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Abstract 

Acoustic echo depends on time delay between initial and 
reflected sound wave, strength of reflected sound. In the 
speech processing of letter ‘zha’ [11], echo of the 
recorded voice gives the spurious results. Such 
complexity can be avoided by suitable pyramidal 
method like adaptive filtering technique. Adaptive 
filtering tries to adjust these parameters with the aim of 
meeting some well-defined target, which depends upon 
the state of the system and surroundings. In speech 
recognition, the acoustic echo gives the faulty results. 
Objective of this paper is to analyze the performance of 
various adaptive filtering algorithms for acoustic echo 
cancellation in recorded speech enhancement of the 
letter ‘Zha’ in Tamil language. These algorithms are 
simulated in MATLAB and compared with the 
performance of those algorithms based on parameters 
such us computational complexity, convergence rate 
and amount of echo attenuation.  

Key words: Acoustic echo, Adaptive filter, and FIR 
filter, LMS, NLMS, RLS and MATLAB 

I. INTRODUCTION 
An acoustic echo canceller records the sound 

going to the loudspeaker and substract it - in some 
way - from the signal coming from the microphone. 
The sound going through the echo-loop is transformed 
and delayed, and noise is added, which complicates 
the subtraction process. Figure.1  illustrates the 
general echo-cancelling.  

 
Figure 1. Echo canceller principle 

1.1.Adaptive Echo Canceller 
Adaptive echo cancellers that can learn the echo 

path when it is first turned on and afterwards track its 
variations without any intervention from the designer. 
Since an adaptive canceller matches the echo path for 
any given connection, it performs better than a 
compromise fixed canceller.Let ‘X’ be the input 
signal going to the loudspeaker; let ‘d’ be the signal 
picked up by the microphone, which will be called the 
desired signal. The signal after subtraction is called 
the error signal and will be denoted by ‘e’.  

 
 

Figure 1.  Adaptive filter 

 

II. ADAPTIVE FIR FILTER 
FIR filters are routinely used in adaptive filtering 

applications that range from adaptive equalization in 
digital communication systems to adaptive noise 
control systems. The reasons for the popularity of FIR 
adaptive filters are(i)The filter coefficients  control the 
stability easily (ii)There are simple and efficient 
algorithms for adjusting the filter coefficients (iii)The 
performance of these algorithms is well understood in 
terms of their convergence and stability. 
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Figure 2.  A direct form FIR adaptive filter 

    An FIR adaptive filter for 
estimating a desired signal d (n) from a related signal 
x (n), as illustrated in figure 3, is  
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here it is assumed that x(n) and d(n) are 
nonstationary Random process and the goal is to find 
the coefficient vector wn  at the time n that 
minimizes the mean-square error, 

ξ(n) =E{|e(n)|2}        where,   e(n) = 
d(n)-d’(n) = d(n)-wn

T x(n) 

As in the derivation of the FIR wiener filter, the 
solution to this minimization problem may be found 
by setting the derivative of ξ(n) with respect to wn

* 
(k) equal to zero for    k = 0,1,2,…….,p. the result is             
E{e(n)x*(n-k)} = 0;     k = 0,1,…..,p 

Substituting e(n) into above equation we have   

E {[d (n) – 
0

p

n
l

w
=
∑ (l) x (n-l] x*(n-k)}= 0; k = 

0,1,2,..,p 

Which, after rearranging terms,becomes 

       
0

p

n
l

w
=
∑ (l) E {x (n-l) x*(n-k)} = E {d (n) 

x*(n-k)}; k = 0,1,…..,p. 

Above equation is a set of p+1 linear quations in 
the p+1 unknowns wn (l). However, unlike the case of 

an FIR Wiener filter where it was assumed that x(n) 
and d(n) are jointly wide sense stationary, the solution 
to these equations depends on n. We   may express 
these equations in vector forms as follows 

R x(n) wn  =  rdx (n) 

In the case of jointly wide sense stationary 
processes, the above equation reduces to the Wiener-
Hopf equations, and the solution wn becomes 
independent of time. Instead of solving above 
equation for each value of n, which would be 
impractical in most real-time implementations, in the 
following section, we consider an iterative approach 
that is based on the method of steepest descent. 

