
Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

Designing Dependable Service Oriented Web
Services Security Architectures Solutions

Dr.D.Sravan Kumar1 and M.Upendra Kumar2

1Principal and Professor CSE KITE Womens College of Professional Engineering Sciences Hyderabad
2Research Scholar JNTU Hyderabad and Associate Professor CSE MGIT Hyderabad

Abstract—System Security Architecture from a software
engineering viewpoint imposes that strong security must be a
guiding principle of the entire software development process. It
describes a way to weave security into systems architecture, and it
identifies common patterns of implementation found in most
security products. The security and software engineering
communities must find ways to develop software correctly in a
timely and cost-effective fashion. There’s no substitute for
working software security as deeply into the development process
as possible. System designers and developers must take a more
proactive role in building secure software. The root of most
security problems is software that fails in unexpected ways when
under attack. The enforcement of security at the design phase can
reduce the cost and effort associated with the introduction of
security during implementation. At the architecture level a system
must be coherent and present unified security architecture that
takes into account security principles (such as the least privilege).
In this paper we want to discuss about different facets of security
as applicable to Service Oriented Architectures (SOA) Security
Architecture implementations. First we examine the security
requirements and its solution mechanisms. In the context of Web
Services, the predominant SOA implementation standard has a
crucial role to play. The Web Services architecture is expected to
play a prominent role in developing next generation distributed
systems. Building dependable systems based on web services
architecture is a major research issue being discussed. Finally, we
provide a case study of Web Services Security Architecture,
enhancing its security pertaining to Web 2.0 AJAX
(Asynchronous JavaScript and XML) and its Security encryption
of data using MD5algorithm.

Index Terms—Security Architectures, Designing Dependable
Architectures, Service Oriented Web Services Security
Architectures, Web 2.0 Services AJAX Security

I. INTRODUCTION TO SECURITY ARCHITECTURES

Architecture, whether system or application, are composed
of abstractions (interfaces) and their implementations. Security
Architectures are architectures which enable implementations
that are resilient to an appropriate and broad-based spectrum of
threats [1]. An evaluation of Security Architectures requires
understanding these threats; the tradeoffs between different
system goals, including between security and non-security
goals; the long-term appropriateness of its interfaces; and the
implementations it allows. The best interfaces are those that
capture the most important issues, enable different
implementations, and are flexible enough to adapt (are be
adapted) to different threats. Two well-known issues are
particularly important: First, complexity is a source of security
holes. Second, security is a matter of the weakest link. Because
of the need to balance of complexity versus protections, these
tradeoffs are often controversial. Other tradeoffs include

performance, usability, and flexibility. The design and
evaluation of Security Architectures is of fundamental
importance to security and yet many of our fundamental
architectures were created when security was less appreciated
and less well understood. Since it is notoriously difficult to add
security after the fact, our systems are far too susceptible to
attack. Moreover, architectures, because they are broad based,
are difficult to understand [2]. Table I below shows the security
life cycle phases with their definitions.

TABLE I. SECURITY LIFECYCLE PAHSES

II. SERVICE ORIENTED SECURITY ARCHITECTURES

Service-Oriented Architecture (SOA) is “a paradigm for
organizing and utilizing Distributed capabilities that may be
under the control of different ownership Domains.”[3]. i.e.
SOA is collection of services, where these services
communicate with each other. The communication can involve
either simple data passing or it could involve two or more
services coordinating some activity. A service is a component
participating in a service-oriented architecture that provides
functionalities or participate in realizing one or more
capabilities. For the last few years, a rise has been observed in
research activity in SOA, with applications in different sectors .
Several new technologies have been introduced and even more
are being currently researched and aimed to the future. Service
oriented mentality with the purpose of lessening the issues of
clients and companies, students and teachers, citizens and
Government companies alike has the most influential approach
from software engineering point of view that belong either to

Life Cycle phase Definition

Design From initial
idea to
design specs

Subtly alter
system
specification to
create a flaw

production From build-
to specs to
roll-out

Substitute
security-critical
chip on
production line

Deployment From roll-out
to transit to
delivery to
user

Substitute system
unit while in
transit with bogus
unit

Operation and maintenance From
delivery to
maintenance
to retirement

Insert malicious
code into
application,OS,or
network

Destruction From
retirement to
destruction

Extract stored
key from unit to
read back-traffic

ISSN : 0975-4024 81

Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

the academic or to the industrial field. Refer Figure 1 for Web
Service Security Architecture.

