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Abstract.: A new quadrature formula has been 
proposed which uses modified weight functions derived 
from those of ‘Bernstein Polynomial’ using a ‘Two-
Phase Modification’ therein. The quadrature formula 
has been compared empirically with the simple method 
of numerical integration using the well-known 
“Bernstein Operator”. The percentage absolute 
relative errors for the proposed quadrature formula 
and that with the “Bernstein Operator” have been 
computed for certain selected functions, with different 
number of usual equidistant node-points in the interval 
of integration~ [0, 1]. It has been observed that both of 
the proposed modified quadrature formulae, 
respectively after the ‘Phase-I’ and after the ‘Phases-I 
& II’ of these modifications, produce significantly 
better results than that using, simply, the “Bernstein 
Operator”. Inasmuch as the proposed “Two-Phase 
Improvement” is available iteratively again-and-again 
at the end of the current iteration, the proposed 
improvement algorithm, which is ‘Computerizable’, is 
an “Iterative-Algorithm”, leading to more-and-more 
efficient “Quadrature-Operator”, till we are pleased! 
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I. INTRODUCTION 
Classically, even the celebrated Bernstein 

polynomial approximation operator has been used for 
numerical integration in the interval [0, 1], without 

any loss of generality (in the sense of change of 
origin-and-scale). In a rather simple set-up, such 
similar quadrature methods were of the form 

 
Where xi’s are equally spaced nodes & wi’s 

are the respective weights. For example: 

Trapezoid:    

Simpson:    

  
Similarly, for higher order polynomial Newton-

Cotes rules. 

We note one known thing already from 
interpolation: equally-spaced nodes result in wiggle. 

The preceding fact motivated us to ponder-n-
wonder as to whether or not we would be able to 
retain the simplicity of “equidistant points in the 
interval of integration” in our proposed quadrature 
formula, and still aspire successfully for its 
optimality.  In fact we were successful. The next 
section details the ‘How’ part of it.  

And the section following that numerically 
illustrates that the potential of this new/proposed 
‘two-phase’ modifications of the usual ‘Bernstein 
Operator’ was very significant. 
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Moreover, Inasmuch as the proposed “Two-Phase 
Improvement” is available iteratively again-and-

again at the end of the current iteration, the proposed 
improvement algorithm, which is ‘Computerizable’, 
is an “Iterative-Algorithm”, leading each time to a 

more-and-more efficient “Quadrature-Operator”, till 
we are pleased! 

Hence, the proposed “Computerizable Iterative-
Algorithmic Two-Phase Improvement of the 
Bernstein’s Quadrature Operator” is almost 
‘Optimal’! 

 That it could be almost the ‘Optimal’ one, 
inasmuch as it could be used to lead us to an 
exceedingly superior ‘quadrature-operator’ vis-à-vis 
to the simple-and-famous “Bernstein Operator 
Quadrature”. The “Bernstein Operator” happened to 
be the foundational structure for the build-up of the 
proposed one, using weight-functions derived using 
the ‘two-phase’ modifications. We are going to detail 
this in following section. And this modification, as 
noted above, would be available “Iteratively”. 

II. THE PROPOSED PROBABILISTICALLY 
WEIGHTED QUDRATURE OPERATOR. 

The problem of approximation arises in many 
contexts of ‘Numerical Analysis and Computing’, 
and ‘Quadrature’ is one such. Weierstrass (1885) 
proved his celebrated approximation theorem: →    if 
f ε C [a, b]; for every δ > 0; there is a polynomial ‘p’ 
such that �f - p� < δ.  

In other words, the result established the 
existence of an algebraic polynomial, in the relevant 
variable, capable of approximating the unknown 
function in that variable, as closely as we please!  

This result was a big beginning of the 
mathematicians’ interest in ‘Polynomial 
Approximation’ of an unknown function using its 
values generated experimentally or known otherwise 
at certain chosen ‘Knots’ of the domain of the 
relevant variable, as of interest to the scientist 
concerned. The Great Russian mathematician S. N. 
Bernstein proved the Weierstrass’ theorem in a 
manner which was very stimulating and interesting in 
many ways.  

