
Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

Empirical Study Of FFANNs Tolerance To Weight
Stuck At Zero Fault

Amit Prakash Singh, Pravin Chandra, Chandra Sekhar Rai
University School of Information Technology

Guru Gobind Singh Indraprastha University, Delhi, India

Abstract— Fault tolerance property of artificial neural
networks has been investigated with reference to the
hardware model of artificial neural networks. Weight fault
is an important link, which causes breakup between two
nodes. In this paper weight fault has been explained.
Experiments have been performed for Weight-stuck-0 fault.
Effect of weight-stuck-0 fault on trained network has been
analyzed in this paper. The obtained results suggest that
networks are not fault tolerant to this type of fault.

Keywords- artificial neural network,weight Fault, fault
tolerance

I. INTRODUCTION

An Artificial Neural Network (ANN) is an
information-processing paradigm that is inspired by the
biological nervous system, i.e., the human brain [2]. The
key element of this paradigm is the novel structure of the
information processing system. It is composed of large
number of highly interconnected parallel processing
elements (neurons) working together to solve specific
problems. An ANN is configured for specific
applications, such as pattern recognition or data
classification, through learning process.

Artificial neural network have the potential for
parallel processing due to the implementation on
Application Specific Integrated Circuit (ASIC) [4] or
Field Programmable Gate Array (FPGA) [5][6][7]. The
input-output function realized by neural network is
determined by the value of its weights.

In the case of biological neural network, tolerance to
loss of neurons has high priority, since a graceful
degradation of performance is very important for survival
of the organism. Fault tolerance measures the capacity of
neural network to perform the desired task under given
fault condition. It also maintains their computing ability
when a part of the network is damaged or removed. In [9],
the study of fault tolerant properties of the neurons has
been reported for partial fault tolerance by replication and
training and the assertion is that Triple Modular
Replication (TMR) leads to a fault tolerant network. This
is a one of the popular technique in digital system.

Fault tolerances of ANN have been studied in
[1][18]. Fault tolerance of ANN may be
characterized/categorized on the following aspects:

 (i) Weight error: Weight stuck at zero
(ii) Neuron error: Node stuck at zero
(iii) Input pattern errors: injecting noise during

the training phase.
The focus of this paper is on effect of weight fault.

Experiments have been performed on weight stuck at zero
faults on the trained network. Detailed experimentation
has been explained in section VI. An Architecture of
feedforward artificial neural network (FFANN) has been
chosen for the experimentation purpose because they are
among the most popular types.

Hardware model(s) for artificial neural network(s)
has (have) been widely implemented by various
researchers for applications like image processing and
controller-based applications. In recent years, many
approaches have been proposed for the implementation of
different types of neural networks, such as multilayer
perceptron [8], Boltzmann machine [13] and other
hardware devices [11].

The analysis of fault tolerance of a network normally
requires study of weight fault, node fault and external
faults [33]. Stuck-at model is a popular technique to study
effect of fault on a given network [32], where a faulty
gate delivers a constant logic one or logic zero at its
output, or acts as if one of its inputs is stuck at a fixed
logic value. Neural networks process analog function
values, and thus the range of possible faults may be even
larger. Weight stuck at zero faults has been chosen for the
experimentation purpose, in order to make fault analysis
manageable.

The emphasis of the fault tolerance investigation of
ANNs has been focused on the demonstration of non-fault
tolerant behavior of these networks and/or the design of
paradigm for making a network fault tolerant to specific
faults. A complete modeling of neural faults is still
lacking. This paper aims to present an effect of weight
fault specifically stuck at zero faults on a trained network.

In this paper, Section II discusses the architecture of
FFANN. Section III discusses related work; Section IV
discusses fault model and metrics for measurement of
faults. Section V describes weight fault. Section VI
discusses the experiments and the obtained results for the
weight-stuck-0 fault while conclusion is presented in
Section VII.

Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

II. ARCHITECTURE OF FFANN

The architecture of the proposed fault diagnosis

neural network is illustrated in Figure 1. A feed forward
artificial neural network has been chosen for the
experiment purpose. 30 nos. of network have been trained
for the purpose of experiment. A network has single
hidden layer with two input nodes and one output nodes
in the experiments conducted. Output of a neuron is:

)(
1

N

i
ii wxfy (1)

 Where, xi: input vector applied to network
 Wi: weight applied to each input
 f (a): activation function for a hidden

node

And activation function is defined as

aa

aa

ee

ee
afsig

)(tan (2)

Figure 1: Schematic Architecture of FFANN with
one hidden layer of nonlinear nodes.