2.1 Method of steepest descent 

       By assuming that the cost function to be 
mimimized is convex,it may be stated with an arbitary 
point on the performance surface and take a small step 
in the direction in which the cost function decreses 
fastest. This corresponds to a step along the steepest 
descent slope of the performance surface at that point. 
Repeating this sucessively, convergence towards the 
bottom of the performance surface(corresponding to 
the set of parameters that minimize the cost function) 
is guaranteed. 

The method of steepest descent  is an alternate 
iterative search method to find wo (in contrast to 
solving wiener-hopf equation directly), and uses the 
following   procedure to search for the minimum point 
of the cost function of a set of filter tap weight, 

Begin with an initial guess of the filter tap weights 
whose optimum values are to be found for minimizing 
the cost function. Unless some prior knowledge is 
available, the search can be initialiated by setting all 
the filter tab weight to zero,i.e.w(0). 

Use  this initial guess to compute the gradient 
vector of the cost function with respect to these tap 
weights at the present  point. 

Update the tap weights by taking a step in the 
opposite direction (sign change) of the gradient vector 
obtained in step2. This corresponds to a swtep in the 
direction of steepest   descent in the cost function at 
the present input. Furthermore,the size of the step 
taken is chosen proprotional to the size of the gradient 
vector. 

go back to step2 and iterate the process until no 
further significant change is observed in the tap 
weights i.e, the search has converged to an optimal 
point. 

According to the above procedures, if w(n) is the 
tap-weight vector at the n-th iteration, then the 
follwing recursive equation may be used to update 
w(n): 
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W(n+1)=w(n) - μ∇nξ 

Where μ is a positive scaler called the step 
size,and ∇nξ denotes the gradient vector evaluated at 
the point w=w(n). For small value of μ, the correction 
to wn is small and the movement down the quadradic 
surface is slow and ,as  μ  is increased, the rate of the 
descent increases. However, there is a upper limit on 
how large the step size may be. For values of  μ that 
exceeds this limit, the trajectory of wn becomes 
unstable and unbounded. 

Let us evaluate the gradient vector ∇ξ(n). 
assuming that w is complex, the gradient is the 
derivative of E{⎟e(n)⎟ 2} with respect to w. with 

∇ξ(n)= ∇E{⎟e(n)⎟ 2}= E{∇⎟e(n)⎟ 2}= 
E{e(n)∇e*(n)} 

and 

∇e*(n)=-x(n) 

it follows that, 

∇ξ(n)=-E{e(n)x*(n)} 

thus,  with a step size of μ , the steepest descent 
algorithm becomes 

wn+1 =wn  +  μE{e(n)x*(n)} 

 

III. ADAPTIVE FILTERING ALGORITHMS 
Many proposed algorithms are available for 

cancelling the echo noise. The algorithms are, Least 
mean square algorithm,Normalized LMS algorithm 
and Recursive least square algorithm 

3.1.LMS Algorithm 

We developed the steepest descent adaptive filter, 
which has a weight vector update equation given by  

wn+1 =wn  +  μE{e(n)x*(n)} 

A practical limitation with this algorithm is that 
the expectation E{e(n)x*(n)} is generally unknown.  
Therefore, it must be replaced with an estimate such 
as the sample mean.  

Ê{e(n)x*(n)}= 

1

0

1 L

lL

−

=
∑ e(n-l)x*(n-l) 

Incorporating this estimate into the steepest 
descent algorithm, the update for wn becomes  

wn+1 =wn  +  

1

0

L

lL
μ −

=
∑  e(n-l)x*(n-l) 

A special case above equation occurs if we use a 
one point sample mean (L=1),  

Ê{e(n)x*(n)}= e(n)x*(n) 

In this case, the weight vector update equation 
assumes a particularly simple form  

wn+1 =wn  +  μ e(n)x*(n) 

and is known as the LMS algorithm.  The 
simplicity of the algorithm comes from the fact that 
the update of the kth coefficient.  