He first noted a simple but important fact that if 
the Weierstrass’ theorem holds for the interval C [0, 
1], it also holds for C [a, b] and holds conversely. 
Essentially C [0, 1] and C [a, b] are identical, for all 
practical purposes; as they are linearly isometric as 
normed spaces, order isomorphic as algebras (rings). 
Most important contribution in the Bernstein’s proof 
of this theorem consisted in the fact that Bernstein 
actually displayed a sequence of polynomials that 
approximate a given function f(x) ε C [0, 1]. If f (x) 
is any bounded function on C [0, 1], the sequence of 
Bernstein’s Polynomials for f (x) is defined by: 

 

 

Wherein, are the respective 
weights for the values ‘  of the function at the 

knots  [k = 0 (1) n].Thus if we assume that, 

without any loss of generality [subject to the change 
of origin-and-scale of the impugned-variable, if 
necessary], our interest is that in developing the  
“Quadrature Operator” for the numerical integration 

of the definite integral                (2.2) 

“f (x)” being a bounded unknown function with 
known/knowable values at equi-distant knots  

   

Hence, one straightforward “Quadrature” using 
the Bernstein’s Operator ~  = 

  

Now, we are set to launch the “Two-Phase 
Modification Perspective” seminal to the proposition 
of our novel ‘Quadrature Operator” in the same 
“Equi-Distant Knots” ‘Set-Up’ of Bernstein’s 
Operator, in what follows. 

Consider the fact that f (x) is bounded unknown 
function in its domain C [0, 1]. Let us, call by 
“PhIMIBk,n(f; x)” the ‘Phase I Modified Bernstein’s 
Quadrature Operator’, considering  “M0 *IBk,n(f; 
x)” wherein the constant “M0 ”  is so chosen as to 
minimize the “Estimable Summed-Squared Error” 
using this ‘Phase I Modified Bernstein’s Quadrature 
Operator’.  

To get this constant “M0” using the “Estimable 
Error”, we consider the use of the perturbed operator 
“b* IBk,n (f; x) ” as an nth.-degree ‘Polynomial 
Approximation Operator’. For each ‘Knot’ ‘k/n (k = 
0(1) n)’ we get the value of “b*IBk,n (f; k/n) ”; say 
‘Est.[b. (f; k/n)]’ vis-à-vis the actual value (f; k/n) ~ 
namely, f(k/n).  

Consider now, the ‘Overall Estimable Summed-
Squared-Error’ ~  

∑ −=

=
=

nk

k nkfnkfbEst0

2)}/;()]/;(*.[{
A*b2 – B*b +C; Say. 

This ‘Overall Estimable Summed-Squared-
Error’ will be zero for the roots of the equation ~ 
A*b2 – B*b + C =0. However, the above equation 
turns up to be having the imaginary roots. Therefore, 
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we set b0 ≡M0 = B/ (2*A), to have reduced ‘Overall 
Estimable Summed-Squared-Error’, for the real-
root ~ “M0”.  

Hence, our ‘Phase-I Modified Bernstein’s 
Quadrature Operator’ gets to be: 

PhIMIBk,n (f; x) = M0 *IBk,n (f; x); wherein M0 
= B/ (2*A).   (2.4) 

Whereas, in the “Phase-I” detailed above, we 
had a modification of the ‘Bernstein’s Quadrature 
Operator “PhIMIBk,n (f; x)”, consisting in a change-
of-scale; we attempt an optimal polynomial shift in 
the “Phase-II” detailed in what follows.  

We estimate the ‘(nth. Degree) Polynomial 
Approximation’ to the “Estimable Error” by the 
‘Bernstein Operator  (Est.[ b0. (f; k/n)] - 
(f; k/n)) ’; Say, EPhIn(x)’. Thence, the resultant 
‘Phase-II Modified Bernstein’s Quadrature 
Operator’ gets to be: 

PhIIMIBk,n (f; x) = PhIMIBk,n (f; x) - EPhIn(x).
   (2.5) 

III. NUMERICAL SIMULATION STUDY. 
This section is also of prime interest, as herein we 

try to illustrate the potential of our proposed 
quadrature operators “(On (f)) (x)”. As apparent in 
the second section, as a prelude to our proposed 
operator, the mother-operators are the “Bernstein’s 
Polynomials for f (x) (Bn (f)) (x)” in (2.1).  