A hyperbolic tangent sigmoid transfer function has

been chosen as an activation function for hidden node and
a linear transfer function has been chosen as an activation
function for output node.

III. RELATED WORK

With the widespread usage of the chip-based device
of the ANN as controller [11], it has become imperative
to study the behavior of these circuits under various
faults, i.e., the study of their fault tolerance behavior must
be undertaken. The available literature on the fault-
tolerance behavior of feedforward ANNs may be
summarized as:

1. Demonstration of non-fault-tolerance to specific
faults [9] [14].

2. Regularization during training [15].

3. Enhancement of fault tolerance by design of
algorithms for embedding fault-tolerance into the
network, during training [16] [19].

4. Redesigning the network architecture (after
training) by replication of nodes and their
associated weights and usage of majority voting
[3] [17].

Piuri [14] asserts that the network can not be
considered to be intrinsically fault tolerant. Edwards and
Murray [15], use the regularization effect of weight noise
to design a fault tolerant network. Chin et. al. [19]
demonstrate a training algorithm that uses weight value
restriction (and addition of additional nodes), fault
injection during training and network pruning to achieve a
fault tolerant network, while [3] and [12] redesign the
trained network to achieve a fault tolerant network.
Phatak and Koren [17] devised measures to quantify the
fault tolerance as a function of redundancy. Bolt et. al.
[20] indicated that the network trained by
backpropagation algorithm seldom distribute information
to connection uniformly. Due to this information few
connection are key components, whose failure will cause
great loss to the networks. A method to improve the fault
tolerance of backpropagation networks is presented in
[30], which restrained the magnitudes of the connections
during training process. Hammadi and Ito [16]
demonstrate a training algorithm that reduces the
relevance of weight. In [16], relevance of weight in each
training epoch was estimated, and then decreases the
magnitude of weight

IV. FAULT MODEL AND METRICS

Three types of fault model exist in neural networks
system [12]. Fault models are categorized as follows:

1) Weight faults
2) Input faults
3) Node faults

Missing link of interconnection between two nodes is

called weight fault. The weight and node faults are often
modeled as stuck-at-0 and most often occur during a
memory disappearance or a link disconnection in VLSI.
Categorization of weight faults is explained in section 5.

Any incorrectness in the input to the adaptive
machine is defined as an input fault. These faults occur
due to external disturbance or noise. Mainly these types of
fault affect input vector of the machine.

Node fault is a similar type of fault as weight fault.
Node faults are categorized in two types of node faults,
namely hidden node faults and output node faults. Three
types of node faults happen in node faults. Node fault
categorized as follows:

1. Node stuck at zero
2. Node stuck at one
3. white noise in node

Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

 In this paper we consider only weight stuck at
zero. This fault corresponds to linkage breaking in the
hardware, and thus is one of the most important hardware
faults.

To measure the effect of faults/errors on the network
output enumerated above, the following types of
error/fault/parameter sensitivity measures may be defined:
MSE, MAPE and Other Global Measures:

The mean squared error (MSE) and the mean
absolute percentage error (MAPE) should be used to
measure the effect of all types of faults if the output of the
FFANN is real. The percentage of misclassification is
suggested as a measure of fault/error, for classification
problem

V. WEIGHT FAULTS

The removal of the interconnected weights in a network
and the occurrence of stuck-at faults in neurons are of two
types that can serve as a test bed for the robustness of
neural networks. The robustness of a backpropagation
trained multilayer network to remove weights to/from the
hidden layer and the influence of redundancy in the form
of excess hidden neurons has been investigated in [14].
The effect of “Stuck-at-0” and “stuck-at-1” neurons on
the solutions found in recurrent optimization networks is
investigated in [26].
These are the faults/errors that affect the weights of the
network. Following types of faults / errors are defined:

(a) Weight stuck at zero (WSZ): This fault
corresponds to an open fault or connection breakage
between two nodes.

(b) Weight stuck at maximum/minimum (WSMa/
WSMi): Weight stuck at a value of ±|W|max, where |W|max
is the maximum magnitude weight in the system. A -ve
weight will be pushed to −|W|max while a +ve weight will
be pushed towards +|W|max and vice-versa.

