
A.Neela madheswari et al /International Journal of Engineering and Technology Vol.1(2), 2009, 86-90

86

Bandwidth-aware co-scheduling for clusters
A.Neela madheswari1, M.Azath2,Dr.R.S.D Wahida Banu3

1,2Asst.Professor,Department of CSE,Mets School Of Engineering,Thrissur.
1neela.madheswari@gmail.com

2mailmeazath@gmail.com
3Research Supervisor, Anna University, Coimbatore.

3drwahidabanu@gmail.com

Abstract : Cluster computing are the best category
of number of off-the-shelf commodity computers
and resources that are integrated through
hardware, networks and software to behave as a
single computer simultaneously. In parallel
applications, some processes are in need of
executing simultaneously. We cannot be sure that
all the processes are independent due to its
communication behavior of some processes. Many
of the processes are in need of co-scheduling each
other. There are various types of co-scheduling
available. This paper will focus mainly on the
bandwidth and the memory concept mainly. This
paper demands for the efficient resource utilization
of cluster resources under the parallel execution of
jobs using the newer bandwidth-aware co-
scheduling concept which is put forth here.

Keywords: Scheduling, Cluster, bandwidth,
memory, co-scheduling.

I. INTRODUCTION

Parallel processing is being seen as the only

cost-effective method for the fast solution of
computationally large and data-intensive
problems [1]. The largest shift towards parallel
computing is occurring right now. A large
majority of the desktop and notebook computers
sold today for everyday use employs dual-core
and quad-core chips. Several server, console and
special purpose processors even contain between
8 and 96 cores and the trend to increase on-chip
parallelism is expected to continue in the
foreseeable future [2].

Clusters use intelligent mechanisms for
dynamic and network-wide resource sharing,
which respond to resource requirements and
availability. These mechanism support scalability
of cluster performance and allow a flexible use of
workstations, since the cluster or network-wide
available resources are expected to be larger than
the available resources at any one
node/workstation of cluster [7]. Many enterprises
are now looking at clusters of high-performance,

low cost computers to provide increased
application performance, high availability and
ease of scaling within the data enter. Interest in
and development of computer clusters has largely
been driven by the increase in the performance of
off-the-shelf commodity computers, high speed,
low latency network switches and the maturity of
the software components [3].

Scheduling of processes onto processors of a
parallel machine has always been an important
and challenging area of research. Its importance
stems from the impact of the scheduling
discipline on the throughput and response times
of a system. The research is challenging because
of the numerous factors involved in the design
and implementation of a scheduler [4].

Co-scheduling for clusters is a challenging
problem because it must reconcile the demands of
parallel and local computations, balancing
parallel efficiency against local interactive
response. Ideally a co-scheduling system would
provide the efficiency of a batch-scheduled
system for parallel jobs and a private timesharing
system for interactive users. In reality, the
situation is much more complex, as we expect
some parallel jobs to be interactive [9].

II. RELATED WORK
In recent years researchers have developed

parallel scheduling algorithms that can be loosely
organized into three main classes according to the
degree of coordination between processes
namely: explicit scheduling, local scheduling and
implicit scheduling.

Explicit co-scheduling [5] ensures that the
scheduling of communication jobs is coordinated
by creating a static global list of the order in
which jobs should be scheduled and then
requiring a simultaneous context-switch across all
processors. Unfortunately this approach is neither
scalable nor reliable. Further more it requires that
the schedule of communicating processes be
preempted, thus complicating the co-scheduling
of applications and require pessimistic
assumptions about which processes communicate

A.Neela madheswari et al /International Journal of Engineering and Technology Vol.1(2), 2009, 86-90

87

with one another. Explicit co-scheduling of
parallel jobs also adversely affects the
performance on interactive and IO based jobs.

Conversely local scheduling allows each
processor to independently schedule its
processes. The performance of fine-grain
communicating jobs degrades significantly
because scheduling is not coordinated across
processors [10].