As such, as we could not have an idea about their 
relative supremacy in terms of better estimation-
potential otherwise; we have to discover their relative 
supremacy of efficient estimation only via a 
‘Numerical Simulation Study’, as attempted in what 
follows in this section.  

In this simulated numerical study we have chosen 
four illustrative example-functions: exp (x), 10x, sin 
(2+x), and ln (2+x); assumed to be known in the 
sense of “Simulation”.  

For the simplicity of the numerical illustration, 
we have confined to chosen illustrative n-values to 
be 5, 10, and 15.  

We have considered numerical values (per the 
illustrative numerical study) of the “Percentage 

Relative Absolute Errors” in using the relevant 
operators by the evaluation of the expressions: 
namely “PRAbsErr (●) (In %)” for “(On (f)) (x)”; 
& for “(Bn (f)) (x)”, respectively  

[ ∫∫ −
1

0

1

0
)();( dxxfxfOn x 100]/ 

[ ∫
1

0
)( dxxf ] = PRAbsErr (On); Say. And 

[ ∫∫ −
1

0

1

0
)();( dxxfxfBn x 100]/ 

[ ∫
1

0
)( dxxf ] = PRAbsErr (Bn); Say.  

These “Percentage Relative Absolute Errors” [~ 
“PRAbsErr (●) (In %)”], calculated using the 
“MAPLE RELEASE 12(Evaluation-Version)” code, 
are tabulated in the following four tables (Tables 1.1 
to 1.4) in the APPENDIX.  

This “Numerical Simulation Illustration” has 
amply supported the fact that the proposed “Two-
Phases”  of modifications to the usual “Bernstein’s 
Quadrature Operator” are quite gainful, inasmuch as 
the “Percentage Absolute Errors’ Numerical-Values” 
for our proposed Phase I/Phase II modified 
quadrature-operators “(On (f)) (x)” are significantly 
lower than those for “Bernstein’s Polynomials for f 
(x); (Bn (f)) (x)” in (2.1).  

The most important fact, to be re-iterated here, is 
that this betterment could be availed iteratively; till 
we please! Secondly this “Iterative-Algorithm” could 
well be computerized, rather!! 
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APPENDIX 
Table 1.1. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of Various Modified [After Phase-I & After 

Phases-I &II; respectively] Bernstein Operators (In %) for Example-Function: f(x) = exp(x). 

 

Operator↓ For n =5↓ For n =10↓ For n =15↓ 

PhIIMIBk,n(f; x) 0.3474210635 0.0877024930 0.0389968624 

PhIMIBk,n(f; x) 0.4707192306 0.1388406699 0.0658716738 

IBk,n(f; x) 1.6438712520 0.8209813297 0.5500521420 

 

 
Table 1.2. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of Various Modified [After Phase-I & After 

Phases-I &II; respectively] Bernstein Operators (In %) for Example-Function: f(x) = 10x. 

 

Operator↓ For n =5↓ For n =10↓ For n =15↓ 

PhIIMIBk,n(f; x) 1.997008283 0.520904512 0.234668062 

PhIMIBk,n(f; x) 3.988609739 1.414582407 0.787830334 

IBk,n(f; x) 8.253158947 4.102544208 2.732405685 

 

 
Table 1.3. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of Various Modified [After Phase-I & After 

Phases-I &II; respectively] Bernstein Operators (In %) for Example-Function: f(x) = sin (2+x). 

 

Operator↓ For n =5↓ For n =10↓ For n =15↓ 

PhIIMIBk,n(f; x) 0.317408726 0.0784870970 0.0326542506 

PhIMIBk,n(f; x) 0.456275124 0.1307803739 0.0691217565 

IBk,n(f; x) 1.690566589 0.8462742402 0.5733955363 
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Table 1.4. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of Various Modified [After Phase-I & After 

Phases-I &II; respectively] Bernstein Operators (In %) for Example-Function: f(x) = ln (2+x). 

 

Operator↓ For n =5↓ For n =10↓ For n =15↓ 

PhIIMIBk,n(f; x) 0.0603252620 0.0149794319 0.0050210408 

PhIMIBk,n(f; x) 0.0676422922 0.0192393427 0.0143450140 

IBk,n(f; x) 0.3012250535 0.1504128494 0.1004587904 

 

ISSN : 0975-4024


