 
 

 
The PRE using Improvement Iteration (I #1, or 2, 
or 3) on Lupas (Polynomial) Operator using n 
intervals in [0, 1], i.e. [(k-1)/n, k/n]; k = 1 (1) n: 

 
The PREs respective to the Original 

Modified Lupas Polynomial Operator, and 
respective to the First, Second and Third 
Sandwich-Algorithmic Improvement Iteration 
Polynomials, respectively, for each of the example 
# of approximation Knots/Intervals and the 
Percentage Relative Gains (PRGs), defined exactly 
analogously to PREs, by using the proposed 
Sandwich-Algorithmic Improvement Iteration: I# 
[ e.g. 1 , or 2 , or 3] Polynomials with the n 
intervals in [0, 1] over using the Original Modified 
Lupas Polynomial  Operator for the 
approximation of the Targeted function, ‘f (x)’ are 
tabulated in the following four tables:~  Tables 1 
to Table 4. 

 

4. Conclusion. 
         The tabulated values of PRGs in the 
“APPENDIX” amply illustrate the ‘Relative Gains by 
using the proposed “Two-phase iterative algorithm 
using the statistical perspectives for improved 
approximation by Modified Lupas Operator”. Even 
for 6 knots (n = 5), the PRGs are above 90% for all 
example-functions, after only THREE iterations. For 
f(x) = sin (2+x*π/2) & ln (2+x) they are above 99%, 
after the three iterations! 
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APPENDIX. 

Table 1 :( Iterative) Algorithmic (In %) Relative Efficiency/ Gain for f (x) = exp(x). 
Items ↓ n→   3 4 5 
PRE_ MLn (f; x) [n] 24.99015819  28.78914401 31.2438483 
PRE_I (1) MLn (f; x) [n] 14.52845941  14.42598420 15.0358634 
PRE_I (2) MLn (f; x) [n] 10.62695956    9.94569919 10.3341992 
PRE_I (3) MLn (f; x) [n]  3.17654665    1.23138525   0.8511202 
PRG_I (1) MLn (f; x) [n] 41.86327554 49.89088875     51.87576340 
PRG_I (2) MLn (f; x) [n] 57.47542101 65.45330005     66.92405144 
PRG_I (3) MLn (f; x) [n] 87.28880932 95.72274448     97.27587888 
 

Table 2: (Iterative) Algorithmic (In %) Relative Efficiency/Gain for f (x) = ln (2+x). 
Items ↓ n→   3 4 5 
PRE_ MLn (f; x) [n]   8.52209478   10.2707945   11.31455004 
PRE_I (1) MLn (f; x) [n]   5.30666820     5.3304237     5.52294491 
PRE_I (2) MLn (f; x) [n]   3.90199321     3.5226194     3.48653274 
PRE_I (3) MLn (f; x) [n]   1.44370539     0.4311038     0.00538581 
PRG_I (1) MLn (f; x) [n] 37.73047191     48.10115463     51.18723328 
PRG_I (2) MLn (f; x) [n] 54.21321500     65.70256111   69.18540523 
PRG_I (3) MLn (f; x) [n] 83.05926620     95.80262443   99.95239917 

 
Table 3: (Iterative) Algorithmic (In %) Relative Efficiency/Gain for f (x) = sin (2+x*π/2). 
Items ↓ n→   3 4 5 
PRE_ MLn (f; x) [n]     101.62048355    117.93489106 128.21083454 
PRE_I (1) MLn (f; x) [n] 60.61951304 60.74273117 65.24809523 
PRE_I (2) MLn (f; x) [n] 42.50271503 38.73711552 33.08623891 
PRE_I (3) MLn (f; x) [n] 21.47465476 14.27798701 11.87840116 
PRG_I (1) MLn (f; x) [n] 40.34715153 48.49469003    49.10875084 
PRG_I (2) MLn (f; x) [n] 58.17505136 67.15381242 74.19388226 
PRG_I (3) MLn (f; x) [n] 78.86778923 87.89333091 90.73525943 
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Table 4: (Iterative) Algorithmic (In %) Relative Efficiency/Gain for f (x) = 2x. 
Items ↓ n→   3 4 5 
PRE_ MLn (f; x) [n] 16.50183845 19.15625639 20.84201688 
PRE_I (1) MLn (f; x) [n]  9.61646599   9.46970940   9.79775441 
PRE_I (2) MLn (f; x) [n]  6.89370311   6.22104973   6.29499328 
PRE_I (3) MLn (f; x) [n]  1.90171541   0.29965161   0.18722834 
PRG_I (1) MLn (f; x) [n] 41.72488101 50.56597065 52.99037293 
PRG_I (2) MLn (f; x) [n] 58.22463578 67.52471045 69.79662129 
PRG_I (3) MLn (f; x) [n] 88.47573605 98.43575063 99.10167840 
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