In implicit or dynamic co-scheduling, each
local scheduler makes scheduling decisions that
dynamically coordinate the scheduling actions of
cooperating processes across processors. These
actions are based on local events that occur
naturally within communicating applications.

III. PROPOSED SCHEDULING STRATEGY
The scheduler must have information on the

content of each machine's disk cache in addition
to the availability of compute-slots on each
machine to attain co-scheduling [4]. An acute
complexity faced by the classes of co-scheduling
is the computation of optimal co-schedules. This
complexity stays unanswered. Detection of
optimal co-schedules is significant for two
reasons. First, the evaluation of a variety of
scheduling systems has been facilitated by this.
Second, a well-organized optimal co-scheduling
algorithm can directly fit the necessity of
practical co-scheduling. To find out their rate of
communication, the communication between
processes or threads has been monitored by the
runtime activities. The need for co-scheduling has
been typically associated with communication.
Latency and bandwidth are two metrics
associated with communication and memory.
Neither of them is uniform, but is precise to a
particular component of the memory hierarchy
[8]. A new scheduling algorithm has been
proposed based on the bandwidth and the
memory.

IV. PROPOSED SCHEDULING ALGORITHM

The proposed scheduling algorithm aims to
schedule the number of processes of a particular
job in the processor. If all the processes of a job
cannot be assigned in a processor without enough
memory then the processes will be grouped level
by level. This grouping can be done by using the
Multi-Level Preliminary Grouping (MLPG) and
Communication-Cost Effective Grouping
(CCEG) Algorithms. The grouping of all the
processes is mainly based on the communication
between each of the processes of a job. This
grouping can be done by calculating the
communication cost of each of the processes.

Then the grouped processes are scheduled to be
assigned to the processor having sufficient
amount of memory to accommodate all the
processes in the group.

4.1 MULTI-LEVEL PRELIMINARY GROUPING
(MLPG) ALGORITHM

In this algorithm, the processes of a job can
be initially grouped on the basis of the
communication cost between the processes. The
grouping can be done level by level. The
preliminary grouping is done on the basis of
communication costs between the processes.

CJP Processes of a current job

CN Number of communications
between two processes.

RB Bandwidth required for
communication between two processes

CPG Vector of process groups having
communication with other processes

NCPG Vector of process groups not
having communication with other processes

CJPin p processeach for
processes)other with escommunicat (Pif

 PPGC << ;
 if end

for end

CCJNC PGPPG \=

The processes of the current job are divided
into two sets based on their communication with
other processes.

} .{ jobcurrentaofprocessesofNoN =
 N ofelement singleany be e Let
 T}X{e}{X),(∈∪=TeF

 }{\ eNT =
))(,()()(TPeFTPNP ∪=

The number of sets with k elements in the
power set of a set with n elements will be a
combination of),(knC , where

 α<>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= k

k
n

knC 1,),(

Where n = number of processes of a current
job. The processes of a particular job can be
grouped level by level. Select),(knC groups

A.Neela madheswari et al /International Journal of Engineering and Technology Vol.1(2), 2009, 86-90

88

from the set)(NP and each group having k
number of processes.

The communication cost between two
processes and the total cost of each group is
calculated by using the following equations.

2/)*(RC BNCost =

)(cos
nCr
1groupeach ofcost

1 1
∑∑
= +=

=
n

i

n

ij
ijtTotal

Where n = number of processes of each group
and r = 2 i.e. communication between 2
processes. Then the total costs are sorted in

descending order and stored in pgS
.

dscpg gttotsortS))(cos(=

pgS Sorted group of processes

iS Each group of processes in pgS

nS Selected groups for scheduling

)(1 pgSsizetoifor =

 then)(φ=in SSif I

inn SSS <<=
if end

 for end

The sorted groups are use to schedule the
groups that cover all the processes of a job but no
two groups have common processes.

If any of the process have not been included
in the processes group, then add those processes
to the nS .