Figure 1.Web Service Security Architecture

Software Architecture has been emerging as a discipline

over the last decade. A System Software Architecture describes
its coarse-grained structure and its properties at a high level. As
long as the technology supports those structures and properties,
the technology can be considered to implement the
architecture, for instance Jini is a technology that supports
Service-Oriented Architectures because it supports the
properties of Service-Oriented Architecture. It is important to
apply the concepts of Software Architecture to any new
technology to take full advantage of it. SOA is implemented by
technologies other than Web Services, but the terms and
concepts have gained recently because of Web Services. For
instance, the computer industry has used the term service for
about two decades to describe various platforms. Some of the
characteristics of SOA are supported better by certain
technologies than by others. For instance, CORBA (Common
Object Request Broker Architecture) and Jini are less
interoperable than Web Services, but Jini excels in other
properties (though this is arguable), such as discovery.
Interface design is perhaps the most difficult part of designing
services in SOA. The modularization techniques practiced for
decades still apply to services. Service design is even more
difficult, because the domain a service supports is not limited
to a single application. Therefore, it is best to perform
modularization starting with a conceptual model of the
business rather than of a single application. If the interface
design is done well the services are more likely to be reusable
in other application, and organizations will realize a higher
return on their investment. Web Services are refocusing
organizations on the concepts of SOA. Although highly
reusable, loosely coupled architectures have been a goal for
many organizations. Web Services are fostering interest in and
provides the technology to implement SOA that enable them to
realize their vision.

Data Services will be integral to designing, building and
maintaining SOA applications. A Data service enables business
processes to access and manipulate SOA applications Business
Objects. A typical data service will provide a set of operation
that encapsulate different ways to access business objects of a

given type, to simplify data access for consumers of the
services. Further, it can relate to other data services in
accordance with relationships among the various business
objects. Data services thus enrich the SOA model by letting
application developers more easily and rapidly understand the
enterprises sea of services, facilitating service discovery and
reuse.

With web services and service oriented architecture software
development is in the third phase of evolution that began with
object oriented programming and progressed to component
based programming. In object oriented and component based
programming, security designers could relay on common
languages, security models, and technologies in a distributed
system to secure both the client and servers transaction and end
points for example, EJB clients and servers can assume and use
a common J2EE security standard for authentication and
authorization for both its client and server. However in web
services and service oriented architecture, systems are loosely
coupled clients and servers may be written in different
languages and running on disparate operating system. Service
oriented architecture agrees upon interface and data schema,
but the implementations may vary from client to server, and
services may be chained creating peer to peer model. As
programming models and implementations change, the security
assumptions and designs must be refreshed and updated to
manage the emerging threats that results from new
architectures

The primary security mechanisms deployed today relay on
notions of perimeter and centralized security models. However
the nature of business is moving rapidly towards decentralized
“intertwingled-ness” (non-hierarchical connectivity) and
perimeters are eroding. Centralized security systems don’t
apply in SOA’s decentralized peer to peer architecture.
Security design assumptions based on outmoded technology
create brittle and ineffective systems when deployed in a SOA
paradigm. Malicious attackers exploit the seams left between
the existing security mechanisms deployed based on outmoded
assumptions and reality of the threats to the connected systems
on the ground. Assuring multiple qualities attributes – such as
reliability, availability, performances, security and real-time
response – for a variety of critical applications makes it
essential to develop practical techniques for implementing
high-assurance service-oriented systems. Schemes for intrusion
detection yield clues to making data safer in the future. It helps
determine what systems were attacked and exactly how the
attacks were made. Data collected aids in tracking the source of
an attack, which may prove helpful in identifying the attacker.

Architecture issues: The views describe a way of seeing
security architecture across a complex system to make and
convey security design decisions. The software security space
contains issues that are still being worked to achieve optimal
effectiveness [4].