wn+1(k) =wn (k) +  μ e(n)x*(n) 

requires only one multiplication and one addition 
(the value for μ e(n) need only the computed once and 
may be used for all of the coefficients). Therefore, an 
LMS adaptive filter having p+1 coefficients requires 
p+1 multiplications and (p+1) additions to update the 
filter coefficients.  In addition, one addition is 
necessary to  compute the error e(n)=d(n)-y(n) and 
one multiplication is needed to form the product μ 
e(n). Finally, p+1 multiplications and p additions are 
necessary to calculate the output, y(n), of the adaptive 
filter.  Thus a total of 2p+3 multiplications and 2p+2 
additions per output point are required.  

3.2. NLMS Algorithm 

 One of the difficulties in the design and 
implementation of the LMS adaptive filter is the 
selection of the step size μ . For stationary process, 
the LMs algorithm converges in the mean if 0<μ < 2/ 
λmax,  and converges in the mean-square if 0<μ<tr(Rx). 
However, since Rx is generally unknown,then either 
λmax  or   Rx must be estimated in order to use these  
bounds. One way around this difficulty is to use the 
fact that, for stationary processes, tr(Rx)= 
(p+1)E{⎟x(n)⎟ 2}. Therefore, the condition for mean 
square convergence may be replaced by 
0<μ<2/(p+1)E{⎟x(n)⎟ 2} 

where  E{⎟x(n)⎟ 2} is the power in the process 
x(n), this power may be estimated using a time 
average such as           

Ê{|x(n)|2=1/P+1 2

0
| ( ) |

p

k
x n k

=

−∑  

 Which leads to the following bound on the step 
size for mean square convergence 

0<μ<β/xH(n)x(n)= β/⎥⎥x(n)⎥⎥2 

where β is a normalized step size  with 0<β< 2.  
Replacing μ in the LMS weight vector update 
equation with leads to the Normalized LMS 
algorithm, which is given 

wn+1= wn+ β x(n)e(n)/ ⎥⎥x(n)⎥⎥2 
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Note that the effect of the normalization by 
⎥⎥x(n)⎥⎥2  is to alter the magnitude, but not the 
direction, of the estimated gradient vector. Therefore, 
with the appropriate set of statistical assumption it 
may be shown that the normalized LMS algorithm 
converge in the mean square if 0<β<2.   

 In the LMs algorithm the correction that is 
applied to the wn is proportional to the input vector 
x(n). Therefore, when x(n) is large ,the LMS 
algorithm experience  a problem with gradient white 
noise  amplification. With the normalization of the 
LMs step size by ⎥⎥x(n)⎥⎥2   in the NLMS algorithm, 
however, this noise amplification problem is 
diminished. Although the NLMS algorithm bypasses 
the problem of noise amplification, we are now faced 
the similar problem that occurs when ⎥⎥x(n)⎥⎥ 
becomes too small. An alternative, therefore, is to use 
the following modification to the NLMS algorithm 

wn+1= wn+ β x(n)e(n)/∈+⎥⎥x(n)⎥⎥2 

where ∈ is some small positive number.  

 Compare with the LMS algorithm, the 
normalized LMS algorithm requires additional 
compution to evaluate the normalization term ⎥x(n)⎥⎥2 

. however, if this term is evaluated recursively as 
follows 

⎥⎥x(n+1)⎥⎥2 
  = ⎥⎥x(n)⎥⎥2 + ⎥x(n+1)⎥2  - ⎟x(n-p)⎟2 

 then the extra computation involves only two 
operations, one addition, and one subtraction.  

3.3.RLS Algorithm 

Recursive least squares (RLS) algorithm is used to 
find the filter coefficients that relate to producing the 
recursively least squares of the error signal (difference 
between the desired and the actual signal). 