4.2 Communication-Cost Effective
Grouping (CCEG) Algorithm

The processes which have been already
grouped by MLPG algorithm are again regrouped
by using this CCEG algorithm. This grouping is
done on the basis of communication costs
between all the processes of a particular job and
is found to be effective. This grouping is used to
separate the processes which are not having any
communication in the current group and reassign
the processes to another group having maximum
communication cost with any one of the
processes in that particular group.

Each value in CS represents the
communication cost between the current process

iP and the other process in the process set nS .

Each value in CS is represented by ijN If there

is no communication, then the value of ijN is
zero.
)}(:{ xPxX =
 0)(≠= ijNxP

Where km1j and 11 <>=<>= ni
 m

iIlm XG][∆=
 iQ PS <<

Here m
iI X][∆ represents the index of the

maximum value of the communication cost
between iP and the corresponding process group
and l is the corresponding qualified group namely

QS .

4.3 Scheduling Algorithm

In this algorithm, the number of processes
(n) of a particular job has been scheduled to
be assigned to any of the processors. The
processes have been grouped based on their
communication costs. For this algorithm to
take effect, we have to check the following
conditions level by level.

mP Total memory of each group of
processes

mC Available free memory in each
processor

iS Each group of processes
)}(:{ iij SPSC =

where ni ,,1K= and cj ,,1K=
 jii CmpmSP <==)(

If all the processes of a particular job cannot
be assigned to the processors in first level due to
the shortage of memory, then it would go to next
level and check the above conditions. After
assigning each process group to processor jC ,

then the memory of the processor gets reduced.

V. EXPERIMENTAL RESULTS
This section contains an extensive

experimental evaluation. According to this
algorithm, the processes in a certain job are
initially scheduled and then assigned to the
processors. The results thus obtained were

A.Neela madheswari et al /International Journal of Engineering and Technology Vol.1(2), 2009, 86-90

89

analyzed and were proved to be better in terms of
communication between the processes of a
particular job. The communication between the
processes and the memory required for storage
were the two criterions upon which the processes
were grouped. In the results, we have compared
the communication costs within the grouped
processes to that of the individual processes. The
proposed algorithm yielded better experimental
results in terms of the communication costs
between the processes.

The processes of a particular job have been
grouped on the basis of their cost of
communication with the other processes. In the
tables given below, the grouped processes sets
have been compared with the same processes and
the other processes of a particular job with
communication cost being the condition for
comparison. Communication cost between the
processes of the same group assigned in one
processor is found to be maximum than the other
processes group. This can be verified upon
analysis of the tables and charts given
subsequently. Considering the communication
costs between the processes of a job, the
proposed algorithm was found to perform better.
The processes table of the job and the respective
charts are given below.

Table 1: Communication costs between the
processes of same group assigned on one

processor of a particular job
process p1 p2 p5 p9
P1 0 25 54 30
P2 25 0 12 0
P5 54 12 0 0
P9 30 0 0 0

Table 2: Communication costs between the
group of one processes and group of other

processes assigned on another processor of a
particular job

process p3 p7 p8 p4 p6
p1 0 0 5.5 0 0
p2 15 5 5 0 0
p5 0 10 0 0 0
p9 15 0 18 0 0

0

10

20

30

40

50

60

p1 p2 p5 p9

p1
p2

p5
p9

p1
p2
p5
p9

Chart 1: Communication costs between the
processes of same group assigned on one
processor of a particular job.

p3 p7 p8 p4 p6
p1

p2
p5

p9

0

10

20

30

40

50

60

p1
p2
p5
p9

Chart 2: Communication costs between the
group of one processes and group of other

processes assigned on another processor of a
particular job

The processes tables and charts of another one
job is given as follows.