XML Security: Research has shown various flaws with
XML security related to its reliance on XML for encryption
and signature as well as replicating a number of problems in
the legacy technologies. Since a large number of emerging
security solutions, particularly WS-* rely on XML security
mechanisms it is worth revisiting this dependency to see if
XMPP or other technology can remedy these issues.

ISSN : 0975-4024 82

Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

The SOA provides an abstraction utility that is characterized
to be autonomous, well-defined and self-contained. Research
defines the building blocks of a security reference model
composed out of Processes Domain View, Security Assurance
View and Survivability Management view. We build a security
attributes organizational model based on security process states
and security attributes requirements. The proposed architecture
is based on SOA reference model with mappings of SOA
dimensions into security requirements attributes.

III. WEB SERVICES SECURITY ARCHITECTURES

A Web Service is a software component or system designed
to support interoperable machine or application-oriented
interaction over a network. [5] A Web Service security has an
interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP
(Simple Object Access Protocol) messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards. Web Services Security (WS-
Security) is a mechanism for incorporating security
information into SOAP messages. WS-Security uses binary
tokens for authentication, digital signatures for integrity, and
content-level encryption for confidentiality.

A Web Service is a software entity deployed on the Web
whose public interface is described XML (eXtensible Markup
Language) . It can interact with other systems by exchanging
XML-based messages, using standard Internet standard
protocols. The Web Services definition and location (given by
a Uniform Resource Identifiers URI) can be discovered by
querying common Web Service Registries. Web Services can
be implemented using any programming language and
executed on heterogeneous platforms, as long as they provide
the above features. This allows Web Services owned by
distinct entities to interoperate through message exchange.
As Web services become more widely adopted, developers
must cope with the complexity of evolving trust negotiation
policies spanning numerous autonomous services. The Trust-
Serv framework uses a state-machine-based modeling
approach that supports life-cycle policy management and
automated enforcement.

The Web Services architecture is expected to play a
prominent role in developing next generation distributed
systems. It targets the development of applications based on
XML-related standards, hence easing the development of
distributed systems through the dynamic integration of
applications distributed over the Internet, independently of
their underlying platforms. Web Services Security
Architectures have three layers viz. Web Service Layer, Web
Services Framework Layer (.NET or J2EE), Web Server Layer.
Web 2.0 increases web based access to data processing
particularly on the client side that enables web applications
which contain enriched functionality. Web 2.0 technologies
have wide range of technologies and protocols which enable
Web architectures greater access to data and functions. The
technologies include AJAX (Asynchronous JavaScript and
XML), XML, JSON(JavaScript Object Notation), SOAP
(Simple Object Access Protocol) and WSDL(Web Services
Description Language), REST Web API’s, Microsoft Silver
light, RSS, RDF, and Atom. Web 2.0 vulnerabilities include

XML, JavaScript, RSS, AJAX, SOAP, JSON, WSDL, in
decreasing order of their attack statistics.

In this research, we want to implement security tools to Web
Services Architecture in terms of layers and above attacks [6].
Initially, building web services by combing protocols like
REST and WS-* will be studied. Later This Web Services will
be secured by adding policy, custom authentication, creating
client Security Tools, .NET Cryptography, Securing Data
Access, and Protecting Code. Etc.

Services must be designed and composed in a secure
manner. In particular, we are concerned with safety properties
of service behavior. Services can enforce security policies
locally and can invoke other services that respect given
security contracts. This call-by-contract mechanism offers a
significant set of opportunities, each driving secure ways to
compose services. We can correctly plan service compositions
in several relevant classes of services and security properties.
We can propose a graphical modeling framework based on
foundational calculus. This formalism features dynamic and
static semantics, thus allowing for formal reasoning about
systems. Static analysis and model checking techniques
provide the designer with useful information to assess and fix
possible vulnerabilities.