This allows us to model weight faults at substantially
large values, which may or may not lead to node hard
faults of the type NSZ or NSO depending on the weight
interaction with the other weights leading to the same
node as the faulted weight.
(c) White noise in weights (WNW): The presence of
white noise (zero mean gaussian with finite variance) may
be taken as a reflection of thermal noise or circuit
degradation. This noise is different from node output
noise as it is not correlated in weights leading from the
same node.
 Due to paucity of space, we restrict our attention to
stuck at zero fault only.

VI. EXPERIMENTS AND RESULTS

A small experiment was conducted to demonstrate
the applicability of WSZ fault on a trained neural
network.

30 nos. of networks were trained for the following
function approximation tasks [21]

Fn1:)*sin(*exp(21 xxy) ; x1,x2 uniform in [-1,1]

Fn2:

)])9.0(4sin())5.0(3exp(

))6.0(3sin()12exp()1(5.1[3356.1
2

22

2
111

xx

xxxy

x1,x2 uniform in [0,1]
The data set for ANN are generated by uniform

sampling of the domain of definition of the functions.
The network consists of two input, one hidden layer

and one output node (Figure 1). The detail of the
architecture used is summarized in Table 1. The
architecture was identified by exploratory experiments
where the size of the hidden layer was varied from 5 to 30
(that is, the number of nodes in the hidden layer were
varied from 5 to 30 in steps of 5) and the architecture that
give the minimum error on training was used. All the
hidden nodes use tangent hyperbolic activation function
while the output nodes are linear.

Table 1: Architecture of network used
Sr. No. Function Inputs Hidden

nodes
Output
nodes

No. of
weight

1. Fn1 2 15 1 61
2. Fn2 2 10 1 41

The resilient propagation (RPROP) [22] algorithm as

implemented in MATLAB 7.2 Neural Network toolbox is
used with the default learning rate and momentum
constant. For training the network 200 random samples
were generated from the input domain of the functions for
training purposes. 5000 epochs of training was conducted
for each problem. 30 nos. of networks has been trained
with the above procedure.

Table 2 provides the summary statistics for the
network chosen. From the value obtained we may infer
that these networks do not show very good fault tolerance
behavior for the WSZ. Though, some of the weights do
not affect the network computation, as under these fault,
both MSE and MAPE values for some of the weights is
zero. This corresponds to weights that are not utilized in
computation and can be easily pruned.

Table 2: Weight Stuck at zero summary data
 MINMAX MINMEAN
Fault
(Metric)

Fn1 (18) Fn2 (11) Fn1 (30) Fn2 (21)

MSE
MIN 0 0 0.000335007 0

MAX 0.461826 4.17175 0.598987 5.59626
MEAN 0.0984594 0.843973 0.096724 0.653498

MEDIAN 0.049704 0.350913 0.0693296 0.321483
STD 0.11113 1.15733 0.115438 1.02684

(MAPE)
MIN 0 0 0.176943 0

MAX 62.0969 162.796 66.3062 198.611
MEAN 20.3705 45.7728 19.9859 40.9889

Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

MEDIAN 16.688 38.4144 14.7482 28.8604
STD 17.0994 48.7023 16.5305 45.0479

 Figures 2 and 3 represents the behavior of all 30

networks for the average MSE and maximum MSE for
(any) single WSZ fault for Fn1 and Fn2 respectively.
From the figures, we may infer that, the value of the error
metric is not the same for each of the 30 networks. That
is, since the networks initially differ only in the choice of
initial weights, thus we may conclude that initial weight

choice has an important role to play in the fault tolerance
behavior of FFANNs and needs to be further investigated.

We choose the network (out to 30), with the
minimum maximum MSE (MINMAX) and minimum
mean MSE (MINMEAN), for further analysis for each of
the two tasks; that is, see network with the best fault
tolerance behavior is chosen for further analysis.

Figure 2: Behavior of 30 networks for Fn1. Figure 3: Behavior of 30 networks for Fn2.

Figure 4: Weight distribution (MINMAX) for network 18
corresponding to Fn1.

Figure 5: Weight distribution (MINMAX) for network 11
corresponding to Fn2.

Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

Figure 6: Weight distribution (MINMAX) for network 30
corresponding to Fn1.

Figure 7: Weight distribution (MINMAX) for network 21
corresponding to Fn2.

Figure 8: Weight distribution (MINMEAN) for network 18
corresponding to Fn1.

Figure 9: Weight distribution (MINMEAN) for network 11
corresponding to Fn2.

Figure 10: : Weight distribution (MINMEAN) for network 30
corresponding to Fn1.

