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Abstract—The present study considers an elastic-plastic contact 
analysis of a deformable sphere with a rigid flat using finite 
element method. The effect of strain hardening on the contact 
behaviour of a non-adhesive frictionless elastic-plastic contact is 
analyzed using commercial finite element software ANSYS. To 
study the strain hardening effect we have taken different values 
of tangent modulus. The result of strain hardening effect clearly 
shows that a generalized solution can not be applicable for all 
kind of materials as the effect of strain hardening differently 
influenced the contact parameters. With the increase in the value 
of hardening parameter this effect also increases. For higher 
value of hardening parameter the effect of strain hardening is 
severe on contact parameters. With the increase in strain 
hardening the resistance to deformation of a material is 
increased and the material becomes capable of carrying higher 
amount of load in a smaller contact area. 

I. INTRODUCTION 

Surface interactions are dependent on the contacting 
materials and the shape of the surface. The shape of the 
surface of an engineering material is a function of both its 
production process and the nature of the parent material. 
When studied carefully on a very fine scale, all solid surfaces 
are found to be rough. So when two such surfaces are pressed 
together under loading only the peaks or the asperities of the 
surface are in contact and the real area of contact is only a 
fraction of the apparent area of contact. In such conditions the 
pressure in those contact spots are extremely high. Accurate 
calculation of contact area and contact load are of immense 
importance in the field of tribology and leads to an improved 
understanding of friction, wear, and thermal and electrical 
conductance between surfaces. But it is a difficult task as 
rough surfaces consist of asperities having different radius and 
height. The problem is simplified when Hertz [1] provides the 
contact analysis of two elastic solids with geometries defined 
by quadratic surfaces. From then the assumption of surfaces 
having asperities of spherical shape is adopted to simplify the 
contact problems and the elastic plastic contact of a sphere 
and flat becomes a fundamental problem in contact mechanics. 
Greenwood and Williamson [2] used the Hertz theory and 
proposed an asperity based elastic model where asperity 
heights follow a Gaussian distribution. The first plastic model 
was introduced by Abbott and Firestone [3] which neglects 
volume conservation of the plastically deformed sphere. The 
first model of elasto-plastic contact was proposed by Chang et 
al. [4]. In CEB model the sphere remains in elastic contact 
until a critical interference is reached, above which the 
volume conservation of the sphere tip is imposed. The CEB 

model suffers from a discontinuity in the contact load as well 
as in the first derivative of both the contact load and the 
contact area at the transition from elastic to elastic-plastic 
region. Later Evseev [5], Chang [6] and Zhao et al. [7] have 
made attempt to improve the elasto-plastic contact model. 

Kogut and Etsion [8] (KE Model) first provide an accurate 
result of elastio-plastic contact of a hemisphere and a rigid flat. 
Kogut and Etsion used a finite element method to study the 
evaluation of the plastic zone in elastic-plastic contact 
between a sphere and rigid flat under frictionless contact 
condition. They study it for a wide range of material 
properties and sphere size and provide generalized empirical 
relations for contact area and contact force in terms of  
dimensionless contact interference for elastic, elastic-plastic 
and fully plastic region. They also studied their model for 
tangent modulus up to 0.1E and found negligible effect of it’s 
in the contact parameters. Similar analysis has been done by 
Jackson and Green [9] (JG Model). In JG model they 
incorporated variation of material property (e.g. Hardness) on 
deformed geometry and presented some empirical relations of 
contact area and contact load. Kogut and Etsion [10] 
developed a statistical contact model based on the results of 
KE model [8]. Jackson and Green [11] have also done similar 
research. Quicksall et al. [12] used finite element technique to 
model the elasto-plastic deformation of a hemisphere in 
contact with a rigid flat for various materials such as 
aluminium, bronze, copper, titanium and malleable cast iron. 
They also studied the contact parameters for a generic material 
in which the elastic modulus and poisson’s ratio were 
independently varied with the yield strength held constant and 
all the results are compared with the results of KE and JG 
Model. Brizmer et al. [13] have done elastic-plastic contact 
analysis between a sphere and rigid flat under perfect slip and 
full stick conditions for a wide range of material properties 
using FEM. According to the literature review contact analysis 
of a deformable sphere with a rigid flat using FEM has done 
by several researchers and some of these studies consider the 
effect of material properties. But the effect of strain hardening 
on contact of deformable sphere and rigid flat in a detailed 
way is still missing. The present work aims to study the effect 
of strain hardening for single asperity contact for different 
values of hardening parameter which is related to the tangent 
modulus.  

II. FINITE ELEMENT FORMULATION 

The contact of a deformable hemisphere and a rigid flat is 
shown in Fig. 1 where the dashed and solid lines represent the 
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situation before and after contact respectively of the sphere of 
radius R. The figure also shows the interference (ω) and 
contact radius (a) corresponding to a contact load (P). The 
contact of deformable sphere with a rigid flat is modeled using 
finite element software ANSYS 10.0. Due to the advantage of 
simulation of axi-symmetric problems the model is reduced to 
a quarter circle with a straight line at its top. 