Securing Web Services Architecture: An element of Security
for Web Services consists of Authentication, Authorization,
Integrity, Non-repudiation, Confidentiality, and Privacy.
Properties of Secure Software for Web Services are
Predictability of operation, Simplicity of software design and
code, correctness, and safety. The challenge for secure web
services has these dimensions: Secure Messaging, Protection of
resources, Negotiation of contracts, Trust management.
Common attacks against Web Services include:
Reconnaissance attacks, Dictionary attack, Forceful browsing
attack, Directory traversal attacks, WSDL Scanning, Sniffing,
Privilege escalation attempts, Format String attacks, Exploiting
unprotected administrator interfaces, Attacks on
confidentiality, Registry disclosure attacks, attacks on
integrity: Parameter tampering, coercive parsing, schema
poisoning, spoofing of UDDI/ebXML messages, Principal
spoofing, Routing detours, External entity attack,
cannonicalization, intelligent tampering and impersonation,
Denial of Service attacks, Flooding attacks, Recursive payloads
sent to XML parsers, Oversized payloads sent to XML parsers,
Buffer overflow exploits, Race conditions, Symlink attacks,
Memory leak exploitation., Command injection, Structured
Query Language injection, XML injection, Malicious code
attacks, URL String attack, Parameter Tampering, Cross-site
scripting, Session Hijacking, Malformed content, Logic Bombs
Trapdoors Backdoors[7].

Several standards are establishing a framework for
integrating security into domain-specific XML-based
applications. WS-Federation standardizes the way companies
share user and machine identities. Risk management is not well
understood within the Information Security community. The
Security and Software Engineering communities must find
ways to develop software correctly in a timely and cost-
effective fashion. Overly broad and vague laws have created a
cloud of legal uncertainty over an important area of security
research and engineering.

ISSN : 0975-4024 83

Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

Security requires an end-to-end perspective and not just a
point-to-point one. It is not simply the exchange of data
between the client and the server that is important, but instead
the entire path that the data takes. This includes not only
technologies, but also operational processes. Do not encrypt
the entire message. Due to the overhead of encryption and
decryption, only encrypt what needs to be encrypted. Encrypt
data meant for different people suing different keys. The
advantage of using XML Encryption is that it supports both of
these requirements. Inline signatures with the information that
they sign. Signed documents are important not only during
transmission between parties, but also as a means to prove and
enforce accountability and liability. To do so, signed
documents must be easily archived, so that both the contents of
a document as well as its signatures can be easily retrieved at a
later time. XML Digital Signatures supports inline signatures
and also allows different signatures for different parts of a
document. WS-Security is emerging as the defacto standard for
a comprehensive framework for Web Services security.

Table II below summarizes the different security approaches
for securing Service Oriented Web Services Architectures.

TABLE II. DIFFERENT SECURITY APPROACHES

Approach Example Advantages Disadvantages
Network  Router

 Firewall
 Packet

Filter

 Limits access
to machines
that are
authorized to
operate within
a particular
network
boundary.

 Blocks traffic
based on IP
addresses,
protocols, and
port
assignments.

 Is transparent
to applications.

 Cannot inspect
application
traffic.

 Does not limit
eavesdropping

 Provides
authentication
and
authorization of
host machines
only.

Transport  SSL
 TLS

 Limits access
to resources
that are
authorized to
use a service.

 Blocks traffic
based on
public key
certificates.

 Digitally
encrypts the
transmission
of data

 Offers point to
point security

 Does not
provide end-to-
end security.

 Does not make
security
credentials
available to
application.

 Provides all-or-
nothing access
control only

Application  Custom
applicati
on

 Software
Module

 Limits access
to resources
that are
authorized to
use a service

 Blocks traffic
based on
message
contents.

 Digitally signs
messages.

 Digitally
encrypts
messages.

 Requires
knowledge of
the application
protocols.

 Must be
individually
built or
customized for
each type of
application

 Offers end-to-
end security

 Makes
credentials
available to
applications.

IV. DESIGNING DEPENDABLE SOLUTIONS

Key analysis and design consideration for security of
architectures deals with, “How well the system authenticates
the users and protects the application and data elements?” [8].
Various Software Engineering paradigms exist such as model-
driven, aspect-oriented and agent-oriented. New methods and
techniques are required should support the formal (and
simultaneous) modeling, reasoning and analysis of security and
functional requirements, and transformation of such (security
and functional) requirements to a design that will satisfies them
along with support for traceability and validation of the
proposed solution.

Important design principle is principle of Least Privilege: It
states that a subject should be given only those privileges that it
needs in order to complete its task. There are tasks that need to
be performed only at an elevated privilege. Any computer
program must always remain in a least-privileged state. When
there is a need, it will elevate the privilege only for the duration
needed. Once the privileged function is complete, it must
return to the state of least privilege.