Figure 11: Weight distribution (MINMEAN) for network 21
corresponding to Fn2.

From figure 4-7, we see that faults in some weights is

tolerated (that is, the induced error under fault is small), but
the figures also show that faults in some weights are critical
(that is, the faults in these weights lead to large
computational error in the network output), for the
MINMAX metric, a similar behavior is seen in figure 8-11
for the MINMEAN metric.

From the results obtained in Table 2, it is apparent that
these networks trained using the RPROP[22] algorithm can
not be called fault tolerant to the faults reported.

VII. CONCLUSIONS

This paper has presented empirical results on weight
stuck-at-zero faults for sigmoidal FFANNs. From the
obtained results we may conclude:

1. Some weights are redundant and can be pruned
(fault in these lead to no change in network
output).

2. Partial fault tolerance is present in these networks
(as faults in some weights lead to small change in
output of these networks).

3. Some weights are critical for network computation
and faults in these are not well tolerated.

 In our opinion, the next step in the analysis of these
networks is to device a mechanism that distributes the
computational importance of the critical weights through
realignment of weight or by addition of new nodes (hidden)
and corresponding weights. Moreover, the effect of initial
weights on the fault tolerance behavior of FFANN to weight
stuck at zero faults needs to be further investigated.

REFERENCES
[1]. F. M. Dias and A. Antunes, “Fault Tolerance of Artificial Neural

Networks: an Open Discussion for a Global Model,” International
Journal of Circuits, Systems and Signal Processing, Naun, July, 2008.

[2]. R. P. Lippmann, “An Introduction to Computing with Neural Nets,”
IEEE ASSP Magazine, pp. 4-22, April 1987.

Amit Prakash Singh et al. /International Journal of Engineering and Technology Vol.2(2), 2010, 65-70

[3]. F. M. Dias and A. Antunes, “Fault Tolerance Improvement through
architecture change in Artificial Neural Networks,” Engineering
Applications of Artificial Intelligence, 2007.

[4]. S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A Reconfigurable
VLSI Neural Network,” IEEE Journal of Solid State Circuits, vol. 27,
no. 1, January 1992.

[5]. M. A. Cavuslu, C. Karakuzu, and S. Sahin, “Neural Network
Hardware Implementation using FPGA,” Neural Information
Processing, Lecture Notes in Computer Science, Berlin Germany:
Springer, 2006, vol. 4234.

[6]. R. Raeisi and A. Kabir, “Implementation of Artificial Neural Network
on FPGA,” American Society for Engineering Education, Illinois-
Indiana and North Central Joint Section Conference , April, 2006

[7]. S. Sahin, Y. Becerikli, and S. Yazici, “Neural Network
Implementation in Hardware Using FPGAs,” Neural Information
Processing, Lecture notes in Computer Science, Berlin Germany:
Springer, 2006, vol. 4234.

[8]. E. M. Ortigosa, A.Canas, E. Ros, P. M. Ortigosa, S. Mota, and J.
Diaz, “Hardware description of multi-layer perceptrons with different
abstraction levels,” Microprocessors and Microsystems, vol. 30, pp.
435-444, 2006.

[9]. E.B. Tchernev, R. G. Mulvaney, and D.S. Phatak, “Investigating the
Fault Tolerance of Neural Networks,” Neural Computation, vol. 17,
no. 7, pp. 1646-1664, July 2005.

[10]. P. Chandra and Y. Singh, “Feedforward Sigmoidal Networks-
Equicontinuity and Fault-Tolerance Properties,” IEEE Transaction on
Neural Networks, vol. 15, no. 6, November 2004.

[11]. F. M. Dias, A. Antunes, and A. Mota, “Artificial Neural Networks: a
Review of Commercial Hardware,” Engineering Applications of
Artificial Intelligence, IFAC, vol. 17(8), pp. 945-952, 2004.

[12]. P. Chandra and Y. Singh, “Fault Tolerance of Feedforward Artificial
Neural Networks - A Framework of Study,” Proceedings of the
International Joint Conference on Neural Networks, vol. 1, pp. 489-
494, July 2003.

[13]. M. Skubiszewski, “An Exact Hardware Implementation of the
Boltzmann Machine,” Proceedings of the fourth IEEE Symposium on
Parallel and Distributed Processing, pp. 107-110, December 1992.

[14]. V. Piuri, “Analysis of Fault Tolerance in Artificial Neural Networks,”
Journal of Parallel and Distributed Computing, pp. 18-48, 2001.