Table. 3 Communication costs between the
processes of same group assigned on one

processor of a particular job
process p11 P12 p13 p15
P11 0 25 54 0
P12 25 0 0 12
P13 54 0 0 63
P15 0 12 63 0

Table. 4 Communication costs between the
group of one processes and group of other

processes assigned on another processor of a
particular job

process P14 p16 p17 P18 p19
P11 0 4 2.5 0 0
P12 0 4 5 0 0
P13 13 0 0 0 12.5
P15 0 1.5 0 0 0

A.Neela madheswari et al /International Journal of Engineering and Technology Vol.1(2), 2009, 86-90

90

p11 p12 p13 p15
p11

p12
p13

p15

0

10

20

30

40

50

60

p11
p12
p13
p15

Chart 3: Communication costs between the
processes of same group assigned on one

processor of a particular job

p14 p16 p17 p18 p19
p11

p12
p13

p15

0

10

20

30

40

50

60

p11
p12
p13
p15

Chart 4: Communication costs between the
group of one processes and group of other
processes assigned on another processor of a
particular job

VI. CONCLUSION
This paper investigated the problem of

optimal job co-scheduling on the processors. A
scheduling algorithm is proposed to improve the
optimal co-scheduling of the processes of a job
by utilizing the main parameters such as
bandwidth and memory. Based on the usage of
both the bandwidth and memory, the processes of
a particular job are assigned to the processors
having sufficient amount of memory. The tables
and the charts of the proposed framework gives
better results when the communication costs
between the processes of the same group assigned
in a single processor is found to be maximum
than the other group of processes. All the
processes in the processors are co-scheduled
simultaneously while running the parallel jobs.
References
[1] “Introduction to Parallel computing”, II Edition,

Ananth Grama, Anshul Gupta, George Karypis, Vipin
Kumar, Jan 2003.

[2] “New Challenges of parallel job scheduling”, Eitan
Frachtenberg, Uwe Schwiegelshohn, Workshop on Job
Scheduling Strategies for Parallel Processing, 2007.

[3] “Cluster Computing” White paper from Cisco
Systems, USA, 2004.

[4] “A close look at coscheduling approaches for a
network of workstations”, Shailabh nagar, Ajit
banerjee, Anand sivasubramaniam, Chita.R.Das,

Symposium on parallel algorithms and architectures,
1999.

[5] “Implications of I/O for gang scheduled
workloads”,L.Rudolph, W.Lee, M.Frank, K.Mackenzie,
LCNS, Springer-Verlag, JSSPP 1997.

[6] “Parallel Job Scheduling and Workloads”, Dror
Feitolson.

[7] “Parallel programming models and Paradigms”, Luis
Moura E Silva, Rajkumar Buyya.

[8] “Memory Hierarchy in Cache-Based Systems”,
Technical report, High Performance Computing, Sun
Microsystems, 2003.

[9] “Dynamic Coscheduling on Workstation Clusters”,
Patrick G.Sobalvaro, Scott Pakin, William E.Weihl
and Andrew A.Chien, Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing,
Vol.1459, pp. 231-256, 1998.

[10] “Buffered Coscheduling: A New Methodology for
Multitasking Parallel Jobs on Distributed Systems”,
Fabrizio Petrini, Wu-chun Feng, 2000.

[11] “A comparative evaluation of implicit coscheduling
strategies for networks of workstations”, Cosimo
Anglano, 2000.

[12] “Improving response time in cluster-based web servers
through coscheduling, Jin-Ha-Kim, Gyu Sang Choi,
Deniz Ersoz, Chita.R.Das, In the proceedings of the
International Parallel and distributed processing
symposium,, 2004.

[13] Platonov, A. P., Sidelnikov, D. I., Strizhov, M. V.,
Sukhov, A. M., “Estimation of available bandwidth and
measurement infrastructure for Russian segment of
Internet”, arXiv:0803.1723, RIPE 56 Meeting, March
2008.

[14] P. Sammulal, A. Vinaya Babu, “Efficient and
Collective Global, Local Memory Management For
High Performance Cluster Computing”, International
Journal of Computer Science and Network Security,
Vol. 8 , No. 4, pp. 81-84, 2008.