We have considered gradient descent algorithms 
for the minimization of the mean-square error.  
 ξ(n)=E[e(n)2] 

The difficulty with these methods is that they all 
require knowledge of the autocorrelation of the input 
process, E {x(n)x*(n-k)}, and the cross correlation 
between the input and desired output, E {d(n)x*(n-
k)}. When this statistical information is unknown, we 
have been forced to estimate these statistics from the 
data. In the LMS adaptive filter, for example, these 
ensemble averages are estimated using instantaneous 
values,  

Ê{e(n)x*(n-k)}= e(n)x*(n-k) 

Although this approach may be adequate in some 
application in others this gradient estimate may not 
provide a sufficient rapid rate of convergence.An 
alternative, therefore, is to consider the error measures 
that do not include expectations and they may be 

computed directly from the data.  For example a least 
squares error  

e(n)=∑|e(i)|2 

requires no statistical information about x(n), 
rd(n), and may be evaluated directly from x(n) and 
d(n).  there is an important philosophical difference, 
however, between minimizing the least squares error 
and the mean square error. Minimizing the mean 
square error produces the same set of filter 
coefficients for all sequences that have the same 
statistics.  Therefore the coefficients do not depend on 
the incoming data, only on their ensemble average.  
With the least squares error, on the other hand, we are 
minimizing a squared error that depends explicitly on 
the specific values of x(n) and d(n). Consequently, for 
different signals we get different filters. As a result, 
the filter coefficients that minimize the least squares 
error will be optimal for the given data rather than 
statistically optimal over a particular class of process.  
In other words, different realizations of x(n) and d(n) 
will lead to different solutions even if the statistics of 
these sequences are the same. In this section, we look 
at the filters that are derived by minimizing a 
weighted least squares error, and derive an efficient 
algorithm for performing these minimization known 
as recursive least squares.   

The idea behind RLS filters is to minimize a 
weighted least squares error function. To stay within 
the adaptive filter terminology, the weighted least 
squares error function is the cost function defined as 

Where 0<λ<1 is an exponential weighting factor 
which effectively limits the number of input samples 

based on which the cost function is minimized. The 
error signal e(n) is defined in the block diagram 
section of the adaptive filter page. The cost function is 
minimized by taking the partial derivatives for all 
entries k of the coefficient vector wnand setting the 
results to zero 

 

Next, replace e(n) with the definition of the error 
signal 

 

Rearranging the equation yields 
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This form can be expressed in terms of matrices 

Rx(n)wn = rdx(n) 

where Rx(n)is the weightened autocorrelation 
matrix for x(n) and rdx(n)is the cross-correlation 
between d(n) and x(n). Based on this expression we 
find the coefficients which minimize the cost function 
as 

w n = Rx
-1(n) rdx(n) 

This is the main result of the discussion. 

 

IV. EXPERIMENTAL RESULTS 
 

 
Figure 4 :Input signal (Letter ‘Zha’ in Tamil Language) 

 

 
Figure 5: Echo signal 

 
 

 
 

Figure 6 :Input to the adaptive filter = input signal +echo signal 
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Figure 7: Actual signal by RLS algorithm 

 
 

 
 

Figure 8: Predicted signal by RLS algorithm 

 
 

Parameter LMS NLMS RLS 
 

Computational 
Complexity 

34 36 32 

Convergence Rate Slow Slow Fast 
Maximum ERLE (dB) 3.65 1.03 3.71 

 

TABLE I.  PARAMETER COMPARISON OF LMS, NLMS AND RLS ALGORITHMS

V. CONCLUSION 
In this paper, LMS, NLMS and RLS algorithms 

have accomplished the echo cancellation. Among 
these, LMS algorithm is very simple to implement but 
slower one. By changing the step size, the speed of 
the LMS algorithm has been increased in the NLMS 
algorithm. Even though, the rate of convergence 
obtained in NLMS is not up to the satisfactory level. 
In speech recognition of letter ‘Zha’ in Tamil 
language [11], the RLS algorithm makes the 
converging speed and also provides better echo noise 
reduction when compared to the other algorithms. 
This simulation can be expanded to the real time 
hardware implementation using DSP for acoustic echo 
cancellation in hands free environment.  
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