[15]. P. J. Edwards and A. F. Murray, “Fault Tolerance via Weight Noise
in Analog VLSI Implementations of MLP’s – A Case study with
EPSILON,” IEEE Transaction on Circuits and Systems-II: Analog
and Digital Signal Processing, vol. 45, no. 9, September 1998.

[16]. N. C. Hammadi and H. Ito, “A Learning Algorithm for Fault Tolerant
Feedforward Neural Networks,” IEICE Trans. Information and
Systems, vol. E80-D, no.1, pp.21-27, 1997.

[17]. D.S. Phatak and I. Koren, “Complete and Partial Fault Tolerance of
Feedforward Neural Nets,” IEEE Transaction on Neural Networks,
vol. 6, no. 2, pp. 446-456, March, 1995.

[18]. C. Alippi, V. Piuri, and M. Sami, “Sensitivity to Errors in Artificial
Neural Networks: A Behavioral Approach,” IEEE Transaction on
Circuits and Systems-I: Fundamental Theory and Applications, vol.
42, no. 6, June 1995.

[19]. C. T. Chiu, K. Mehrotra, C.K. Mohan, and S. Ranka,, “Training
Techniques to obtain fault-tolerant neural network,” 24th
International Symposium on Fault-Tolerant Computing, pp360-369,
June 1994.

[20]. G. Bolt, “Investigating Fault Tolerance in Artificial Neural
Networks,” University of York, Department of Computer Science,
Technical Report YCS 154, Heslington, York, England, 1991.

[21]. V. Cherkassky, “Comparison of Adaptive methods for function
estimation from samples,” IEEE Transaction on Neural Networks,
vol. 7, no. 4, July 1996.

[22]. M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of
the IEEE International Conference on Neural Networks (ICNN), pp.
586-591, San Francisco, 1993

[23]. P. Ferreira, P. Ribeiro, A. Antunes, and F. M. Dias, “A high bit
resolution FPGA implementation of a ANN with a new algorithm for

the activation function,” Neurocomputing, vol. 71, issues 1-3, pp. 71-
73, December 2007.

[24]. F. Piazza, A. Uncini, and M. Zenobi, “Neural networks with digital
LUT activation functions,” Proceeding of IEEE Joint Conference on
Neural Networks, vol. 2, pp. 1401-1404, 1993.

[25]. D. Kincaid and W. Cheney, “Numerical Analysis: Mathematics of
Scientific Computing,” Thomson Learning, 2001.

[26]. Y. F. Wang, X. Q. Zeng, and L. X. Han,“Sensitivity of Madalines to
input and weight perturbations,” IEEE Proceeding of the Second
International Conference on Machine Learning and Cybernetics,
Xian 2-5 November 2003.

[27]. H. Takenaga, S. Abe, Masao Takatoo, M. Kayama, T. Kitamura, and
Y. Okuyama, “Optimal Input Selection of Neural Networks by
Sensitivity Analysis and its application to Image Recognition”, IAPR
workshop on Machine Vision Applications, Tokyo, pp. 117-120, Nov
1990.

[28]. J. J. Montano and A. Palmer, “Numeric Sensitivity analysis applied to
feedforward neural networks”, Neural computation & Application,
pp. 119-125, Vol. 12, 2003

[29]. J.M. Zurada, A. Malinowski, and I. Cloete, “Sensitivity analysis for
minimization of input data dimension for feedforward neural
network”, ISCAS’94, vol. 6, pp. 447-450,1994

[30]. C.T. Chiru, K. Mehortra, C. K. Mohan, and S. Ranka, “Training
techniques to obtain fault-tolerant neural networks”, International
Symposium on Fault-Tolerant Computing, pp. 360-369, 1994.

[31]. N. Wei, S. Yang, and S. Tong , “A modified learning algorithm for
improving the fault tolerance of BP networks”, IEEE International
joint conference on Neural Networks, Washington, DC, vol. 1, pp.
247-252, 1996.

[32]. A. D. Friedman and P. R. Memon, “Fault Detection in Digital
Circuits”, Prentice-Hall, Englewood Cliffs, NJ 1971.

[33]. Amit Prakash Singh, Pravin Chandra, and Chandra Shekhar Rai,
“Fault Models for Neural Hardware”, IEEE First International
Conference on Advances in System Testing and Validation Lifecycle
(VALID 2009), held during September 20-25, 2009 in Porto,
Portugal.