Tool support: A tool should not only support developers in
modeling and reasoning about security (and functional
requirements) during the analysis stage, but it should help to
transform the requirements to design, check the consistency of
the proposed solution and to validate the security
functionalities of the proposed solution and to validate the
security functionalities of the proposed solution and also
validate the security functionalities of the proposed solution
against the security solutions of the system.

Architecting Web Services Security: Security requires an
end-to-end perspective and not just a point-to-point one. It is
not simply the exchange of data between the client and the
server that is important, but instead the entire path that the data
takes. This includes not only technologies, but also operational
processes. Do not encrypt the entire message. Due to the
overhead of encryption and decryption, only encrypt what
needs to be encrypted. Encrypt data meant for different people
using different keys. The advantage of using XML Encryption
is that it supports both of these requirements. Inline signatures
with the information that they sign. Signed documents are
important not only during transmission between parties, but
also as a means to prove and enforce accountability and
liability. To do so, signed documents must be easily archived,
so that both the contents of a document as well as its signatures
can be easily retrieved at a later time. XML Digital Signatures
supports inline signatures and also allows different signatures
for different parts of a document. WS-Security is emerging as
the de facto standard for a apprehensive framework for Web
Services security.

ISSN : 0975-4024 84

Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

V. WEB 2.0 SERVICES AJAX SECURITY ARCHITECTURE CASE

STUDY

Web 2.0 increases web based access to data processing
particularly on the client side (AJAX Asynchronous JavaScript
and XML) that enables web applications which contain
enriched functionality [9]. Web 2.0 technologies have wide
range of technologies and protocols which enable Web
architectures greater access to data and functions. The
technologies include AJAX (Asynchronous JavaScript and
XML), XML, JSON (JavaScript Object Notation), SOAP
(Simple Object Access Protocol) and WSDL (Web Services
Description Language), REST Web API’s, Microsoft
Silverlight, RSS, RDF and Atom. Web 2.0 vulnerabilities
include XML, JavaScript, RSS, AJAX, SOAP, JSON, WSDL,
in decreasing order of their attack statistics.

We had implemented securing AJAX Web Services issues.
In order to design a secure web tier for AJAX applications, we
first need to study the architecture of the AJAX architecture.
The client running in the user’s browser makes requests to the
server using Hypertext Transfer Protocol (HTTP). These
requests are processed by the Web server processes, such as
Servlets, dynamic pages, etc. The response time is returned to
the client in the form of the streams of data. The web services
or pages are accessed by the external entities, without any
additional work on our part. It may be that we encourage
outsiders to use our web services in this way, and we may even
publish an API, as eBay, Amazon and Google among others
have done. Even in this case, though, we need to keep security
in mind. There are two things that we can do, the first one is to
design our web services interfaces, or API in such a way that
external entities would not be able to subvert the purpose of
our web application, e.g. by ordering the products without
paying for them(designing a secure web tier). The other one is
to look at the techniques to restrict access to the Web services
to particular parties. When we design a web application, we
typically have an end-to-end workflow in mind. For example in
a shopping site, the user will browse the store, add the items to
their basket, and then proceed to checkout. The check out
process on the other hand has its own well-defined work flow
with the choice of delivery address, shipping options, and
confirmation of order. As long as the application is calling the
shots, we can trust that the workflow is being used correctly. If
an external entity starts to call our web services directly,
however, we may have problem.

We had implemented this example using third party services,
creating a search control, configure it to search across Local
search, Web search, Video, and Book search, and then place
the cursor on our page. (Refer Figure 2 below). We are
securing our browser using JavaScript, both for the same
browser and cross browser. We are using the features of
Google search API directly from the site of Google. The
function onload is used to load the Google search as soon as
the page gets loaded. First, we created a Google search control
and assigned it a variable searchcontrol. Then we added the
searchers required for our example. We have used only four
searches and left the image, news and blog searches. If we
want to include all the searchers, we can add searchers the
same way. Then we set the Local Search center point, we have
a method searchcontrol.draw(). This method is used to display
different draw modes – tabbed or linear. We have used the

linear mode in this example. Next, we have the
nsearchcontrol.execute() method, which is used to initialize
the search, and some code for the presentation logic of the page
that we can easily understand. We have initialized the search
for Ajax.