 
Fig. 1.  A deformable sphere pressed by a rigid flat.  

The quarter circle is divided into two different zone, e.g., 
zone I and zone II. Here zone I is within 0.1R distance from 
the sphere tip and zone II is the remaining region of the circle 
outside zone I. these two zones are significant according to 
their mesh density. The mesh density of zone I is high enough 
for the accurate calculation of the contact area of the sphere 
under deformation. Zone II has a coarser mesh as this zone is 
far away from the contact zone. The meshed model is shown 
in Fig. 2. The resulting mesh consists of 12986 no of 
PLANE82 and 112 no of CONTA172 elements. Here the arc 

of the circle represents the deformable contact surface and the 
straight line is the rigid flat. 

The nodes lying on the axis of symmetry of the hemisphere 
are restricted to move in the radial direction. Also the nodes in 
the bottom of the hemisphere are restricted in the in the axial 
direction due to symmetry. The sphere size is used for this 
analysis is R = 0.01 mt. the material properties used here are 
Young’s Modulus ( E ) = 70 GPa, Poission’s Ratio ( ) = 0.3 
and Yeild stress ( y ) = 100 MPa. Here a frictionless rigid-

deformable contact analysis is performed. In this analysis a 
bilinear material property, as shown in Fig. 3, is provided for 
the deformable hemisphere. To study the strain hardening 
effect we have taken different values of tangent modulus 
( tE ).The Tangent Modulus ( tE ) is varied according to a 

parameter which is known as Hardening parameter and 

defined as, 
t

t

EE

E
H


 . The value of H is taken in the range 

5.00  H as most of the practical materials falls in this 
range. The value of H equals to zero indicates elastic 
perfectly plastic material ( tE =0) behavior which is an 

idealized material behavior. The hardening parameters used 
for this analysis and their corresponding values are shown in 
Table 1. 

 
 

 

 
Fig. 2.  Meshed model of the hemispherical contact 

 
 

ISSN : 0975-4024 2



Prasanta Sahoo et al  /International Journal of Engineering and Technology Vol.2(1), 2010, 1-6 

 
Fig. 3. Stress-strain diagram for a material having bilinear isotropic properties 

 

TABLE 1 

DIFFERENT H AND ET VALUES USED FOR THE STUDY OF STRAIN HARDENING 

EFFECT 

H Et  in %E Et (GPa) 

0 0.0 0.0 

0.1 9.0 6.3 

0.2 16.7 11.7 

0.3 23.0 16.1 

0.4 28.6 20.0 

0.5 33.0 23.1 

 
The wide range of values of tangent modulus is taken to 

make a fair idea of the effect of strain hardening effect in 
single asperity contact analysis. The solution type is chosen as 
large deformation static analysis. Here we have applied 
displacement on the target surface and the force on the 
hemisphere is found from the reaction solution. As this is an 
axi-symmetric analysis the force is calculated on a full scale 
basis. The radius of contact area is found from the last 
activated node for a particular analysis. In our analysis we 
have validated our mesh configuration by iteratively 
increasing the mesh density. The mesh density is increased by 
1% until the contact force and contact area is differed by less 
than 1% between the iterations. In addition to the mesh 
convergence the model also compared with the Hertz elastic 
solution. The results of contact load are differed by maximum 
3% and contact radius by not more than 5% below the critical 
interference. 

III. RESULTS AND DISCUSSION  

As discussed earlier the strain hardening effect is studied by 
varying the hardening parameter which in turn changes the 
value of tangent modulus while other material properties are 
kept constant. The model is validated by comparing the results 
for elastic perfectly plastic material condition, i.e. for 0H , 
with the results of KE model [8]. The results are normalized 
according to the following normalization scheme. Interference 

is normalized by the critical interference, provided by Chang 
et al. [4]. The critical interference is defined as, 

R
E

KS
c

2

*2







  

Where, K is the hardness coefficient [ 41.0454.0 K ], 
S is the hardness of the material,  according to Tabor [14] S  

is related to yield strength by yS 8.2 and *E is the 

equivalent young’s Modulus, )1/( 2*  EE in this case [ E  

is the young modulus and   is the Poisson’s ratio of the 
deformable body]. The contact load is normalized according 
to critical contact load, i.e., load corresponding to critical 
interference and written as, 

  2/32/1*

3

4
cc REP   

The contact area is normalized according to critical contact 
area, i.e., area corresponding to critical interference and 
written as, 

  cc RA   

The results for elastic perfectly plastic material behavior are 
compared with the results of Kogut and Etsion. The calculated 
contact areas are exactly matched in the elastic and certain 
portion of the elastic plastic region and we found a maximum 
of 1% difference with the results KE model. In case of load vs. 
displacement we found there is a maximum of 3% difference 
with the results of KE model. Figs. 4 and 5 show the 
comparison of the load-interference and contact area-
interference for the present case and the KE model.  