Figure 2.Initial Page of the mygoogle_search.html

This example generates a MD5 encrypted hash. (Refer figure 3
below) We show how to protect our data and to restrict
unauthorized users to access it. The page contains two text
boxes and a button for clearing the value entered by the user.
The first text box is used to enter the password string (here it’s
Jntu University) and the other is used to show the encrypted
form of the password using MD5 algorithm. An encryption
algorithm will generate a random-looking, but predictable,
output from an input string e.g. MD5 algorithm. It has a few
key features that make it useful for security. First, MD5-ing a
piece of data will always generate the same result, every time.
Second, two different resources are monumentally unlikely to
generate the same MD5 digest. Taken together, these two
features make an MD5 digest (that is, the output of the
algorithm) of a resource a rather good fingerprint of that
resource. The third feature is that the algorithm is not easily
reversible. The MD5 digest can therefore be freely passed
about in the open, without the risk of a malicious entity being
able to use it to decrypt the message. For example, the MD5
algorithm will generate the digest string for the password string
entered by the user. We can encrypt the password on the client
site and transmit the encrypted form to the server. The server
on the other hand, will fetch the password from the database
and encrypt it using the same algorithm. The server then
compares the two encrypted strings. If the strings match
successfully, it would allow the user to log on. However, we
can’t transmit the straight MD5 digest across the Internet in
order to login. An unauthorized user may not be able to find
the exact value for the password, but they would soon learn
that the particular digest grants them to the user account.

ISSN : 0975-4024 85

Dr.D.Sravan Kumar et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 81-86

Figure 3.Encryption of data using JavaScript (MD5 algorithm)

CONCLUSIONS

In this paper, we discussed research issues of integrating
security into software architecture of Service Oriented
Architectures Web Services Security Architectures, while
providing dependable design solutions. Further work involves
comparing SOA Web Services Security architectures of Sun
ONE and Microsoft .NET. Dependability is the key factor if
service-oriented computing is to become a success story even
in critical areas such as public safety or air traffic control. In
order to achieve the end-to-end vision of security, the
individual security technologies embedded in the architecture
layers need security management practices and a system design
in which appropriate with necessary separations are part of the
structural properties. Securing the architecture will therefore be
a process (as is the case with a proper security strategy) that
needs to encompass requirements from various types of
architecture properties and different stakeholders. Future work
for middleware is: the combination with service-oriented
transaction techniques and the introduction of a security
concept for the framework.

REFERENCES

[1] Gunnar Peterson, “Security Architecture Blueprint”, Arctec Group LLC,
2007.

[2] Spyros T. Halkidis, Nikolaos Tsantalis, Alexander Chatizigeorgiou and
George Stephanides, “Architectural Risk Analysis of Software Systems
Based on Security Patterns,” IEEE Transactions on Dependable and
Secure Computing, vol. 5 no. 3, pp. 129–142, July-September 2008.

[3] Sasikanth Avancha, “A Framework for Trustworthy Service Oriented
Computing”, ICISS 2008, pp. 124 – 132.

[4] Ozgur Erol et al, “A Framework for Enterprise Resilience using Service
Oriented Architecture approach”, IEEE Sys Con 2009, 3 rd annual IEEE
International Conference March 23 – 26 2009

[5] Anoop Singhal and Theodore Winograd, Guide to Secure Web Services.
NIST Draft (800-95), September 2006.

[6] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari and Roberto
Zunino, “Semantics Based Design for Secure Web Services,” IEEE
Transactions on Software Engineering, vol. 34 no. 1, pp. 33–49, January-
February 2008.

[7] Ferda Tartanoglu et al,”Dependability in the Web Services Architecture”,
Architecting Dependable Systems, LNCS 2677, pp. 90 – 109, 2003

[8] Mouratidis and Giorgini, Integrating Security and Software Engineering:
Advances and Future Vision. Idea Group Publishing Inc., 2007.

[9] Asoke K. Talukder and Manish Chaitanya, Architecting Secure Software
System. CRC Press, 2009.

ISSN : 0975-4024 86