 

 
Fig. 4.  Plot of contact load vs. interference for elastic perfectly plastic 

material 
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Fig. 5.  Plot of contact area vs. interference for elastic perfectly plastic 

material. 

 
The possible reason of this differences in the results is may 

be due to the fact that Kogut and Etsion have done this 
analysis for a large no of sphere radius in the range of 

101.0  R (mm.) as well as for a large no of material 
properties in the range 1000)/(100  yE   and they also 

found differences in their results up to 3%. Among all those 
results they provided the generalized one. Here we are 
representing the different contact conditions at different 
interference by means of stress contours of the deformed 
asperity. We found slightly higher values of interferences for 
the initiation of plastic and fully plastic deformation and as the 
differences are marginal, can be neglected. Von mises yield 
criterion is used to find the initiation of plastic deformation 
and fully plastic region is found when the mean pressure 
reaches the hardness value. The contour plots of von mises 
stress for different interference values are shown in Fig. 6. 

 
 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

Fig. 6. Plot of von-mises stress for (a)  = c, (b)  = 6c, (c)  = 68c and 
(d)  = 110c 

 
The effect of strain hardening effect in single asperity 

contact is studied for materials having different values of 
tangent modulus with the other material properties are taken 
as constant. Here we have studied it for an applied 
interference range of cc  20010  . Fig. 7 shows the 
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variation of contact load at different interference for materials 
having different values of tangent modulus. The plot shows a 
non linear behavior in between the load and interference as the 
results are in the elasto-plastic and fully plastic region. Similar 
non linear behavior is found in between contact area and 
interference which is shown in Fig. 8. These plots show that 
up to a certain value of non-dimensional interference 

)10/( c the effect of strain hardening on contact 

parameters become negligible. Here we found below this 
value the variations of results are in the range of 2-5% from 
that of elastic perfectly plastic material behavior. But a 
significant effect of strain hardening on contact parameters for 
higher interference values is found. It is also found that a 
small amount of stain hardening (with in 2% of E ) helps in 
convergence of the solution and the results are quite close to 
the results of elastic perfectly plastic case. The variation of 
hardening parameters shows that for a small hardening 
parameter 1.0H  the results of load and contact area varies 
3-15% and 5-17% respectively from the results of elastic 
perfectly plastic case with in the elasto-plastic region, i.e. 

cc  11010  . For fully plastic region, i.e., c  these 

variations are quite high and increase monotonically with the 
increase in interference. While for the large hardening 

parameter 5.0H the variation in load and area are in the 
range of 11-52% and 5-33% respectively from that of elastic 
perfectly plastic case in the elasto-plastic region. In fully 
plastic region these variations are significantly high and 
increase monotonically with the increase in interference. 
 

 
Fig. 7.  Plot of contact load vs. interference for materials having various Et 

values. 

Fig. 7 also shows that with the increase in tangent modulus 
value the contact load increases at a particular interference 
value. This clearly indicates that the resistance to deformation 
of a material increases with the increase in tangent modulus 
value. Fig. 9 shows the variation of contact area at different 
applied load for materials having different values of tangent 
modulus. The figure shows a non linear behavior in between 
contact area and contact force. Here it is observed that the 
contact area decrease at a particular load for a material having 
higher tangent modulus value than that of a material having 
lower one. This indicates that with the increase in the effect of 
strain hardening the material can support the same applied 
load in a smaller contact area. 

 

 
Fig. 8.  Plot of contact area vs. interference for materials having different Et 

values. 

 

 
Fig. 9.  Plot of contact area vs. force for materials having different Et values. 

IV. CONCLUSIONS  

The result of strain hardening effect clearly shows that a 
generalized solution can not be applicable for all kind of 
materials as the effect of strain hardening greatly influenced 
the contact parameters. With the increase in the value of 
hardening parameter this effect also increases. Thus for a 
particular material this parameter should be taken care 
appropriately to get the accurate prediction of contact load and 
contact area. It is also observed that a small amount of strain 
hardening improves the solution convergence. It is noticed 
that in the elasto-plastic region up to a certain interference 
value )10( c strain hardening have negligible effect on the 

contact parameters. If we assume that the material has very 
low hardening parameter, i.e. 1.0H , the effect of its quite 
small and can be neglected with marginal error in the elasto-
plastic region but a significant effect of its is found in fully 
plastic region that can not be neglected. For higher value of 
hardening parameter the effect of strain hardening is severe on 
contact parameters. With the increase in strain hardening the 
resistance to deformation of a material is increased and the 
material becomes capable of carrying higher amount of load in 
a smaller contact area. 
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